
algorithms

Article

Scale Reduction Techniques for Computing
Maximum Induced Bicliques

Shahram Shahinpour 1, Shirin Shirvani 2, Zeynep Ertem 3 and Sergiy Butenko 4,*
1 Sabre Corporation, Southlake, TX 76092, USA; shahram.shahinpour@sabre.com
2 Department of Computer Science and Engineering, The University of Texas at Arlington,

Arlington, TX 76019, USA; shirin.shirvani@mavs.uta.edu
3 Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX 78712, USA;

ertem@utexas.edu
4 Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX 77843, USA
* Correspondence: butenko@tamu.edu; Tel.: +1-979-458-2333

Received: 16 June 2017; Accepted: 27 September 2017; Published: 4 October 2017

Abstract: Given a simple, undirected graph G, a biclique is a subset of vertices inducing a
complete bipartite subgraph in G. In this paper, we consider two associated optimization problems,
the maximum biclique problem, which asks for a biclique of the maximum cardinality in the graph,
and the maximum edge biclique problem, aiming to find a biclique with the maximum number of
edges in the graph. These NP-hard problems find applications in biclustering-type tasks arising in
complex network analysis. Real-life instances of these problems often involve massive, but sparse
networks. We develop exact approaches for detecting optimal bicliques in large-scale graphs that
combine effective scale reduction techniques with integer programming methodology. Results of
computational experiments with numerous real-life network instances demonstrate the performance
of the proposed approach.
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1. Introduction

Network-based analysis offers a powerful approach for modeling elements and their interactions
in complex systems. In particular, network models make it possible to take advantage of graph
algorithms for mining massive datasets. For example, in protein-protein interaction networks, proteins
are represented as vertices and interaction between pairs of proteins are represented by edges [1–3].
In genome research, the relationship between genes and diseases can be modeled using graphs
in which vertices represent genes and diseases and edges represent a meaningful or hypothetical
relationship between a gene and a disease [4,5]. The World Wide Web can be represented using a graph
in which vertices are documents and edges are the hyperlinks between documents [6,7]. Network
models provide a valuable description of such systems and allow us to apply advanced techniques
for identification of some of the global structural properties of the system and prediction of their
future behavior. Biclique community detection has been studied extensively in recent years due to
its various applications in automata and language theory, biology and genome research, clustering
and data mining, artificial intelligence and graph compression [4,8–14]. Several different variants of
the biclique community detection problems have been introduced and studied in the literature in this
context. Next, we provide formal definitions and briefly review related literature.

Let G = (V, E) be a simple, undirected graph, where V = {1, . . . , n} is the vertex set, and
E ⊆ {{i, j} : i, j ∈ V, i 6= j} is the edge set. Let NG(i) = {j ∈ V : {i, j} ∈ E} denote the neighborhood of a
vertex i in G, and let NG[i] = NG(i)∪{i} be the closed neighborhood of i. For C ⊆ V, let G[C] = (C, E(C)),
where E(C) = {{i, j} ∈ E : i, j ∈ C, i 6= j}, denote the subgraph induced by C in G. The set C is
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called an independent set if G[C] is edgeless, and C is a clique if G[C] is a complete graph (i.e., has all
possible edges). Let α(G) be the independence number of G, which is the cardinality of a maximum
independent set in G. A graph is called bipartite if its set of vertices can be partitioned into two
non-overlapping independent sets, referred to as parts.

Definition 1. A set C ⊆ V is called a biclique if G[C] is a complete bipartite graph, which is a bipartite graph
with all possible edges between the parts.

A biclique is called maximal if it is not a subset of a larger biclique and, maximum if there is
no larger biclique in G. Note that according to Definition 1, an independent set is a biclique with
one of the parts being an empty set. However, from a practical perspective, one is not interested in
independent set solutions when searching for large bicliques in a graph. This observation is reflected
in the definitions of the corresponding optimization problems given next.

Definition 2. Given a simple, undirected graph G = (V, E), the maximum biclique (MB) problem is to find a
maximum cardinality biclique in G that is not an independent set.

Definition 3. Given a simple, undirected graph G = (V, E), the maximum edge biclique (MEB) problem is to
find a biclique with the maximum number of edges in G.

Different algorithms have been proposed for biclique community detection ranging from
enumeration of all maximal (non-induced) bicliques of a graph [13,15–18], finding a maximum edge
cardinality biclique [5] and maximum balanced bicliques [19] to exact, exponential-time methods [20],
approximation algorithms [21] and mining quasi-bicliques [22,23]. In particular, the MB problem has
been proved to be NP-hard in general graphs, but polynomial-time solvable in bipartite graphs [21].
The maximum edge biclique (MEB) problem has been successfully used for biclustering and formal
concept analysis [4,5,24]. It has been proved to be NP-hard in general and hard to approximate even
for bipartite graphs [25,26], but polynomial time solvable in convex bipartite and biconvex graphs [5]
(A bipartite graph G = (V1, V2, E) is called convex on V2 if there exists an ordering of the vertices
of V2 such that for any v ∈ V1, NG(v) consists of vertices that are consecutive in V2. The graph G is
biconvex if it is convex on both V1 and V2). The maximum edge weight biclique problem, an edge-weighted
generalization of MEB, has also been considered in the literature [11,27].

It should be noted that the NP-hardness of the MB problem in some of the previous
publications [21,25] has been claimed based on a more general result by Yannakakis [28], as discussed
next. A graph property Π is said to be hereditary on induced subgraphs if for a graph G with property Π,
the deletion of any subset of vertices does not produce a graph violating Π. A property Π is said to be
nontrivial if it is true for a single-vertex graph and is not satisfied by every graph. Also a property is
said to be interesting if there are arbitrarily large graphs satisfying Π. The maximum Π problem is to
find the largest order induced subgraph that does not violate property Π. Yannakakis [28] proved that
the maximum Π problem for nontrivial, interesting graph properties that are hereditary on induced
subgraphs is NP-hard. If an independent set is accepted as a feasible solution for the MB problem,
then clearly the property “a graph whose set of vertices is a biclique” is nontrivial, interesting and
hereditary on induced subgraphs, which proves that this version of the MB problem (that accepts
independent set solutions) is NP-hard. However, requiring bicliques to have two nonempty parts (as in
this paper and in [21]) violates the heredity property, since removing the central vertex of a star graph
gives an independent set, which is infeasible under this requirement. Thus, the result of Yannakakis
is not applicable for this, more practically reasonable version of the MB problem. Nonetheless,
the reduction from the independent set problem used in [21] does prove that the non-hereditary
version of the MB problem is indeed NP-hard. On a practical note, the lack of heredity implies that
the general-purpose combinatorial branch-and bound framework known as Russian Doll Search
(RDS) [29,30] is not directly applicable to the problems considered in this paper.
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The focus of this paper is on developing effective scale reduction techniques for the MB and
MEB problems that can be used in combination with an exact algorithm in order to solve this problem
to optimality on large, sparse networks. Simple scale reduction techniques have been successfully
applied to other important combinatorial optimization problems, including the maximum clique and
minimum vertex coloring problems [31,32], the maximum independent set problem [33], and the
minimum vertex cover problem [34] among others. The ideas behind these methods are similar
to some of those used to develop parameterized algorithms for hard optimization problems [35].
In parameterized approaches, one considers a parameter k (e.g., the target size of a solution) along
with the usual input size n [36]. A parameterized problem is called fixed-parameter tractable if there
exists an algorithm (called an fpt-algorithm) solving this problem in f (k) · nO(1) time, where f is a
computable function depending only on k (typically exponentially). The first result on parameterized
complexity of a problem dealing with finding bicliques has only been established recently, after
numerous previous attempts. More specifically, Lin [37] has proved that the problem of deciding
whether a given graph G contains a complete bipartite subgraph Kk,k is W[1]-hard, meaning that an
fpt-algorithm is unlikely to exist. In another recent paper, Feng et al. [38] studied the parameterized
edge biclique problem, which asks if a given bipartite graph G contains a biclique subgraph with
at least k edges, where k is a given integer parameter. To the best of our knowledge, the MB and
MEB problems considered in this paper have not been studied from a parameterized complexity
perspective and the exact approach proposed in this paper is the first reported attempt of solving these
problems computationally.

The remainder of the paper is organized as follows. Section 2 provides integer programming
formulations of the considered problems. A global optimization approach is proposed in Section 3,
which employs a novel scale reduction technique that empowers exact solution methods to handle
large-scale instances of the MB and MEB problems. Results of computational experiments with
proposed method are reported in Section 4. The paper is concluded in Section 5.

2. Integer Programming Formulations

In this section, we provide integer programming (IP) formulations for the problems of interest.
Consider a simple, undirected graph G = (V, E). Let xij be a binary decision variable indicating
whether a vertex i ∈ V belongs to either of the two parts j ∈ {1, 2}. Then the MB problem can be
formulated as follows:

Maximize ∑
i∈V

(xi1 + xi2) (1)

subject to: xi1 + xi2 ≤ 1 ∀i ∈ V (2)

∑
i∈V

xij ≥ 1 ∀j ∈ {1, 2} (3)

xij + xkj ≤ 1 ∀{i, k} ∈ E, j ∈ {1, 2} (4)

xi1 + xk2 ≤ 1 ∀{i, k} /∈ E (5)

xij ∈ {0, 1} ∀i ∈ V, j ∈ {1, 2} (6)

In this formulation, constraints (2) make sure that each vertex belongs to at most one part, and
constraints (3) rule out solutions with empty parts, which correspond to independent sets. Constraints (4)
ensure that each of the two parts forms an independent set, and constraints (5) guarantees that
non-adjacent vertices cannot belong to different parts. Considering an instance with n = |V| vertices
and m = |E| edges, the above formulation has 2n binary variables and n2 + 2 constraints.
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To develop an IP formulation for the MEB problem, we introduce m new binary variables
zik, {i, k} ∈ E, i < k indicating whether edge {i, k} is included in the optimal solution. We have:

Maximize ∑
{i,k}∈E

zik (7)

subject to: (2)–(5)

zik ≤ xi1 + xi2, zik ≤ xk1 + xk2 ∀{i, k} ∈ E, k > i (8)

xij, zik ∈ {0, 1} ∀i ∈ V, j ∈ {1, 2}, {i, k} ∈ E, k > i (9)

In this model, constraints (8) ensure that an edge is in the solution only if its incident vertices are
selected to be in the solution. Note that the integrality of zik can be relaxed due to the fact that these
variables are bounded by xij variables and the objective function is maximization. This formulation
has 2n + m variables and n2 + 2m + 2 constraints.

The proposed IP formulations can be employed in off-the-shelf solvers to find optimal solutions of
the problems of interest. However, the practical applicability of this approach is limited to small-scale
instances, unless the formulations are strengthened based on their detailed polyhedral study. In the
next section, we propose an alternative global optimization approach that employs effective scale
reduction techniques to solve large-scale real-life instances.

3. Exact Algorithm Based on the Proposed Scale Reduction

Due to the NP-hardness of the considered problems, solving large-scale instances arising in
practice is a formidable challenge. However, many real-life networks are characterized by sparsity,
which can be exploited in designing exact, global optimization algorithms. Namely, instead of directly
applying standard solution techniques, such as branch-and-bound method, we will aim to reduce
large-scale instances to manageable sizes first. Using structural properties of bicliques, we propose a
scale reduction technique that attempts to shrink the feasible region of a given instance of the problem
while ensuring that the reduced instance contains a global optimal solution to the original problem.
The overall structure of the proposed global optimization algorithm consists of the following steps.

1. Find a lower bound. Use a heuristic algorithm to obtain a lower bound on the optimal solution.
2. Apply scale reduction. Given a heuristic solution, recursively identify and remove vertices that

cannot be included in a globally optimal solution, until no further reduction is possible.
3. Solve. Apply a standard exact algorithm to find a globally optimal solution in the residual graph.

The procedure starts with finding a lower bound solution using a heuristic algorithm described
in the next subsection. Given this lower bound, the scale reduction algorithm iteratively identifies
and removes edges that cannot be present in the optimal solution (Section 3.2). If no further reduction
is possible, the residual graph is extracted and updated. Lastly, an IP model is developed based on
residual graph, certain valid inequalities (described below) are added, and the model is solved using a
standard solver. Next, we describe the algorithm in detail.

3.1. Finding a Lower Bound

The scale reduction algorithm employs a feasible lower bound on the optimal objective value
and iteratively identifies edges that cannot be part of the optimal solution. To obtain a lower bound,
we find an induced star subgraph of G by applying a simple degree-based greedy heuristic to compute
an independent set in the neighborhood of each vertex. The algorithm is outlined in Algorithm 1.
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Algorithm 1 Greedy induced star construction heuristic.

1: Initialization: Sort vertices based on non-increasing order of their degree in G; L ← 0;
2: for i← 1 to |V| do
3: if |NG[i]| > L then
4: Si = {i};
5: Ci ← NG(i);
6: while |Ci| > 0 do
7: j← a least degree vertex in G[Ci];
8: Si = Si ∪ {j};
9: Ci = Ci \ NG[Ci ]

[j];
10: end while
11: if |Si| > L then
12: L ← |Si|;
13: end if
14: end if
15: end for
16: return L;

The vertices in G are sorted in a non-increasing order of their degrees in the initialization step
and the subgraph induced by the neighborhood Ci of each vertex i ∈ V is then considered. Starting
with Si = {i}, we recursively add a least degree vertex j from G[Ci] to Si and update Ci by removing
j and its neighbors. The output of this procedure is the number L of vertices in the induced star
subgraph found.

3.2. Scale Reduction Techniques

For G = (V, E), let G′ = (V′, E′) be a subgraph of G induced by a biclique V′ = V′1 ∪ V′2 with
parts V′1 and V′2, i.e., V′1 and V′2 are independent sets in G and E′ = {{i, j} ∈ E : i ∈ V′1, j ∈ V′2}. Then
L = |V′1 ∪ V′2| is a lower bound on the size of a maximum biclique in G. In addition, for any given
edge {i, j} ∈ E′, where i ∈ V′1 and j ∈ V′2, we have α(G′[N(i)]) = |V′2| and α(G′[N(j)]) = |V′1|, so

α(G′[N(i)]) + α(G′[N(j)]) = |V′1 ∪V′2| = |V′1|+ |V′2|.

3.2.1. Scale Reduction for the MB Problem

For a subset of edges H ⊂ E, the corresponding edge-induced subgraph G[H] of G is given by
G[H] = (V(H), H), where V(H) = {i ∈ V : ∃j ∈ V such that {i, j} ∈ H}. Consider G = (V, E),
a biclique V′ of size L in G, a subset of edges H ⊂ E and induced subgraph G[H]. Define the following
operator function for {u, v} ∈ H:

PLG (H, {u, v}) =
{
{u, v}, if α(G[NG[H](u) \ NG(v)]) + α(G[NG[H](v) \ NG(u)]) ≥ L,
∅, otherwise.

(10)

The operator function determines whether two adjacent vertices u and v can be simultaneously
included in a biclique with at least L vertices in G[H]. If PLG (H, {u, v}) = ∅ we will call {i, j} a conflict
edge with respect to H, since at most one of its two vertices can be included in a biclique with at least L
vertices in G[H]. Then

PLG (H) =
⋃

{u,v}∈H

PLG (H, {u, v}) (11)

gives a subset of edges in H that results from excluding all the conflict edges. This process can be
applied recursively until there are no more conflict edges with respect to the remaining set of edges.
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More formally, for a given lower bound L and a positive integer k, denote by PL(E, k) the following
recursively defined set:

PL(E, k) =

{
PLG (E), if k = 1,

PLG (PL(E, k− 1)), if k ≥ 2.
(12)

For k ≥ 1, PL(E, k) is a subset of edges in E that were not labeled as conflict edges during k rounds
of the process.

Example 1. Figure 1 illustrates this process on a 9-vertex graph G with a known biclique (obtained using
Algorithm 1) V′ = V′1 ∪V′2, where V′1 = {6} and V′2 = {3, 4, 5, 7, 9} giving a lower bound L = |V′1 ∪V′2| = 6
on the size of a MB in G. We find PL(E, k) for k = 1. For the edge {1, 8}, we have G[NG(1) \ NG(8)] = {8}
and α(G[NG(1) \ NG(8)]) = 1. Likewise, G[NG(8) \ NG(1)] = {1, 4, 9} and α(G[NG(8) \ NG(1)]) = 3.
As a result, α(G[NG(1) \ NG(8)])+ α(G[NG(8) \ NG(1)]) = 4 < L = 6. Therefore, PLG (E, {1, 8}) = ∅ and
{1, 8} is a conflict edge. On the other hand, for {6, 7}, G[NG(7) \ NG(6)] = {1, 6, 8}, G[NG(6) \ NG(7)] =
{3, 4, 5, 7, 9}, and α(G[{1, 6, 8}) + α(G[{3, 4, 5, 7, 9}]) = 7 > L = 6, so PLG (E, {6, 7}) = {6, 7}
meaning that the edge {6, 7} is not a conflict edge. After performing the recursive procedure for k = 1 and
k = 2, we obtain a graph G[PL(E, 2)] with no conflict edges. Clearly, vertices 1, 2 and 8 cannot be a part
of a biclique with at least 6 vertices, so they can be permanently removed, and a MB of G must be a part of
G[{3, 4, 5, 6, 7, 9}]. Since the latter graph is complete bipartite, its set of vertices is the maximum biclique of G.
This shows that our lower bound solution is, in fact, optimal for this graph.

1 7 6 5

2 3

8 9

4

(a) G = (V, E)

1 7 6 5

2 3

8 9

4

(b) G[PL(E, 1)]

1 7 6 5

2 3

8 9

4

(c) G[PL(E, 2)]

Figure 1. Graph G = (V, E), the induced subgraphs G[PL(E, 1)], and G[PL(E, 2)] for L = 6
(see Example 1).

Next, we discuss some properties of the proposed scale reduction process. The following lemma
follows directly from the definition of PL(E, k).

Lemma 1. Let V′ = (V′1 ∪ V′2, E′) and V∗ = (V∗1 ∪ V∗2 , E∗) be bicliques in G = (V, E) with |V′| = L,
|V∗| = L∗, such that L ≤ L∗. Then for any integer k ≥ 1 the following inclusions hold:

1. PL
∗
(E, k + 1) ⊆ PL

∗
(E, k) ⊆ PL(E, k).

2. E∗ ⊆ PL(E, k) for all k.

In particular, this lemma implies that an edge from a subgraph induced by a maximum biclique
will never be labeled as a conflict edge during the scale reduction process. Hence, it is tempting to
remove all the conflict edges and restrict the search for a maximum biclique to the residual graph.
Unfortunately, this cannot always be done since removing a conflict edge may increase the size of
a maximum biclique. Consider, for example, a star graph on n ≥ 4 nodes with an extra edge {u, v}
between two leaf nodes. Clearly, dropping either u or v gives a maximum biclique on n− 1 vertices.
However, for L = n− 1 the scale reduction process will label {u, v} as a conflict edge, resulting in
G[PL(E, 1)] given by a star on n vertices, which is an n-vertex biclique. On a positive side, it is safe to
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remove nodes adjacent to conflict edges only, i.e., the nodes that would become isolated if all the conflict
edges were removed. This provides basis for the proposed scale reduction technique. The algorithm,
outlined in Algorithm 2, proceeds by computing PL(E, k) until no new edges are labeled as conflict
edges, at which point we compute V̂ = V(G[PL(E, k)]), which is the set of vertices in the subgraph
induced by non-conflict edges (this essentially removes the vertices that become isolated if all conflict
edges are removed). The subgraph induced by V̂ is output as the residual graph.

Algorithm 2 Scale reduction algorithm.

1: Input: G = (V, E), L : a feasible lower bound
2: k← 1;
3: PL(E, 0) = E;
4: repeat
5: k← k + 1;
6: until PL(E, k) = PL(E, k− 1)
7: V̂ ← V(G[PL(E, k)]); B set of vertices of G[PL(E, k)]
8: return G[V̂];

Even though not all conflict edges can be removed as a result of the scale reduction procedure,
the fact that they cannot be included in a subgraph induced by an optimal biclique can be used to
develop optimality cuts and thus strengthen the IP formulation of the MB problem for the residual
graph. Indeed, let {i, j} be a conflict edge that was included in the residual graph. Since {i, j} cannot
be included in the optimal solution, at most one of the two vertices i and j can belong to a maximum
biclique, and since each vertex can only be in one part of a bipartite clique, it implies that

xi1 + xi2 + xj1 + xj2 ≤ 1 (13)

for any optimal solution of (1)–(6). The inequality (13) is added to the IP for the residual graph for
each remaining conflict edge {i, j}.

3.2.2. Scale Reduction for the MEB Problem

The scale reduction used for the MEB problem is very similar to the one just described for the
MB problem. Given G = (V, E), consider a biclique V′ of size L in G, a subset of edges H ⊂ E and the
corresponding induced subgraph G[H]. Let

Ē(H, {u, v}) = {{i, j} ∈ E : i ∈ NG[H](u) \ NG(v), j ∈ NG[H](v) \ NG(u)}

be the set of edges between NG[H](u) \ NG(v) and NG[H](v) \ NG(u) in G. We will abuse the notation
to define the analog of operator PLG (H, {u, v}) introduced for the MB problem in (10) as follows:

PLG (H, {u, v}) =
{ {u, v}, if min{|Ē|, A} ≥ L,

∅, otherwise,
(14)

where Ē ≡ Ē(H, {u, v}), A ≡ α(G[NG[H](u) \ NG(v)]) × α(G[NG[H](v) \ NG(u)]). Whenever we
discuss the MB problem, the definition of PLG (H, {u, v}) given in (10) applies, whereas for the MEB
problem we will use the definition of PLG (H, {u, v}) from (14). This allows us to use definitions of
PLG (H) in (11) and PL(E, k) in (12) for the MEB problem as well. All the properties of the scale reduction
process for the MB problem hold for the case of MEB as well. This includes Lemma 1, Algorithm 2,
and the Inequality (13), which is now valid for every optimal solution of the MEB Formulation (7)–(9).

Note that in this case the operator function keeps an edge if the minimum among |Ē| and the
total possible number of edges between maximum independent sets of G[NG[H](u) \ NG(v)] and
G[NG[H](v) \ NG(u)], required to form a biclique, is at least L. In practice for sparse networks, it is
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often sufficient to count the number of edges in Ē, which can be done efficiently. We will only need to
compute the independence numbers if |Ē| ≥ L.

Example 2. Figure 2 illustrates the process for the same example as in Figure 1. We consider the same lower
bound solution V′ = V′1 ∪ V′2, where V′1 = {6} and V′2 = {3, 4, 5, 7, 9}. This time it yields a lower bound
L = |V′1| · |V′2| = 5 on the size of a MEB in G. For edge {1, 7}, observe that G[NG(1) \ NG(7)] = {7},
G[NG(7) \ NG(1)] = {1, 2, 6} and Ē ≡ Ē(E, {1, 7}) = {{1, 7}, {2, 7}, {6, 7}}, so |Ē| = 3 < L = 5.
Therefore, PLG (E, {1, 7}) = ∅. For edge {4, 8}, G[NG(4) \ NG(8)] = {6, 8}, G[NG(8) \ NG(4)] =

{1, 4, 7, 9} and Ē ≡ Ē(E, {4, 8}) = {{4, 6}, {6, 7}, {6, 9}, {1, 8}, {4, 8}, {7, 8}, {8, 9}}, so |Ē| =
7 > L = 5. Next, we need to compute the independence numbers for G[{6, 8}] and G[{1, 4, 7, 9}].
We have: α(G[{6, 8}]) = 2, α(G[{1, 4, 7, 9}]) = 3. Since min{7, 2 × 3} = 6 > L = 5, we obtain
PLG (E, {4, 8}) = {4, 8}. After performing the recursive procedure for k = 1, we obtain a graph G[PL(E, 1)]
with no conflict edges (Figure 2b). Clearly, vertices 1 and 2 cannot be a part of a biclique with at least 5 edges,
so they can be permanently removed, and a MEB of G must be a part of G[{3, 4, 5, 6, 7, 8, 9}].

If we assume that the graph contains a biclique with 6 edges and set the lower bound to L = 6, we obtain a
graph G[PL(E, 1)] with no conflict edges (Figure 2c). Removing the isolated vertices 1, 2, 3 and 5 from this
graph we obtain a biclique ({6, 8}, {4, 7, 9}) with 6 edges. This shows that our assumption that there is a biclique
with 6 edges in the graph is correct, moreover, the biclique found is the optimal solution for the MEB problem in
this instance.

1 7 6 5

2 3

8 9

4

(a) G = (V, E)

1 7 6 5

2 3

8 9

4

(b) G[P5(E, 1)]

1 7 6 5

2 3

8 9

4

(c) G[P6(E, 1)]

Figure 2. Graph G = (V, E) and the induced subgraph G[PL(E, 1)] for L = 5 and L = 6 (see Example 2).

4. Computational Experiments

To evaluate the effectiveness of the proposed methodology, we conducted extensive computational
experiments. The proposed approach was implemented in C++. Östergård’s well-known algorithm [39]
has been adapted to compute the independence number within the scale reduction procedure. This
algorithm was chosen due to its simplicity and effectiveness on instances of small to medium scale,
however, it should be noted that other recently developed algorithms, such as MCS [40] could be used
instead. To solve the IP model for the residual graph resulting from the scale reduction algorithm,
IBM ILOG CPLEX OPTIMIZER 12.6.3 R© has been employed with default settings for preprocessing,
branching strategy and cutting planes. The proposed method was implemented in C++11 language
and compiled using gcc 4.8.1 in Microsoft Visual Studio 2013. All experiments were executed on a
64-bit Windows 7 computer with 2.60 GHz Intel(R) Core(TM) i7-5600U CPU and 16 GB RAM. The total
of 33 instances from two different sources were used for the experiments. The first set includes test
instances from the Stanford Large Network Dataset Collection (SNAP) and contains both directed
and undirected real life instances from collaboration networks, peer-to-peer file sharing and route
networks [41]. The directed instances used in the experiments have been converted to undirected
instances. The second group of test instances is from the tenth DIMACS implementation challenge [42].
This choice of testbeds is motivated by the fact that many real-life networks have similar structural
characteristics (large and sparse), which is also the type of networks our methodology is tailored to.
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The proposed scale reduction technique is unlikely to be effective in graphs with high edge density
because independent sets and lower bound solution for MB and MEB problems in such graphs tend to
have small cardinality. As a result, scale reduction is not effective in shrinking the instance size. Other
approaches need to be developed to address this case.

The results of computational experiments are reported in Tables 1 and 2. The columns of
these tables show the graph’s name (“Graph”), number of vertices (“|V|”), number of edges (“|E|”),
the objective value of a solution found using the heuristic described in Algorithm 1 (“LB”), the number
of vertices (“|V′|”) and edges (“|E′|”) in the residual graph obtained after applying the scale
reduction procedure described in Algorithm 2, the time solely used by the scale reduction procedure
(“SR-CPU(s)”) in CPU seconds, the optimal objective value (“Opt. Obj.”), and, finally, the total time,
in CPU seconds, used to solve the corresponding instance (“CPU(s)”). The last figure includes the time
taken by the scale reduction procedure.

Table 1. Computational results for the MB problem on instances from DIMACS Clustering challenge
and Stanford Large Network Dataset Collection (SNAP) dataset.

Graph |V | |E| LB |V ′| |E′| SR-CPU(s) Opt. Obj. CPU (s)

jazz 198 2742 18 85 704 0.44 20 0.67
email 1133 5451 34 35 35 0.61 34 0.64

netscience 1589 2742 16 26 42 0.02 16 0.03
add20 2395 7462 30 68 186 464.66 30 464.73
data 2851 15,093 8 41 99 1.09 8 1.36

as19971108 3015 5347 540 583 740 1531.77 540 1602.59
add32 4960 9462 16 66 108 0.17 16 0.42

CA-GrQC 5242 14,490 29 35 41 0.39 29 0.42
as19991204 6296 12,830 1294 1407 2234 3461.69 1294 3582.89

p2p-Gnutella08 6301 20,777 88 88 87 1.36 88 1.48
as20000102 6474 13,233 1338 1454 2430 1440.82 1340 19,645.00

p2p-Gnutella09 8114 26,013 98 98 97 1.09 98 1.47
hep-th 8361 15,751 22 81 151 0.40 23 0.66

p2p-Gnutella06 8717 31,525 104 113 121 0.21 104 0.44
p2p-Gnutella05 8846 31,839 87 88 88 0.76 87 1.11

CA-HepTH 9877 25,973 32 43 59 4.18 32 4.42
PGPgiantcompo 10,680 24,316 105 114 122 3223.57 105 3223.85
p2p-Gnutella04 10,876 39,994 97 100 102 0.12 97 0.42
oregon1-010519 11,051 22,724 2203 2384 4289 1466.45 2207 2085.01
oregon1-010526 11,173 23,409 2199 2385 4308 1619.41 2203 3852.24
oregon2-010526 11,460 16,365 2230 2428 4676 1652.65 2234 4762.25

cond-mat 16,726 47,594 41 55 72 5257.99 41 5258.05
p2p-Gnutella25 22,687 54,705 64 66 67 0.22 64 0.33

as-22july06 22,963 48,436 2243 2387 4125 1678.23 2245 10,722.34
p2p-Gnutella24 26,518 65,369 304 356 426 1040.93 304 1043.72
p2p-Gnutella30 36,682 88,328 54 54 53 0.59 54 0.70
p2p-Gnutella31 62,586 147,892 90 95 100 0.41 90 0.70
delaunay-n14 16,384 49,122 9 26 39 4.15 9 4.23
delaunay-n16 65,536 196,575 9 18 34 61.05 9 61.13
delaunay-n17 131,072 393,176 9 67 123 243.29 10 244.00
delaunay-n18 262,144 786,396 11 65 123 541.73 12 542.29
delaunay-n19 524,288 1,572,823 11 54 92 2205.50 11 2206.09
delaunay-n20 1,048,576 3,145,686 12 24 45 5086.75 13 5087.06
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Table 2. Computational results for the MEB problem on instances from DIMACS Clustering challenge
and SNAP dataset.

Graph |V | |E| LB |V ′| |E′| SR-CPU(s) Opt. Obj. CPU (s)

jazz 198 2742 17 85 704 0.67 19 2.67
email 1133 5451 33 35 35 1.42 33 1.45

netscience 1589 2742 15 26 42 0.01 15 0.03
add20 2395 7462 29 68 186 306.95 29 307.45
data 2851 15,093 7 1944 11,290 0.78 - >11,000

as19971108 3015 5347 539 583 740 1430.57 539 1462.28
add32 4960 9462 15 66 108 0.17 15 0.89

CA-GrQC 5242 14,490 28 35 41 0.47 28 0.51
as19991204 6296 12,830 1293 1407 2234 2081.83 1293 9542.64

p2p-Gnutella08 6301 20,777 87 448 3194 9.19 87 8177.89
as20000102 6474 13,233 1337 1454 2430 1201.03 1339 10,044.40

p2p-Gnutella09 8114 26,013 97 98 97 12.37 97 12.51
hep-th 8361 15,751 21 81 151 0.50 22 1.26

p2p-Gnutella06 8717 31,525 103 305 1283 2.53 138 654.47
p2p-Gnutella05 8846 31,839 86 136 203 5.74 92 8.38

CA-HepTH 9877 25,973 31 43 59 6.19 31 6.51
PGPgiantcompo 10,680 24,316 104 114 122 3899.91 104 3900.27
p2p-Gnutella04 10,876 39,994 96 100 102 0.56 96 0.78
oregon1-010519 11,051 22,724 2202 2384 4289 1262.38 2206 10,494.20
oregon1-010526 11,174 23,409 2198 2385 4308 1415.75 2202 10,750.50
oregon2-010526 11,460 16,365 2229 2428 4676 1579.16 - >11,000

cond-mat 16,726 47,594 40 55 72 7703.95 40 7704.02
p2p-Gnutella25 22,687 54,705 63 66 67 0.31 63 0.44

as-22july06 22,963 48,436 2242 2387 4125 3735.30 - >11,000
p2p-Gnutella24 26,518 65,369 303 356 426 220.50 303 225.52
p2p-Gnutella30 36,682 88,328 53 54 53 2.06 53 2.12
p2p-Gnutella31 62,586 147,892 89 95 100 0.98 89 1.30
delaunay-n14 16,384 49,122 8 26 39 5.57 8 5.70
delaunay-n16 65,536 196,575 8 18 34 80.41 8 80.54
delaunay-n17 131,072 393,176 8 67 123 315.68 9 316.55
delaunay-n18 262,144 786,396 10 65 123 373.68 11 374.53
delaunay-n19 524,288 1,572,823 10 54 92 1478.44 10 1479.16
delaunay-n20 1,048,576 3,145,686 11 24 45 3044.67 12 3045.02

Note that since the greedy induced star construction heuristic was used to find an initial solution
for both the MB and MEB problems, the lower bound values always differ by 1 (for a star on k vertices,
the corresponding lower bounds for MB and MEB objective values are k and (k − 1) × 1 = k − 1,
respectively). Comparing the size of the original and residual graphs in each of the test cases shows that
scale reduction technique is successful in shrinking the instance size, which is essential for applicability
of the IP-based approach. Also, in all but four instances (“data”, “p2p-Gnutella08”, “p2p-Gnutella06”,
and “p2p-Gnutella05”) the scale reduction process yielded the same residual graph for both problems.
The most dramatic difference in effectiveness of the scale reduction process was observed for the “data”
graph. In this case, the MB residual graph had only 41 vertices and 99 edges, while the MEB residual
graph had 1944 vertices and 11,290 edges. As a result, we were not able to solve the MEB problem for
this instance within the 11,000-s time limit (The 11,000-s time limit for the MEB problem was chosen
based on the results obtained for the MB problem, for which all but one instances were solved in
under 11,000 s, while one instance took over 19,000 s). This was also the case with two other instances,
“oregon2-010526” and “as-22july06” for the MEB problem. All other instances of both MB and MEB
problems were solved to optimality, and in all but four cases the MB problem was solved faster than
the MEB problem. This is not surprising, since the residual graph is always at least as large for MEB as
it is for MB, and the IP formulation for MEB has more variables and constraints.

The CPU times taken by the scale reduction and IP steps of the exact approaches are illustrated
in Figure 3 for 16 instances for which at least one of the four times (scale reduction for MB (MB-SR),
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IP solution for MB (MB-IP), scale reduction for MEB (MEB-SR), or IP solution for MB (MEB-IP))
exceeded 500 s. It can be seen that for 7 of these instances MEB-IP takes the longest, while MB-IP is the
most time-consuming step for 2 more instances. The scale reduction techniques dominate the CPU
time taken for the remaining 7 instances. Not surprisingly, the construction heuristic yielded optimal
solutions for both the MB and MEB problems for 5 of these 7 instances, and was just short of optimum
by 1 unit in the remaining two cases. For all these cases, the scale reduction procedure outputs a small
residual graph that is easily handled by CPLEX.
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Figure 3. Illustration of the CPU times used by the scale reduction and the IP solution for the
MB problem (MB-SR and MB-IP, respectively) and for the MEB problems (MEB-SR and MEB-IP,
respectively). The respective CPU times are plotted for all the tested instances for which at least one of
the four times exceeded 500 s.
It should be noted that the lower bound heuristic yielded optimal solution in most cases (23 and

20 out of 33 instances for the MB and MEB problems, respectively) and close to optimal solution in
most of the remaining cases. This shows that the optimal bicliques tend to have a star structure
and can often be found by analyzing the neighborhoods of individual vertices. The only two
exceptions were “p2p-Gnutella06” and “p2p-Gnutella05” networks. The optimal MEB solutions
for these instances had parts consisting of 23 and 6 vertices (yielding 23× 6 = 138 edges) and 46 and
2 vertices (46× 2 = 92 edges), respectively. Observe that despite a relatively large gap between the
optimal objective value and the heuristic lower bound, the combination of the scale reduction and the
IP-based approach was quite effective in finding optimal solution for both of these instances.

On the one hand, the observation that the optimal induced bicliques in real-life networks often
correspond to star graphs can be used as yet another evidence of “global structural imbalance” in
the so-called scale-free networks, which typically have a few high degree, and a large number of
low-degree vertices. On the other hand, this motivates using bipartite and multipartite versions of
clique relaxation models, such as s-plexes, s-defective cliques, and γ-quasicliques, which allow some
missing edges between the parts and hence are less restrictive [43].

Figure 3. Illustration of the CPU times used by the scale reduction and the IP solution for the
MB problem (MB-SR and MB-IP, respectively) and for the MEB problems (MEB-SR and MEB-IP,
respectively). The respective CPU times are plotted for all the tested instances for which at least one of
the four times exceeded 500 s.

It should be noted that the lower bound heuristic yielded optimal solution in most cases (23 and
20 out of 33 instances for the MB and MEB problems, respectively) and close to optimal solution in
most of the remaining cases. This shows that the optimal bicliques tend to have a star structure
and can often be found by analyzing the neighborhoods of individual vertices. The only two
exceptions were “p2p-Gnutella06” and “p2p-Gnutella05” networks. The optimal MEB solutions
for these instances had parts consisting of 23 and 6 vertices (yielding 23× 6 = 138 edges) and 46 and
2 vertices (46× 2 = 92 edges), respectively. Observe that despite a relatively large gap between the
optimal objective value and the heuristic lower bound, the combination of the scale reduction and the
IP-based approach was quite effective in finding optimal solution for both of these instances.

On the one hand, the observation that the optimal induced bicliques in real-life networks often
correspond to star graphs can be used as yet another evidence of “global structural imbalance” in
the so-called scale-free networks, which typically have a few high degree, and a large number of
low-degree vertices. On the other hand, this motivates using bipartite and multipartite versions of
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clique relaxation models, such as s-plexes, s-defective cliques, and γ-quasicliques, which allow some
missing edges between the parts and hence are less restrictive [43].

5. Conclusions

In this paper, we proposed a scale reduction technique for the MB and MEB problems, which can
be used to expand the applicability of exact algorithms for this problem to larger instances. Through
experiments with 33 real-life instances with the number of vertices ranging from 198 to 1,048,576,
we have shown that the proposed method is very effective in reducing the considered instances to
scales that can be handled by modern mixed integer programming (MIP) solvers. To further improve
the IP solution time, one could perform a polyhedral study, explore and exploit the symmetries in the
IP formulations, as well as take advantage of the high-quality heuristic solutions for warm-starting
the MIP solvers. In addition, the proposed scale-reduction schemes with L values high enough to
yield the empty edge set in the residual graph could be used to obtain upper bounds on the MB and
MEB size, as it was successfully done in [32] for the maximum clique problem.

In terms of the structure of the obtained optimal solutions, we observe that oftentimes optimal
bicliques in real-life networks induce star subgraphs, which, on the one hand can be thought of
as a global structural characteristic of scale-free networks, but on the other hand, may make one
question the practicality of searching for maximum bicliques in the context of complex network
analysis, where the instances are typically very sparse. These models may be more practical on
denser networks, however, the proposed scale reduction technique will not be applicable in this case,
calling for alternative solution methods, such as a combinatorial branch-and-bound method similar
to RDS [29,44]. As noted above, RDS is not directly applicable due to the lack of heredity property,
however, it can be modified to address the cases when heredity is violated. Other, more practical
alternatives of bicliques that would be interesting to consider in future research are bipartite and
multipartite versions of clique relaxations [43].
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