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1. Introduction

Integral equations have numerous applications in almost all branches of the sciences and many
physical processes and mathematical models in Engineering are usually governed by integral equations.
The main feature of these equations is that they are usually nonlinear. In particular, nonlinear integral
equations arise in fluid mechanics, biological models, solid state physics, kinetics chemistry, etc.
In addition, many initial and boundary value problems can be easily turned into integral equations.
One type of particularly interesting equation is a nonlinear Fredholm integral equation of the form

x(s) = f (s) + v
∫ b

a
K(s, t)x(t)pdt, s ∈ [a, b], p ∈ R, p ≥ 2, (1)

where v ∈ R, −∞ < a < b < +∞, the function f (s) is continuous on [a, b] and given, the kernel K(s, t)
is a known continuous function in [a, b]× [a, b] and x is a solution to be determined.

As integral equations of the form (1) cannot be solved exactly, we use numerical methods to solve
them; we can apply different numerical techniques and some of them can be found in the references of
this work.

For a general background on numerical methods for integral equations of the form (1), the
books of Atkinson [1] and Delves and Mohamed [2] are recommended. For a review of less recent
methods, we refer the reader to the survey by Atkinson [3]. There is a great deal of publication on the
numerical solution of Equation (1). In recent publications, different mathematical tools and numerical
implementations have been applied to solve integral equations (1). In some of these publications,
certain authors extensively use methods based on different kinds of wavelets [4,5]. Polynomial
approximation methods using different base functions, such as Chebyshev polynomials, have been
introduced; see for example [6,7]. An approximation with Sinc functions has been developed in [8].
Sinc methods have increasingly been recognized as powerful tools for tackling problems in applied
physics and engineering [9]. Several different variants of numerical or theoretical studies on (1) have
been developed in the literature. For some examples, see papers [10,11]. In terms of iterative schemes
for solving Equation (1), in [12], we can find an iterative scheme based on the homotopy analysis
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method, which is a general analytic approach to obtain series solutions of various types of nonlinear
equations and based on homotopy. In particular, by means of the aforementioned method, we can
construct a continuous mapping of an initial guess approximation to the exact solution of the equation
to be solved. In [13], the authors present an adapted modification to the Newton–Kantorovich method.
Finally, in [14], the Newton–Kantorovich method and quadrature methods are combined to develop a
new method for solving Equation (1).

In this work, we propose using Newton’s method for solving Equation (1). For this, we previously
analysed the semilocal convergence of the method and then compared the efficacy of the method
with the former techniques for solving a particular integral equation of the form (1). The semilocal
convergence results need to know the conditions of the operator involved in the equation to be solved
and the starting points of the iterative methods; the results show the existence of solutions of the
equation that allow us to obtain the domain of existence of a solution.

The main interest of this work is two-fold. On the one hand, we conduct a qualitative study of
Equation (1) and obtain results on the existence and uniqueness of a solution. On the other hand, we
obtain the numerical resolution of the equation. For this, we previously consider a separable kernel
K(s, t) and we directly approximate a solution of Equation (1). Secondly, by means of Taylor series, we
consider the case of a non-separable kernel. For both aims, we use Newton’s method, which is the
most well-known iterative method for solving nonlinear equations.

For the first aim, we study the application of Newton’s method to Equation (1) by analysing
the convergence of the method and use its theoretical significance to draw conclusions about the
existence and uniqueness of a solution, so that we can locate a solution of the equation from a domain
of existence of solutions and then obtain a domain of uniqueness of solutions that allows us to isolate
the solution previously located from other possible solutions of the equation. To achieve this aim, we
use Kantorovich’s technique [15], that was developed by the Russian mathematician L. V. Kantorovich
at the beginning of the 1950s and is based on the concept of “majorizing sequence”, which will be
introduced later. For the second aim, we apply Newton’s method to numerically solve Equation (1).

This paper is organized as follows. In Section 2, we consider a particular equation of the
form (1) and present the above-mentioned Kantorovich’s technique by introducing the concept of
“majorizing sequence”. In Section 3, from the theoretical significance of Newton’s method, we obtain
information about the existence and uniqueness of a solution for the nonlinear Fredholm integral
equations introduced in Section 2. Finally, in Section 4, we illustrate all the above-mentioned with two
applications where nonlinear Fredholm integral equations are involved and by considering separable
and nonseparable kernels.

2. Kantorovich’s Technique

As mentioned in the introduction, this paper has two main aims: to obtain conclusions about the
existence and uniqueness of a solution of (1) by using the theoretical significance of Newton’s method
and to numerically approximate a solution of (1).

It is clear that solving (1) is equivalent to solving the equation F(x) = 0, where F : Ω ⊆ C[a, b]→
C[a, b],

[F(x)](s) = x(s)− f (s)−v
∫ b

a
K(s, t)x(t)pdt, s ∈ [a, b], (2)

where

Ω =


{x(s) ∈ C[a, b] : x(s) ≥ 0} if p = q1

q2
with q1, q2 ∈ N and q2 even,

{x(s) ∈ C[a, b] : x(s) > 0} if p ∈ R \Q.

C[a, b] for any other value of p.

For solving equation F(x) = 0, Newton’s method is

xn = xn−1 − [F′(xn−1)]
−1F(xn−1), n ∈ N, with x0 given in Ω.
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The method has already been applied to approximate solutions of nonlinear integral
equations [16,17]. However, the novelty of this work is in using Kantorovich’s technique to obtain a
convergence result for Newton’s method when it is applied to solve (1) and, as a consequence, us the
theoretical significance of the method to draw conclusions about the existence and uniqueness of a
solution of (1) and about the region in which it is located, without finding the solution itself—this
is sometimes more important than the actual knowledge of the solution. A solution is found by
constructing a scalar function ad hoc which is used to define a majorizing sequence instead of using
the classical quadratic polynomial of Kantorovich.

Kantorovich’s technique consists of translating the problem of solving equation F(x) = 0 in Ω
to solve a scalar equation ϕ(t) = 0 and this is done once x0 ∈ Ω is fixed under certain conditions. In
addition, the domains of existence and uniqueness of a solution for Equation (1) can be determined
from the positive solutions of ϕ(t) = 0.

The idea of Kantorovich’s technique is easy: once a real number t0 is fixed, we define the scalar
iterative method

tn = Nϕ(tn−1) = tn−1 −
ϕ(tn−1)

ϕ′(tn−1)
, n ∈ N, (3)

such that
‖xn − xn−1‖ ≤ tn − tn−1, for all n ∈ N. (4)

Condition (4) means that the scalar sequence {tn} majorizes the sequence {xn} or, in other words,
{tn} is a majorizing sequence of {xn}. Obviously, if {tn} is convergent, {xn} also is. Therefore, the
convergence of the sequence {xn} is a consequence of the convergence of the sequence {tn} and the
latter problem is much easier than the former one.

2.1. The Auxiliary Scalar Function

We begin by analysing the operator F(x) given in (2). So, from (2), it follows that the Fréchet
derivatives of operator F are

[F′(x)y](s) = y(s)−vp
∫ b

a
K(s, t)x(t)p−1y(t) dt,

[F(k)(x)(y1y2 · · · yk)](s) = −vp(p− 1) · · · (p− k + 1)
∫ b

a
K(s, t)x(t)p−ky1(t)y2(t) · · · yk(t) dt,

for k = 2, 3, . . . , [p], where [p] denotes the integer part of the real number p ≥ 2.
In addition,

‖F(k)(x)‖ ≤ |v|
(

p
k

)
k! S‖x‖p−k,

where S = maxs∈[a,b]
∫ b

a |K(s, t)| dt with the infinity-norm. Next, taking into account that
‖x‖ ≤ ‖x0‖+ ‖x− x0‖, it follows

‖F(k)(x)‖ ≤ |v|
(

p
k

)
k! S‖x‖p−k ≤ |v|

(
p
k

)
k! S (‖x0‖+ ‖x− x0‖)p−k

≤ |v|
(

p
k

)
k! S (‖x0‖+ t− t0)

p−k , (5)

provided that ‖x− x0‖ ≤ t− t0. Moreover, for p ≥ 3, we denote

‖F(i)(x0)‖ ≤ |v|
(

p
i

)
i! S‖x0‖p−i = Mi,

for i = 2, . . . , k− 1.
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On the other hand, we observe that the existence of the operator [F′(x0)]
−1 must be guaranteed in

the first step of Newton’s method, since x1 = x0 − [F′(x0)]
−1F(x0). The existence of [F′(x0)]

−1 follows
from the Banach lemma on invertible operators, so the operator [F′(x0)]

−1 exists and is such that

‖[F′(x0)]
−1‖ ≤ 1

1− ‖I − F′(x0)‖
,

provided that ‖I − F′(x0)‖ < 1; namely,

|v|pS‖x0‖p−1 < 1. (6)

In addition, we denote β = 1
1−|v|pS‖x0‖p−1 and do

‖[F′(x0)]
−1F(x0)‖ ≤ ‖F(x0)‖β = η.

Now, we consider p ≥ 3 and denote ωk(t; t0) = |v|(p
k)k! S (‖x0‖+ t− t0)

p−k, for k = 2, 3, . . . , [p].
Then, as a consequence of the latter, we can find scalar functions y(t) such that y(k)(t) = ωk(t; t0), for
k = 2, 3, . . . , [p], to construct a majorizing sequence {tn} as that given in (3) by solving the following
initial value problem (see [18]):

y(k)(t) = |v|
(

p
k

)
k! S (‖x0‖+ t− t0)

p−k,

y(t0) =
η

β
, y′(t0) = −

1
β

,

y′′(t0) = M2, y′′′(t0) = M3, . . . , y(k−1)(t0) = Mk−1.

It is easy to see that there exists only one solution for the last initial value problem, that is:

ϕ(t) =
∫ t

t0

∫ θk−1

t0

· · ·
∫ θ1

t0

ωk(z; t0) dz dθ1 · · · dθk−1 +
k−1

∑
i=2

Mi
i!

(t− t0)
i − t− t0

β
+

η

β

= |v|S (‖x0‖+ t− t0)
p − (t− t0) + ‖F(x0)‖ − |v|S‖x0‖p. (7)

Notice that the scalar function defined in (7) and used to construct the scalar sequence {tn} given
in (3) with ϕ(t) defined in (7), that majorizes {xn} in Ω, is independent of k, so we can choose any k,
such that k = 2, 3, . . . , [p], to construct the last initial value problem that gives us ϕ(t).

If p ∈ [2, 3) and using only condition (5), we consider the initial value problem
y′′(t) = |v|

(
p
2

)
2! S (‖x0‖+ t− t0)

p−2,

y(t0) =
η

β
, y′(t0) = −

1
β

,

whose unique solution also is (7).
Once such a majorizing sequence {tn} is determined from ϕ(t), we have then to prove its

convergence. For this, it is well known [15] that it is necessary that the scalar function ϕ(t) has at least
one positive real zero greater than or equal to t0 and sequence {tn} is increasing and convergent to
this zero.

2.2. The Majorizing Sequence

We begin by studying the function given in (7). Firstly, we notice that we have considered any
t0 ≥ 0 in the last section, but we can consider t0 = 0, so function ϕ(t) is reduced to
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φ(t) = |v|S (‖x0‖+ t)p − t + ‖F(x0)‖ − |v|S‖x0‖p. (8)

This is a consequence of the fact that φ(t) = ϕ(t + t0), which leads us to the sequence {tn =

Nϕ(tn−1)}n∈N, for any t0 > 0, satisfies tn = Nϕ(tn−1) = t0 + Nφ(sn−1), n ∈ N, where sn = Nφ(sn−1)

with s0 = 0, since we have, for t0 ≥ 0 and s0 = 0,

t0 + sn = t0 + Nφ(sn−1) = t0 + sn−1 −
φ(sn−1)

φ′(sn−1)

= t0 + sn−1 −
ϕ(sn−1 + t0)

ϕ′(sn−1 + t0)
= tn−1 −

ϕ(tn−1)

ϕ′(tn−1)
= Nϕ(tn−1) = tn,

for all n ∈ N. Therefore, the real sequences {tn} and {sn} given by Newton’s method when they
are constructed from ϕ(t) and φ(t), respectively, can be obtained, one from the other, by translation.
Besides, tn − tn−1 = sn − sn−1, for all n ∈ N, and all the results obtained previously are independent
of the value t0 ≥ 0, so we choose t0 = 0 because, in practice, it is the most favourable situation.

Secondly, we denote σ = min{t > 0 : φ′(t) ≥ 0}, where φ(t) is given in (8). Note that there
exists only one positive real zero σ of φ′(t) in (0,+∞) satisfying σ = min{t > 0 : φ′(t) ≥ 0}, since
φ′(0) = −1 < 0, φ′′(t) > 0 and φ′(t) > 0 as t→ +∞.

Theorem 1. If φ(σ) ≤ 0, then φ(t) has two real zeros r and R such that 0 ≤ r ≤ σ ≤ R.

Thirdly, by taking into account the classical Fourier conditions [19] for the convergence of
Newton’s method in the scalar case, we establish that sequence {tn} is increasing and converges
to r in the following result.

Theorem 2. If φ(σ) ≤ 0, then sequence {tn} is increasing and converges to the positive real zero r of φ(t).

Fourthly, we prove a system of recurrence relations in the next theorem that guarantees that {tn}
is a majorizing sequence of {xn} in Ω, whose proof is similar to that given for Lemma 7 in [18].

Theorem 3. Suppose that xn ∈ Ω, for all n ≥ 0, and p ≥ 3. If φ(σ) ≤ 0, then the following four bounds are
satisfied for all n ∈ N:

(i) there exists [F′(xn)]−1 and ‖[F′(xn)]−1‖ ≤ − 1
φ′(tn)

,

(ii) ‖F(i)(xn)‖ ≤ φ(i)(tn), for i = 2, 3, . . . , k− 1,
(iii) ‖F(xn)‖ ≤ φ(tn),
(iv) ‖xn+1 − xn‖ ≤ tn+1 − tn.

Note that (i), (ii) and (iv) are obvious if n = 0 and (iii) are not necessary to prove (iv), since it
follows from the initial condition ‖[F′(x0)]

−1F(x0)‖ ≤ η.
Finally, if p ∈ [2, 3), we obtain a result similar to the last theorem which can be seen in [20].

3. Existence and Uniqueness of a Solution

Following Kantorovich’s technique, the convergence of sequence {xn} in Ω is then guaranteed
from the convergence of sequence {tn}, since {tn}majorizes {xn}, which allows us to draw conclusions
on the location of a solution of equation (1). After locating a solution of Equation (1), we establish the
uniqueness of a solution. For this, from now on, we denote B(x, $) = {y ∈ C[a, b] : ‖y− x‖ ≤ $} and
B(x, $) = {y ∈ C[a, b] : ‖y− x‖ < $}.

Theorem 4. Let x0 ∈ Ω be such that condition (6) is satisfied and φ(t) the function defined in (8). If φ(σ) ≤ 0,
where σ = min{t > 0 : φ′(t) ≥ 0}, and B(x0, r) ⊂ Ω, then Equation (1) has a solution x∗(s) in B(x0, r) and
it is unique in B(x0, R) ∩Ω if r < R or in B(x0, r) if r = R, where r and R are two positive real zeros of φ(t).
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Proof. From (i) and (ii), it is clear that ‖x1 − x0‖ ≤ t1 < r and x1 ∈ B(x0, r) ⊂ Ω. If we now
suppose that xj ∈ B(x0, r) ⊂ Ω, for j = 1, 2, . . . , n− 1, it follows, from Theorem 3, that the operator
[F′(xn−1)]

−1 exists with ‖[F′(xn−1)]
−1‖ ≤ − 1

φ′(tn−1)
, ‖F(i)(xn−1)‖ ≤ φ(i)(tn−1), for i = 2, 3, . . . , k− 1,

‖F(xn−1)‖ ≤ φ(tn−1) and ‖xn − xn−1‖ ≤ tn − tn−1, so that

‖xn − x0‖ ≤
n−1

∑
i=0
‖xi+1 − xi‖ ≤

n−1

∑
i=0

(ti+1 − ti) = tn < r

and therefore xn ∈ B(x0, r) and xn are well defined.
After that, it follows that {xn} is a Cauchy sequence; as a consequence, {tn} is a Cauchy sequence

and limn tn = r, since, from Theorem 2, the sequence {tn} is increasing and bounded above by r. Thus,
{xn} is convergent, limn xn = x∗ and

‖x∗ − xn‖ ≤ r− tn, n ≥ 0. (9)

In addition, the combination of this and (iii) yields F(x∗) = 0, where F is defined in (2).
Next, from Section 2.1, we have

‖F′′(x)‖ ≤ |v|p(p− 1)S (‖x0‖+ t− t0)
p−2 ,

provided that ‖x− x0‖ ≤ t− t0. Now, as t0 = 0, it is clear that ‖F′′(x)‖ ≤ φ′′(t), for ‖x− x0‖ ≤ t, and,
as a consequence of this, the uniqueness of a solution x∗(s) follows exactly that given for Theorem 11
in [18].

4. Applications

In this section, we present two applications where the above study done is illustrated.
Both applications arise from the two possibilities that may present kernel K(s, t), depending on
whether it is separable or not.

4.1. Application 1

We first consider the following nonlinear Fredholm integral equation,

x(s) = sin(πs) +
1
5

∫ 1

0
cos(πs) sin(πt)x(t)3 dt, (10)

with s ∈ [0, 1], that has been used by other authors as a numerical test [13,21]. Observe that, in this
case, kernel K(s, t) = cos(πs) sin(πt) is separable.

Firstly, we apply Theorem 4 to obtain domains of existence and uniqueness of a solution. For this,
we observe that the corresponding function F(x) defined in (2) and associated with (10) is defined
in Ω = C[0, 1]. We then observe that condition (6) is required in Theorem 4. However, if we pay
attention to the integral equation, we observe that the kernel is separable and we can then determine
the corresponding operator [F′(x)]−1. For this, we write [F′(x)y](s) = z(s), so, if there exists [F′(x)]−1,
we have

[F′(x)]−1z(s) = y(s) = z(s) + cos(πs)
(

3
5

∫ 1

0
x(t)2 sin(πt)y(t)dt

)
.

If we now denote 3
5

∫ 1
0 x(t)2 sin(πt)y(t)dt = I , multiply next-to-last equality by 3

5 x(s)2 sin(πs)
and integrate it between 0 and 1, we obtain

I =

∫ 1
0 x(s)2 sin(πs)z(s)ds

5
3 −

∫ 1
0 x(s)2 sin(πs) cos(πs)ds
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provided that ∫ 1

0
x(s)2 sin(πs) cos(πs)ds 6= 5

3
.

Therefore,

y(s) = [F′(x)]−1z(s) = z(s) +
3
5

cos(πs)

∫ 1
0 sin(πt)x(t)2z(t)dt

1− 3
5

∫ 1
0 sin(πt) cos(πt)x(t)2dt

.

Now, as a consequence of the last formula, condition (6), that is required to prove the existence of
the inverse operator [F′(x0)]

−1, can be omitted, provided that

∫ 1

0
sin(πt) cos(πt)x0(t)2dt 6= 5

3
.

Therefore, it is sufficient to choose some starting point x0(s) for Newton’s method such that the
previous inequality holds. As x0(s) = sin(πs) is a reasonable choice as a starting point for Newton’s
method, as we can see in [12–14], the last inequality holds, since

∫ 1
0 sin(πt) cos(πt)x0(t)2dt = 0, and

condition (6) is omitted.
After that, taking into account that v = 1

5 , S = 2
π , p = 3, ‖x0‖ = 1 and ‖F(x0)‖ = 3

40 , we
construct the auxiliary scalar function

φ(t) =
1

40π
(16t3 + 48t2 + 8(6− 5π)t + 3π)

and see that it has two positive real zeros r = 0.1327 and R = 1.0589. Therefore, the domains of
existence and uniqueness of a solution of Equation (10) are respectively

{h ∈ C[0, 1] : ‖h(s)− sin(πs)‖ ≤ r = 0.1327} ,

{h ∈ C[0, 1] : ‖h(s)− sin(πs)‖ < R = 1.0588} .

On the other hand, we can write the function φ(t) in the following way

φ(t) = (r− t)(R− t)`(t), `(t) =
2

5π
(t + (4.19156))

and obtain a priori error estimates from Ostrsowski’s technique [19], that allow us to determine the
number of iterations that we have to apply in Newton’s method to reach a previously fixed precision.
For this, we write αn = r− tn and γn = R− tn, for all n ≥ 0. Then,

φ(tn) = αnγn`(tn), φ′(tn) = αnγn`
′(tn)− (αn + γn)`(tn)

and

αn+1 = r− tn +
φ(tn)

φ′(tn)
=

αn
2 (γn`′(tn)− `(tn))

αnγn`′(tn)− (αn + γn)`(tn)
.

From αn+1
γn+1

= α2
n(γn`′(tn)−`(tn))

γn2(αn`′(tn)−`(tn))
, it follows

P
(

αn

γn

)2
≤ αn+1

γn+1
≤ Q

(
αn

γn

)2
,

αn+1

γn+1
≤ Q2n+1−1

(
α0

γ0

)2n+1

=
U2n+1

Q
,
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αn+1

γn+1
≥ P2n+1−1

(
α0

γ0

)2n+1

=
V2n+1

P
,

where P = 0.7718, Q = 0.7858, U = 0.0985 and V = 0.0967, and then taking into account that
γn+1 = (R− r) + αn+1, we obtain

δn ≤ r− tn ≤ εn,

where δn =

{
(R−r)V2n

P−V2n

}
and εn =

{
(R−r)U2n

Q−U2n

}
for all n ≥ 0. In Table 1, we can see the a priori error

estimates that lead to the well-known quadratic convergence of Newton’s method.

Table 1. A priori error estimates.

n δn εn

0 1.3272× 10−1 1.3272× 10−1

1 1.1368× 10−2 1.1577× 10−2

2 1.0513× 10−4 1.1095× 10−4

3 9.2090× 10−9 1.0444× 10−8

4 7.0677× 10−17 9.2563× 10−17

Now, taking into account the exact solution

ψ(s) = sin(πs) +
1
3

(
20−

√
391
)

cos(πs)

of equation (10), we compare the obtained results with those given by other authors when different
numerical methods are applied to solve (10).

In Table 2, we show the real errors for n = 10 and n = 20 when the adapted Newton’s method is
used in [13] to solve (10) and some points of the interval involved are chosen. In Table 3, we show the
real errors when a combination of Newton’s method and quadrature methods [14] and an iterative
scheme based on the homotopy analysis method [12] are applied. Notice that ‖x∗ − xn‖ ≤ εn, since
‖x∗ − xn‖ ≤ r− tn, so we already improve the results obtained in Tables 2 and 3 by other authors with
four iterations of Newton’s method,

x4(s) = sin(πs) + (0.075426688904937162) cos(πs),

and the stopping criterion ‖xn − xn−1‖ < 10−32. Finally, although we have already guaranteed that
the numerical approximation given by x4(s) to the solution ψ(s) of equation (10) is of at least order
10−17, we see in Table 4 that this approximation is, in fact, of at least order 10−30.

Table 2. Real errors for n = 10 and n = 20 when the adapted Newton’s method given in [13] is applied.

t n = 10 n = 20

0.0 5.44× 10−8 3.19× 10−16

0.2 4.40× 10−8 2.22× 10−16

0.4 1.68× 10−8 1.11× 10−16

0.6 1.68× 10−8 1.11× 10−16

0.8 4.40× 10−8 2.22× 10−16

1.0 5.44× 10−8 3.19× 10−16
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Table 3. Real errors when a combination of Newton’s method and quadrature methods [14] and an
iterative scheme based on the homotopy analysis method [12] are applied.

t [14]-Errors [12]-Errors

0.0 4.98× 10−2 5.53× 10−15

0.2 4.03× 10−2 4.55× 10−15

0.4 1.53× 10−2 1.77× 10−15

0.6 1.53× 10−2 1.77× 10−15

0.8 4.03× 10−2 4.55× 10−15

1.0 1.53× 10−2 5.53× 10−15

Table 4. Real errors.

t ψ(t) x4(t) ‖ψ(t)− x4(t)‖

0.0 7.54× 10−2 7.54× 10−2 2.87× 10−30

0.2 6.48× 10−1 6.48× 10−1 2.32× 10−30

0.4 9.74× 10−1 9.74× 10−1 8.87× 10−31

0.6 9.27× 10−1 9.27× 10−1 8.87× 10−31

0.8 5.26× 10−1 5.26× 10−1 2.32× 10−30

1.0 −7.54× 10−2 −7.54× 10−2 2.87× 10−30

4.2. Application 2

Secondly, we consider the following nonlinear integral Fredholm equation,

x(s) = s +
1
2

∫ 1
2

− 1
2

estx(t)
10
3 dt, (11)

with s ∈
[
− 1

2 , 1
2

]
. Observe that, in this case, kernel K(s, t) = est is not separable. In addition, the

corresponding function F(x) defined in (2) and associated with (11) is defined in Ω = C
[
− 1

2 , 1
2

]
.

From Equation (11), we see that x0(s) = s is a reasonable choice of starting point for Newton’s
method. In addition, condition (6) of Theorem 4 is satisfied, since |v|pS‖x0‖p−1 = 0.1670 < 1, and the
auxiliary scalar function φ(t) involved in our study is

φ(t) =
1
8

(
−8t + 2

2
3 sinh

1
4
(1 + 2t)

10
3

)
,

that has two positive real zeros r = 0.0842 and R = 0.4921 As a consequence of Theorem 4, Equation (11)
then has a solution x∗(s) in B(x0, 0.0842) and it is unique in B(x0, 0.4921).

As kernel K(s, t) = est is not separable, the application of Newton’s method for solving (11) is not
easy. Taking into account this fact, we first use Taylor’s series to approximate K(s, t) = est. So,

K(s, t) = est = K̃(s, t) +R(ε, s, t); K̃(s, t) =
j−1

∑
i=0

si ti

i!
, R(ε, s, t) =

esε

j!
sj tj,

where ε ∈ (min{0, t}, max{0, t}), and consider the integral equation

x(s) = s +
1
2

∫ 1
2

− 1
2

K̃(s, t)x(t)
10
3 dt, s ∈

[
−1

2
,

1
2

]
. (12)

Next, we take into account the following relation that is satisfied by x∗(s) and x̃(s), that are
respectively solutions of (11) and (12):
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‖x∗(s)− x̃(s)‖ ≤ |v|T(ρ∗) 10
3

1− 10
3 |v|S̃ (|ρ∗ − ρ̃|+ ρ̃)

7
3

,

where S̃ = maxs∈[− 1
2 , 1

2 ]
∫ 1

2
− 1

2

∣∣∣K̃(s, t)
∣∣∣ dt, T = maxε∈[− 1

2 , 1
2 ]

(
maxs∈[− 1

2 , 1
2 ]
∫ 1

2
− 1

2
|R(ε, s, t)| dt

)
, ρ∗ ≥

‖x∗(s)‖ and ρ̃ ≥ ‖x̃(s)‖ after taking norms in (11) and (12).
Thus, if we want to obtain, for example, an approximation of the solution x∗(s) of order 10−9, it

is sufficient to choose j = 5 in (12). In this case, S̃ = 1.0104, T = 6.2199× 10−8, ρ∗ = ρ̃ = 0.5842, so
‖x∗(s)− x̃(s)‖ ≤ 9.9790× 10−9.

Hence, if we now look for a solution x̃(s) of (12) by Newton’s method, we look for an
approximation xn(s) such that ‖x̃(s)− xn(s)‖ is of order 10−10, since

‖x∗(s)− xn(s)‖ ≤ ‖x∗(s)− x̃(s)‖+ ‖x̃(s)− xn(s)‖ ≤ ‖x∗(s)− x̃(s)‖+ r− tn

if we take into account (9). In this case, it is sufficient to choose a number of iterations n of Newton’s
method such that r− tn is of order 10−10. Note that the last fact is possible, since the sequence {tn} is
known a priori, as we can see in Table 5.

Table 5. Sequence {tn} and a priori error estimates.

n tn r− tn

0 0 8.4216× 10−2

1 0.07528076 8.9357× 10−3

2 0.08407562 1.4088× 10−4

3 0.08421647 3.6635× 10−8

4 0.08421651 2.4791× 10−15

So, we can then apply Newton’s method from x0(s) = s to approximate a solution x̃(s) of integral
Equation (12), as we do in [22], and then choose the approximation

x4(s) = (1.1509× 10−2) + (1.0004)t + (9.8357× 10−4)t2

+(1.2743× 10−5)t3 + (1.5568× 10−5)t4 + (1.2117× 10−7)t5,

that is obtained after four iterations of Newton’s method with the stopping criterion ‖xn(s) −
xn−1(s)‖ < 10−24, since ‖x̃(s)− x4(s)‖ ≤ r− t4 = 2.4791× 10−15. In this case,

‖x∗(s)− x4(s)‖ ≤ ‖x∗(s)− x̃(s)‖+ ‖x̃(s)− x4(s)‖ ≤ 9.9790× 10−9,

and, as a consequence, x4(s) is an approximation of the solution x∗(s) of Equation (11) of the order
10−9 looked for.
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