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Abstract: As one of the evolutionary heuristics methods, genetic algorithms (GAs) have shown
a promising ability to solve complex optimization problems. However, existing GAs still have
difficulties in finding the global optimum and avoiding premature convergence. To further improve
the search efficiency and convergence rate of evolution algorithms, inspired by the mechanism
of biological DNA genetic information and evolution, we present a new genetic algorithm, called
GA-TNE+DRO, which uses a novel triplet nucleotide coding scheme to encode potential solutions and
a set of new genetic operators to search for globally optimal solutions. The coding scheme represents
potential solutions as a sequence of triplet nucleotides and the DNA reproduction operations mimic
the DNA reproduction process more vividly than existing DNA-GAs. We compared our algorithm
with several existing GA and DNA-based GA algorithms using a benchmark of eight unconstrained
optimization functions. Our experimental results show that the proposed algorithm can converge to
solutions much closer to the global optimal solutions in a much lower number of iterations than the
existing algorithms. A complexity analysis also shows that our algorithm is computationally more
efficient than the existing algorithms.
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1. Introduction

Optimization problems arise in many real-world applications and various types of intelligent
evolutionary optimization methods, such as the Genetic Algorithm (GA) [1], the Particle Swarm
Optimization (PSO) [2], the Differential Evolution (DE) [3], and the artificial bee colony (ABC) [4],
have been proposed in the literature over the last few decades. The PSO algorithm is based on a
simulation of social behavior and has been applied in various optimization problems [5]. The DE
algorithm employs the difference of parameter vectors to explore the objective function [6]. The Genetic
Algorithm, proposed by Holland in 1975, is an algorithmic model for solving optimization problems
and is inspired by genetic evolution. The conventional GA encodes a possible solution in the solution
space as a string of binary bits which is treated as (a chromosome of) an individual. It explores the
search space for optimal solutions by generating new individuals from an individual in the current
population, using a set of operations that mimic genetic mutation in natural evolution. This approach
has shown some success in solving complex optimization problems. However, the traditional GA has
several drawbacks. It often suffers from a premature convergence to a local optimum when searching
in a local area if there is a rapid decrease in population diversity. In addition, the binary bit string
encoding usually results in a very long code and therefore, significantly reduces the computational
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efficiency. Many researchers believe that a promising solution to these problems may lie in the
adaptation of more sophisticated natural models that can be incorporated into the framework of the
GA algorithms. Hybrid optimization algorithms have recently been proposed to overcome the existing
drawbacks of GA [7]. Pelusi et al. proposed a revised Gravitational Search Algorithm (GSA) [8]
powered by evolutionary methods and obtained good results. Garg proposed a hybrid technique
known as PSO-GA [9] for solving the constrained optimization problems.

On the other hand, mimicking the genetic mechanisms of biological DNA in computation has
gained increasing interest in the computer science research community [10]. This was inspired by the
fact that, as the major genetic material in life, DNA encodes and processes an enormous amount of
genetic information. DNA computing, proposed by Adleman [11] in 1994, may potentially provide
a promising method for solving complex optimization problems because its parallel computing
may efficiently search through a large space for potential solutions [12]. However, using DNA as
computing hardware [13] still faces many challenges. For example, current solutions require biological
experiments which are expensive and time-consuming.

Integrating genetic algorithms with DNA computing can provide a promising alternative for
solving complex optimization problems. Extending GA to use DNA encoding and corresponding
genetic operations is a natural extension to the GA and DNA-computing techniques, which both aim
to solve complex computational problems by mimicking a process in nature. Recent developments in
the understanding of biological DNA has provided a solid ground for research. For example, a PID
controller [14] and many other applications [15] have been designed using DNA computing. The DNA
sequence is arguably more suitable for encoding individuals in a genetic algorithm than simple binary
bit strings for solving optimization problems. The current research in this area is focused on developing
better DNA encoding [16,17].

A DNA genetic algorithm (DNA-GA) was initially proposed by Ding [18] and a modified DNA
genetic algorithm (MDNA-GA) was subsequently introduced by Zhang and Wang [19]. In these
algorithms, DNA encoding and two DNA-based operators, the choose crossover and frame-shift
mutation, were used. These methods have been shown to be effective in improving the search
for global solutions. A method was also used in these algorithms to break from a local optimum,
so that a larger portion of the search space can be explored to accelerate the convergence towards the
global optimum. Chen and Wang presented a DNA-based hybrid genetic algorithm (DNA-HGA) for
nonlinear optimization problems [20], in which potential solutions are encoded as nucleotide bases and
genetic operators use the complementary properties of nucleotide bases to efficiently locate feasible
solutions. Zhang et al. proposed an adaptive RNA genetic algorithm (ARNA-GA) [21] which used
RNA encoding to represent potential solutions and new RNA-based genetic operators to improve the
global search. Noticeably, ARNA-GA deploys an adaptive genetic strategy that dynamically chooses
between a crossover operation and mutation operation based on a dissimilarity coefficient. Zang et al.
presented a DNA genetic algorithm that is modeled after a biological membrane structure [22].

DNA-based GA methods have been successfully applied to solve many difficult optimization
problems. Sun et al. employed RNA-GA in a double inverted pendulum system and showed an
improved performance [23]. Zang et al. have adapted DNA-GA to solve several pattern recognition
problems, including clustering analysis, classification, and multi-object optimization [24–26].

Although much progress has been made to improve DNA-based genetic algorithms, further study
is still needed to improve the speed at which the search converges to the global optimum and to
prevent the algorithm from been locked to a local optimum. The focus is to find an efficient coding
scheme, better genetic operations, and better convergence control.

In this paper, we present a new GA, called GA-TNE+DRO, which uses a novel triplet nucleotide
coding scheme to encode individuals of GA and provides a set of novel genetic operators that mimic
DNA molecule genetic operations. Specifically, we make the following contributions in this paper.

• We define a new DNA coding scheme which encodes the potential solution problem space using
triplet nucleotides that represent amino acids.
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• We define a set of evolutional operations that create new individuals in the problem space by
mimicking the DNA reproduction process at an amino acid level.

• We present a genetic algorithm that uses triplet nucleotide encoding (TNE) and a DNA
reproduction operator (DRO), hence the name GA-TNE+DRO.

• We perform experiments to evaluate the performance of the algorithm using a benchmark of eight
unconstrained optimization problems and compare it with state-of-the-art algorithms including
conventional GA [1], PSO [2], and DE [3]. Our experimental results show that our algorithm can
converge to solutions much closer to the global optimal solutions in a much lower number of
iterations than the existing algorithms.

The remainder of this paper is organized as follows. Section 2 presents the triplet nucleotide
code scheme. Section 3 presents a set of genetic operations that are based on DNA triplet nucleotide
encoding. Section 4 describes the algorithm. Section 5 presents the experiments, results, and complexity.
Section 6 presents the conclusions.

2. A Triplet Nucleotide Coding Scheme

In this section, we present a new DNA coding scheme. We assume that a potential solution for
an optimization problem consists of values for several variables, and is encoded in a single DNA
strand. In the rest of this paper, we call an encoded potential solution an individual in a population
(i.e., the portion of the solution space that is currently under exploration). A genetic algorithm will
start with a random population, and search for global optimal solutions by generating new individuals
from the individuals in the current population. These new individuals will be created by mimicking a
cell reproduction process using a set of reproduction operators (to be presented in Section 3). When the
algorithm terminates, the best fit individual will be decoded and presented as the optimal solution to
the optimization problem.

In biology, a DNA strand is a sequence of nucleotide bases (or simply nucleotides): Adenine
(A), Guanine (G), Cytosine (C), and Thymine (T). A subsequence of three consecutive nucleotides is
called a triplet codon (or simply a triplet) and represents an amino acid. During cell reproduction,
a DNA strand is first translated into a sequence of RNAs, then into a sequence of an amino acid,
and eventually into proteins. It is possible for different triplet codons to be translated into the same
amino acid. In fact, the 64 unique triplet codons only correspond to 19 different amino acids.

We define an amino acid-based coding scheme as follows. We map the 19 unique amino acids to
integers 0 through 18, as shown in Table 1. For example, the triplet codon TTT is translated into amino
acid Phe, which is mapped to 0, and TAG is translated into amino acid Stop, which is mapped to 9.

Table 1. Relationship between triplet codons and 19-ary integers.

First Nucleotide
Second Nucleotide

Third Nucleotide
T C A G

T Phe(0) Ser(2) Tyr(3) Cys(4) T
T Phe(0) Ser(2) Tyr(3) Cys(4) C
T Leu(1) Ser(2) Stop(9) Stop(9) A
T Leu(1) Ser(2) Stop(9) Try(9) G
C Leu(1) Pro(5) His(6) Arg(8) T
C Leu(1) Pro(5) His(6) Arg(8) C
C Leu(1) Pro(5) Gln(7) Arg(8) A
C Leu(1) Pro(5) Gln(7) Arg(8) G
A Ile(10) Thr(11) Asn(12) Ser(2) T
A Ile(10) Thr(11) Asn(12) Ser(2) C
A Met(9) Thr(11) Lys(13) Arg(8) A
A Met(9) Thr(11) Lys(13) Arg(8) G
G Val(14) Ala(15) Asp(16) Gly(18) T
G Val(14) Ala(15) Asp(16) Gly(18) C
G Val(14) Ala(15) Glu(17) Gly(18) A
G Val(14) Ala(15) Glu(17) Gly(18) G
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In our coding scheme, we also represent nucleotides A, G, C, and T numerically by 0, 1, 2, and 3,
respectively. Thus, the triplet GTC, representing amino acid Val, is represented numerically as 132.

In general, an optimization problem with n variables can be defined as follows.{
min f (x1, x2, ..., xn)

xmini ≤ xi ≤ xmaxi, i = 1, 2, ..., n
, (1)

where x = (x1, x2, ..., xn) is a vector of n decision or control variables, f (x) is the objective function to
be minimized, and [xmini, xmaxi] is the value range (or domain) of variable xi. In a genetic algorithm,
the objective function is often used to derive the fitness values that measure the quality of individuals.
The individual with the best fitness value is chosen to be the best solution.

To encode a possible solution, each variable xi is represented by a base-4 integer of l digits
and each possible solution (i.e., an individual) is represented by a sequence of n encoded variables.
Therefore, the length of an individual is L = n× l. Here, l = 3× k and k represent the number of
triplet codons per variable.

To decode an individual, we devise the model through which the individual is converted into
an n-dimensional decimal vector x = (x1, x2, ..., xn), where:

xi =
tempxi

19l/3 − 1
(xmaxi − xmini) + xmini, (2)

and for the l digits of xi:

tempxi =
l

∑
j=1

bit(j)× 19l/3−j, (3)

which is a sequence of codes of amino acids, and finally, (xmaxi − xmini)/(19l/3 − 1) is used to map
this sequence into a value within the range of xi in the original problem domain. Here, bit(j) is the jth
digit of xi. Figure 1 shows an example using the coding scheme described earlier.
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Figure 1. The coding for two variables.

In this example, each of the two variables x1 and x2 is encoded as a sequence of nine nucleotides,
or three amino acids. The encoding of x1 is ACTTGCACG, which can be numerically represented as
023312021. The decoding will first map this DNA code into a vector of three amino acids: (11, 4, 11),
which, according to Table 1, represents (Thr, Val, Thr). If the value of x1 is in the range of [−10, 10] in
a problem domain, this coding of x1 will be decoded using Formulas (2) and (3) to obtain x1 = 1.8344.

3. A Set of DNA Reproduction Operations

In this section, we define a set of new genetic operators that can be used to generate new
individuals from existing individuals. The key difference between these operators and those used
in existing DNA GAs is that our operators are based on amino acid level rather than nucleotide
level activities.

3.1. Crossover Operations

Crossover operations such as the single-point, multi-point, and arithmetic crossover have been
used in existing GAs to mimic the process of reproduction where the offspring individuals inherit
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information from their parents. Existing crossover operators were designed to manipulate a single
nucleotide. In this subsection, we define three new crossover operators which are performed according
to a pre-specified probability Pc. For the sake of clarity, we view an individual as a sequence of
fixed-length units, where each unit has a fixed number of nucleotides, such as a triplet. Each operator
will create a new individual from an existing individual by relocating a unit. These operators can be
easily extended to work on units of variable lengths.

(1) Translocation operator TransLoc(R): It takes an individual R as an input and returns a new
individual R′ by relocating a randomly selected unit of R to a randomly chosen new location.

For example, suppose R = R5R4R3R2R1, where Ri is a unit. A new individual returned can be
R′ = R5R2R4R3R1 in which R2 has been moved into the position before R4. Notice that it is easy
to extend this operation so that an arbitrary new location can be selected (See Figure 2).

(2) Transformation operator Transform(R): It takes an individual and two positions as parameters,
and returns a new individual by swapping two randomly selected units.

For example, the sequence R = R5R4R3R2R1 becomes R′ = R5R2R3R4R1, after exchanging
randomly selected units R4 with R2.

(3) Permutation operator Permute(R): It takes an individual as a parameter, and returns a new
individual in which a randomly selected unit is randomly permuted.
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For example, if R = R5R4R3R2R1, the new individual can be R′ = R5R4R3R′2R1, where R′2 is
a random permutation of a randomly selected unit R2.

3.2. Mutation Operations

Mutation operators are used to mimic mutations in DNA replication caused by mutagens such as
chemical agents and radiation. A mutation operator will make random changes to the structure of
an individual. These operators will be used to increase the diversity of the population and to prevent
the algorithm from converging to local optima. Here, we introduce three new mutation operators
which are performed according to a pre-specified probability Pm.

(1) Inverse anticodon mutation IA(R). It takes an individual as a parameter and returns a new
individual by replacing a randomly selected unit (as a codon) with its inverse anticodon.
In biology, the anticodon of a codon is obtained by replacing each nucleotide with its
complementary nucleotide based on the Watson–Crick complementary principle. Thus, A is
replaced by T, C by G, and vice versa. An inversed anticodon is obtained by inverting the
nucleotide sequence of the anticodon.

For example, if the randomly selected codon is GCA (or 112 in numerical code), its anticodon
will be CCT (or 003 in coding) and its inverse anticodon is TCC (or 300 in coding).

(2) Frequency mutation FM(R). It takes an individual as a parameter and returns a new individual
by replacing every occurrence of the most frequently appearing nucleotide by the least frequently
appearing nucleotide.
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For example, in Figure 3 nucleotide G (represented by 1) is the most frequently appearing and
nucleotide C (represented by 0) is the least frequently appearing. Thus, the FM operator replaces
every G using a C.Algorithms 2017, 10, 76 6 of 15 
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Figure 3. An example of FM.

(3) Pseudo-bacteria mutation Pseudobac(R). It takes an individual as a parameter and returns a new
individual as follows.

First, a random subsequence of nucleotides is identified as a gene. Then, a given number of
candidate individuals are created by randomly changing one nucleotide in the selected gene.
Finally, the candidate individual with the highest fitness value is returned.

For example, in Figure 4, gene1 is randomly selected, and five variations are created by changing
one nucleotide at a time (indicated by the shaded bold letter). One candidate individual is created
by using each of the variants to replace gene1.
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Figure 4. Pseudo bacteria genetic operation diagram.

This operator mimics a type of bacterial infection which, in a biological sense, may result in
a new individual with an improved quality. The design is inspired by the pseudo-bacteria algorithm
proposed by Yoshikawa et al. [27].

3.3. Recombination Operation

The recombination operator Recomb(R1, R2) performs two sub-tasks: cutting the molecules
by restriction enzymes and pasting together the molecules obtained, provided that they have
matching sticky ends. It is designed based on the splicing model described by Amos and Paun [28].
This operation is performed according to another pre-specified probability Pr.

For each individual, a double-strand DNA is created from its single-strand DNA according to the
complementary property of the nucleotides (i.e., A and T, and C and G are complementary to each
other).

For example, suppose R1 = CCCCCTCGACCCCC and R2 = AAAAGCGCAAAA, the following
double-stranded DNA molecules will be created:
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Finally, the two top strands, CCCCCTCGAAAAA and AAAAGCGCCCCC, are returned as two
new individuals.

4. The GA-TNE+DRO Algorithm

In this section, we present a genetic algorithm that used the triplet nucleotide coding in Section 2
and the genetic operations in Section 3.

In GA-TNE+DRO, we introduce the simulated annealing method. At the end of each generation,
it compares the current best individual with previous ones. If the current optimum is improved,
nothing will be done. Otherwise, GA-TNE+DRO (Algorithm 1) will randomly generate some (e.g., 10)
individuals in the nearby area. We compare the fitness values among them and pick the best one as the
current generation optimum.

This algorithm explores the solution space iteratively to find the optimal global solutions to
a given optimization problem. The input parameters define the optimization problem with the
objective function, number of variables and the domains of each variable, and the probabilities for
applying various types of operators.

In Step 1, an initial population of N individuals is randomly created. Each individual is a sequence
of n variables encoded by the encoding method presented in Section 2. In Steps 2 and 3, a fitness value
is calculated for each individual using the objective function on the decoded values of the variables.
The current optimal individual is identified in Step 4. Within each iteration (in Step 7 through Step 22),
the current best individual is directly passed into the next generation in Step 8. This is based on
the elitism strategy [29], so that the individuals with the highest fitness values are always kept in
the population.

In Steps 9 and 10, the neutral and deleterious individuals in the current population are identified.
According to the DNA model [30], neutral individuals should have high fitness values and are likely
to generate better solutions in the genetic process; deleterious individuals will not affect the final
solutions, but they can help maintain or increase the diversity of the population. We use a tournament
selection strategy to identify neutral and deleterious individuals. Assume that the current population
has N individuals. First, we randomly select two individuals and keep the one with the higher fitness
value as a neutral individual. We repeat this process until ceiling (N/2) neutral individuals have been
selected. We then randomly create ceiling (N/2) new individuals for the current population. The same
procedure is applied to select ceiling (N/2) deleterious individuals, only this time, the individual with
a lower fitness value is selected.
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The translocation, transformation, and permutation operators are then randomly applied to each
neutral individual in Step 12 according to Pc, the probability of crossover operations. The mutation,
inverse anticodon mutation, frequency mutation, and pseudo-bacteria mutation operators are then
randomly applied to each deleterious individual in Step 14 according to Pm, the probability of mutation
operations. Next, the recombination operation is randomly applied to each pair of individuals of the
population in Step 16 according to Pr, the probability of recombination operations. New individuals
created by the crossover, mutation, and recombination operations are added to the new population.
At the end of each iteration, if the fitness value of the optimal individual is not improved, some (e.g.,
10) additional individuals will be randomly generated to prevent the search from being trapped in
a local optimum. In Step 22, the old population is replaced by the new population.

The process will terminate after Step 22 if the maximum number of iterations G has been reached
or the improvement of the fitness values between the old and the new optimal individuals is not larger
than ε, which is the user specified threshold. Finally, the optimal solution is returned in Step 24.

Algorithm 1 GA-TNE+DRO

Input: f (X): the objective function
n: the number of variables in X
dom(X): domains of the n variables
N: the size of initial population
Pc: the probability of crossover operation
Pm: the probability of mutation operation
Pr: the probability of recombination operation
G: max number of iterations
ε: accuracy threshold

Output: The value of X that optimizes f (X)
Method:

1. POP = a population of N randomly generated individuals
2. For each p in POP
3. Calculate the fitness value of p using f(decode(p))
4. X = the best individual in POP
5. OldX = any individual in POP that is not X
6. While termination condition is not satisfied do
7. OldX = X
8. NewPOP = {X}
9. NEU = {N/2 neutral individuals in POP}
10. DEL = {N/2 deleterious individuals in POP}
11. For each individual p in NEU
12. Apply crossover operations to p according to Pc and add results to NewPOP
13. For each individual p in DEL
14. Apply mutation operations to p according to Pm and add results to NewPOP
15. For each pair of individual p and p’ in POP
16. Apply the recombination operation according to Pr and add results to NewPOP
17. For each p in NewPOP
18. Calculate the fitness value of p using f(decode(p))
19. X = the best individual in NewPOP
20. If X is not better than OldX then
21. Generate randomly new individuals and pick up the best one into NewPOP
22. POP = NewPOP
23. End while
24. Return decode (X)
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5. Numerical Experiments

In this section, we first describe our experiments and discuss the results. Then, we provide the
algorithm complexity.

5.1. Experiment Setup

We implemented four algorithms: GA-TNE+NRO, conventional GA [1], PSO [2], and DE [3]
in MATLAB and ran our experiment on a laptop with 4-core CPU in Windows 7. We applied these
algorithms on a benchmark of eight nonlinear unconstrained optimization problems that are commonly
used to evaluate the performance of global optimization algorithms [31]. These problems are difficult
to solve using conventional optimization algorithms due to their large search space, numerous local
minima, and fraudulence. Table 2 summarizes these optimization problems. For convenience, we refer
to the optimization problems in Table 2 by their objective functions f1(x) through f8(x).

Table 2. Benchmark functions.

Function Name Function Formula Optimal Solution Optimum

Ackley min f1(x) = 20× (1− e−0.2×
√

0.5∗(x2
1+x2

2))

−e0.5(cos(2πx1)+cos(2πx2)) + e, x ∈ [−5, 5]
[−3, 0.5] 0

Beale
min f2(x) = (1.5− x1 + x1 × x2)2 + (2.25− x1 + x1× x2

2)2
+(2.625− x1 + x1 × x3

2)2, x ∈ [−5, 5]
[−3, 0.5] 0

Crossintray min f3(x) = −0.0001× (| sin(x1)× sin(x2)× e|100−
√

x2
1+x2

2
π ||+ 1)0.1

x ∈ [−10, 10]
[0.3459, 0.3459] 0

Giunta
min f4(x) = 0.6 +

2
∑

i=1
[sin2(1− 16

15 xi)− 1
50 sin(4− 64

15 xi)

− sin(1− 16
15 xi)], x ∈ [−15, 15]

[−10, 10] −20

Himmelblau min f5(x) = (x2
1 + x2 − 11)2

+ (x1 + x2
2 − 7)2, x ∈ [−5, 5] [2,3] 0

Penholder min f6(x) = −e−1/| cos(x1)×cos(x2)×e|1−
√

x2
1+x2

2
π | |, x ∈ [−11, 11] [−9.64617, 9.64617] −0.96353

Testtubeholder min f7(x) = −4| sin(x1)× cos(x2)× e| cos
(x2

1+x2
2 )

200 ||,
x ∈ [−10, 10]

[−π/2, 0] −10.8723

Levi13 min f8(x) = sin2(3πx1) + (x1 − 1)2× (1 + sin2(3πx2)+
(x2 − 1)2× (1 + sin2(2πx2)), x ∈ [−10, 10]

[1,1] 0

Figure 5 shows the solution spaces of these problems. Problems f1(x) through f4(x) are uni-modal,
which have precisely one global optimum, and are good for studying how well the algorithm can
exploit the solution space [32]. Problems f5(x) through f8(x) are multimodal, which have one global
optimum and many local optima. The number of local optima will increase exponentially as the
number of dimensions increases.

Table 3 lists the set of parameters we used to run the algorithms on the benchmark problems.
Here, G denotes the number of iterations, N is the size of the initial population, Pc is the probability
of crossover operations, Pm is the probability of mutation operations, and Pr is the probability of
recombination operations.

For impartial comparison, each algorithm is executed 50 times for every benchmark problem. For
each run, the optimization process terminates if |Ob −O∗| ≤ ε, where Ob denotes the best optimized
objective function value, O∗ is the real optimal value, and ε = 10−4 is the precision threshold.
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5.2. Results and Discussion

We compared the performance of the algorithms by comparing the values of the objective function
and the number of iterations for the algorithms to converge.

Figure 6 shows the evolution curves of the algorithms for each benchmark problem. For the
sake of clarity, only 50 iterations are shown in Figure 6. Although a maximum of 1000 iterations
were run in our experiments, the objective values stay unchanged beyond 50 iterations. As shown
in Figure 6, our algorithm can find better solutions earlier than other algorithms for most of the
benchmark problems.
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Table 4 shows the ability of the algorithms to find the global optimal solutions. Notice that since
all benchmark problems require the objective functions to be minimized, the smaller the value of
the objective function for the solution obtained by the algorithm, the more accurate the solution is.
In Table 4, the columns labeled with Fave and Fbest are, respectively, the average and best values of
the objective function at the termination of the algorithm over 50 runs. The best obtained results are
highlighted in bold.

Table 4. The optimal values of objective functions obtained by the algorithms (the best obtained results
are highlighted in bold).

Function
GA PSO DE GA-TNE+DRO

Fbest Fave Fbest Fave Fbest Fave Fbest Fave

f1(x) 8.43 × 10−8 4.91 × 10−7 3.13 × 10−10 3.67 × 10−8 4.13 × 10−9 3.18 × 10−8 1.13 × 10−11 1.16 × 10−10

f2(x) 3.48 × 10−7 6.12 × 10−6 5.62 × 10−9 4.12 × 10−8 7.52 × 10−10 7.01 × 10−9 7.85 × 10−11 8.61 × 10−10

f3(x) 1.86 × 10−8 3.65 × 10−6 1.58 × 10−10 4.28 × 10−9 3.04 × 10−10 3.17 × 10−9 2.47 × 10−12 3.45 × 10−11

f4(x) −20.0023 −20.0238 −19.9986 −19.9865 −19.9987 −19.9928 −20.0001 −20.0010
f5(x) 2.36 × 10−5 5.69 × 10−4 3.65 × 10−6 7.54 × 10−5 5.97 × 10−6 4.19 × 10−5 7.98 × 10−7 8.67 × 10−6

f6(x) −0.96350 −0.96251 −0.96349 −0.96332 −0.96343 −0.96341 −0.96354 −0.96350
f7(x) −10.8716 −10.8689 −10.8718 −10.8702 −10.8718 −10.8703 −10.8721 −10.8714
f8(x) 4.35 × 10−8 2.36 × 10−6 3.68 × 10−9 6.39 × 10−7 8.26 × 10−10 8.69 × 10−9 6.31 × 10−9 9.23 × 10−8

From these results, we can see that our algorithm outperforms the other algorithms in all
benchmark problems, except for f8(x) in both the average and the optimal cases. This clearly indicates
that our algorithm can find solutions that are much closer to the global optimal solution than other
algorithms, especially for optimization problems in high dimensional space. The slightly worse
performance than DE for problem f8(x) was due to the difficulty caused by thousands of local optima
in the solution space. However, this result of our algorithm is still much better than those of GA
and PSO.

Table 5 shows the speed at which the algorithms converge. We measured the maximum, minimum,
and average number of iterations executed until the algorithms converged to a solution.

Table 5. The Convergence Speed of the Algorithms (the best obtained results are highlighted in bold).

Function
GA PSO DE GA-TNE+DRO

Gmax Gmin Gave Gmax Gmin Gave Gmax Gmin Gave Gmax Gmin Gave

f1(x) 200 54 86.8 200 51 65.8 191 50 70.4 180 9 15.6
f2(x) 200 102 120.4 187 69 111.6 182 49 95.7 159 23 56.8
f3(x) 198 118 142.6 168 87 115.6 174 37 61.7 149 19 24.6
f4(x) 186 76 126.8 182 76 116.8 170 72 120.4 138 28 96.8
f5(x) 178 78 125.6 186 42 87.6 158 62 111.3 127 26 75.6
f6(x) 192 96 130.1 192 63 97.6 144 55 102.7 106 27 38.8
f7(x) 187 112 168.3 193 61 91.3 162 28 75.8 116 19 50.2
f8(x) 186 86 118.6 179 53 78.6 104 13 24.4 132 21 52.4

From Table 5, we can see that our algorithm converges much faster than other algorithms on all
benchmark problems except f8(x).

5.3. Algorithm Complexity

In this Section, the algorithm complexity for the proposed GA-TNE+DRO is described. Table 6
shows the complexity of the four algorithms: GA, PSO, DE, and GA-TNE+DRO. Using the method
in [33], the running times of algorithms are measured against T0, the running time of Algorithm 2.
Under our experimental setup, T0 is 3.4 × 10−5 s.
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Algorithm 2 Test Problem

for i = 1:200
x = 0.55 + i;
x = x + x;
x = x/ 2; x = x*x;
x= sqrt(x); x = log(x);
x= exp(x); x = x/(x+2);
end

In Table 6, T1 is the running time for executing the benchmark function alone for 200 times. T2 is
the total running time for applying an algorithm to solve a benchmark function 200 times. T2 is the
mean T2 over 50 runs. The complexity of the algorithm is measured by T = (T2− T1)/T0. The best
results in Table 6 are highlighted in bold. According to Table 6, our algorithm is much more efficient
than the other algorithms.

Table 6. Algorithm complexity (the best obtained results are highlighted in bold).

Function T1
GA PSO DE GA-TNE+DRO

T2 T T2 T T2 T T2 T

f1(x) 4.3874 × 10−3 9.2735 × 10−3 143.71 5.6002 × 10−3 35.672 8.1046 × 10−3 109.33 5.2750 × 10−3 26.105
f2(x) 3.8156 × 10−3 8.0649 × 10−3 124.98 7.0483 × 10−3 95.078 4.8704 × 10−3 31.023 4.5875 × 10−3 22.702
f3(x) 7.6552 × 10−3 1.6180 × 10−2 250.74 1.4141 × 10−2 190.75 9.7714 × 10−3 62.241 9.2038 × 10−3 45.547
f4(x) 7.9521 × 10−3 1.6808 × 10−2 260.47 1.4689 × 10−2 198.15 1.0150 × 10−2 64.654 9.5607 × 10−3 47.313
f5(x) 1.8687 × 10−3 3.9498 × 10−3 61.210 2.3853 × 10−3 15.194 3.4519 × 10−3 46.565 2.2467 × 10−3 11.119
f6(x) 4.8976 × 10−3 1.0352 × 10−2 160.42 6.2515 × 10−3 39.821 9.0470 × 10−3 122.04 5.8884 × 10−3 29.14
f7(x) 4.4559 × 10−3 9.4182 × 10−3 145.95 8.2309 × 10−3 111.03 5.6877 × 10−3 36.229 5.3573 × 10−3 26.512
f8(x) 6.4631 × 10−3 1.3661 × 10−2 211.70 1.1939 × 10−2 161.05 7.7706 × 10−3 38.455 8.2498 × 10−3 52.549

6. Conclusions

To accelerate the evolutionary process and increase the probability to find the optimal solution,
we present a new genetic algorithm, called GA-TNE+DRO, which uses a novel triplet nucleotide coding
scheme to encode potential solutions and a set of new genetic operators to search for globally optimal
solutions. The coding scheme represents potential solutions as a sequence of triplet nucleotides and
the DNA reproduction operations mimic the DNA reproduction process more vividly than existing
DNA-GAs. We compared our algorithm with several existing GA and DNA-based GA algorithms
using a benchmark of eight optimization functions. Our experimental results show that our algorithm
can converge to solutions much closer to the global optimal solutions in a much lower number of
iterations than the existing algorithms.

Several interesting issues may deserve further research. It may be interesting to explore a new
encoding scheme and new genetic operators for a better performance and efficiency. The current
algorithm is designed for solving unconstrained optimizations; however, it would be interesting to
extend this algorithm to solve other types of optimizations, for example, constrained optimization and
multi-objective optimization problems. It would also be interesting to apply the algorithm to solve
problems in machine learning, such as clustering and classification.
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