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Abstract: Variable selection is a key step for eliminating redundant information in spectroscopy.
Among various variable selection methods, the physarum network (PN) is a newly-introduced and
efficient one. However, the whole spectrum has to be equally divided into sub-spectral bands in
PN. These division criteria limit the selecting ability and prediction performance. In this paper, we
transform the spectrum division problem into a clustering problem and solve the problem by using
an affinity propagation (AP) algorithm, an adaptive clustering method, to find the optimized number
of sub-spectral bands and the number of wavelengths in each sub-spectral band. Experimental results
show that combining AP and PN together can achieve similar prediction accuracy with much less
wavelength than what PN alone can achieve.

Keywords: affinity propagation; physarum network; variable selection; wavelength selection;
real-time spectroscopy; on-line analysis

1. Introduction

Spectroscopy has been widely used for quantitative analysis of complex samples in various fields,
such as petrochemical, pharmaceutical, agricultural, food, and biological sectors. It is a non-invasive
and efficient analytic technology that can be deployed in on-line analysis. To predict the concentration
of one or more samples, a mathematical model has to be built to relate the spectrum (spectra) of the
sample (samples) with the concentration. A common problem in spectroscopy is that the large number
of spectral variables makes the prediction unreliable and complicates the prediction model. To reduce
the dimensionality of the spectral date, projection methods [1], variable selection methods [2], or a
combination of both [3–5] are used.

The projection methods, such as principle component analysis [6], partial least square (PLS) [7–9],
discrete cosine transform [10], etc., change the high dimensional spectral data into low dimension
space. The variable selection methods, such as the genetic algorithm (GA) [11–13], interval partial least
square [2], etc. select a subset of variables to replace the original whole variable.

Considering the high correlation between adjacent spectral variables (wavelengths) due to the
characteristics of the spectrograph, Chen et al. [14] transformed the variable selection problem into a path
finding problem, i.e., the whole spectrum was divided into many sub-spectral bands. Each sub-spectral
band was regarded as a node in a maze, every wavelength inside the sub-spectral band provided a
route to its neighbor node; the shortest route (least correlation) was found by using a physarum network
(PN) [15–19], and, thus, one wavelength from each sub-spectral band was selected, and the selected
wavelengths had the least correlation. The PN is a mathematical model simulating the foraging process
of plasmodium in a maze. This model has been proven to be able to compute the shortest path in
the maze [15], and, thus, finds applications in many other fields, such as network design [16], sensor
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network [17], and supply chain network [19]. The PN can be used together with other variable selection
methods to further reduce the dimensionality, i.e., it has been found that the PN-GA-PLS can achieve
similar prediction performance with that of GA-PLS but uses much less wavelength.

The PN-GA-PLS algorithm is a sequential combination of PN, GA, and PLS. It uses PN to
select one wavelength from each sub-spectral band, and then inputs these wavelengths into GA for
further selection, during which the PLS acts as the evaluation function for guiding the selection.
A comprehensive description of PN-GA-PLS can be found in [14]. In PN-GA-PLS, the whole spectrum
is equally divided into M sub-spectral bands, each of which has P wavelengths. Many sets of M and P
are tried, the final M and P are determined if they gave a minimum prediction error.

This dividing criteria in the PN-GA-PLS has one limitation in that the whole spectrum has to be
equally divided, which only considers the characteristics of spectrometer. If the spectral features of
the samples are also taken into account, the spectrum can be divided according to the correlation of
spectral response at each wavelength, i.e., a sub-spectral band can include more wavelengths if the
wavelengths within the band have high correlation with each other.

To solve the limitation of the PN-GA-PLS and make the spectrum division scheme automatic and
adaptive to the spectral features, in this paper, we transformed the spectrum division problem into a
clustering problem, and solved the problem by using an adaptive band clustering method or affinity
propagation algorithm (AP). The main contribution of our work is three fold.

The first contribution is that we considered the spectral features of the probed samples for building
a new spectrum division scheme.

The second contribution is that we regarded each sub-spectral band as a cluster of wavelengths
and used AP to divide the whole spectrum into many sub-spectral bands according to the affinities
of wavelengths.

The third contribution is that we applied AP before PN-GA-PLS to develop a new variable
selection method.

The AP can automatically divide the whole spectrum into sub-spectral bands and each of the
sub-spectral bands can be a different width. This dividing method considers both the characteristics
of spectrometer and spectral features of the samples. By applying the AP before PN, the number
of selected wavelengths can be further decreased without degrading the prediction performance.
Compared with PN-GA-PLS and AP-GA-PLS, AP-PN-GA-PLS can achieve similar prediction precision
with the least wavelengths. This reduction of wavelengths is vital in on-line, real-time analytical
applications because less wavelength input may mean less computation load, less processing time,
and simpler hardware design.

The rest of the paper is organized as follows: the theory of the AP algorithm and the step of
applying AP-PN for variable selection are given of in Section 2; the three databases used for testing the
algorithms and the settings of the algorithms are introduced in Section 3; the results and analysis are
given in Section 4; the conclusion is provided in Section 5.

2. Theory

2.1. AP Algorithm

AP [20–27] is an unsupervised clustering algorithm. It clusters data points by identifying a set of
centers (exemplars). Unlike other clustering algorithms that need an initial set of input exemplars, AP
considers all data points as potential exemplars. Each data point is regarded as a node in a network,
real-valued messages are transmitted along the edge of the network until a set of exemplars and clusters are
found. Because of the unsupervised characteristics and good performance of AP, it has been used in many
areas since its initial publishing [20], such as band selection [21] and data compression [24] in hyperspectral
imaging, spatial clustering in geospatial data [22], statistical information extraction from high-dimensional
data spaces [23], and identification of protein complexes from protein interaction graphs [26].
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The input required by the AP is the real valued similarities S(i, k) between data point i and point k,
which indicates how suitable the data point k is for being the exemplar of data point i. The input S(k, k)
for each data point k is called preference and is denoted as pk. The data point with a large preference
has a higher chance of being selected as an exemplar. The values of the input preferences can influence
the number of exemplars or clusters, i.e., the larger the pk is, the more exemplars the AP will give [20].

The messages passing through the edges are responsibility and availability. The responsibility
r(i, k) reflects how well the point k acts as an exemplar to the point i. The availability a(i, k) reflects
how well the point i belongs to a class centered on point k [20]. An illustration of message exchange in
an AP network is given in Figure 1.
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a(i, k′) ), are passing in an affinity propagation network. The responsibility r(i, k) and r(i′, k) reflect
how well the point k acts as an exemplar to the point i and i′, respectively. The availability a(i, k) and
a(i′, k) reflect how well the point i and i′ belong to a class centered on point k. The responsibility r(i, k′)
reflects how well the point k′ acts as an exemplar to the point i′. The availability a(i, k′) reflects how
well the point i belongs to a class centered on point k′.

The r(i, k) and a(i, k) are calculated by using the formulas below

r(i, k) = S(i, k)−max
{

a(i, k′) + S(i, k′)
}

k′ 6=k
(1)

a(i, k) = min{0, r(k, k) + ∑
i′/∈{i,k}

max
{

0, r(i′, k)
}
} (2)

The r(k, k) and a(k, k) are calculated using different rules below

r(k, k) = S(k, k)−max
{

S(k, k′)
}

(3)

a(k, k) = ∑
i′ 6=k

max
{

0, r(i′, k)
}

(4)

The responsibility and availability are updated constantly by using the rules below

r(i, k)new = λ · r(i, k)old + (1− λ) · r(i, k)new (5)

a(i, k)new = λ · a(i, k)old + (1− λ) · a(i, k)new (6)

where λ is the damping factor between 0 and 1 to avoid numerical oscillations, r(i, k)new and r(i, k)old
are current and previous responsibility, respectively, and a(i, k)new and a(i, k)old are current and
previous availability, respectively. The damping factor λ was set to a value between 0.5 and 0.9
following the suggestion in [21]. Different values of λ in the suggested range were tested. It was found
that λ in this range has no effect on the final number of groups (see Sections 3.1.2, 3.2.1 and 3.3.2 for
details), so the λ is set as 0.9, which is the default value suggested in AP Algorithm software [20].



Algorithms 2017, 10, 73 4 of 16

To begin with the update of r(i, k) and a(i, k), all the availabilities are set to zero before the starting
of Formula (1).

The exemplar of data point i is the data point k that makes r(i, k) + a(i, k) the maximum.
The iteration of calculations can be stopped if a fixed step of iteration is reached or the exemplars

stay constant for a fixed step of iteration.

2.2. Variable Selection Based on AP-PN

AP-PN is a sequential combination of AP and PN. It uses AP to automatically divide the whole
spectrum into many sub-spectral bands that are not necessarily equal to each other and then selects
one wavelength from each sub-spectral band by using PN. In AP-PN variable selection, a spectral
response at a wavelength is regarded as a data point, a sub-spectral band is regarded as a cluster of
data points. The input S(i, k) required by AP in this paper is the sample correlation coefficient [24]
between wavelength i and wavelength k, which indicates to what extent the spectral information of
the two wavelengths are correlated. It is calculated by using Formula (7)

S(i, k) =

N
∑

j=1

(
xij − xi

)(
xkj − xk

)
√

N
∑

j=1

(
xij − xi

)2
√

N
∑

j=1

(
xkj − xk

)2
(7)

where xij and xkj represent the spectral response of the j-th sample at wavelength i and k, respectively,
xi and xk are the average spectral response of all samples at wavelength i and k, respectively, and N is
the number of samples.

The preference pk is the input for controlling the number of clusters [20]. It is determined by
maximizing the correlation function J(pk) (shown in Formula (8)) or finding the point where the
increasing trend of J(pk) vanishes.

J(pk) =
L

∑
n=1

(
1

M2

M

∑
i=1

M

∑
j=1

S(ci, cj)

)
M
m

(8)

where L is the total number of clusters, ci and cj represent the bands in the n-th cluster, M is the number
of wavelengths in the n-th cluster, and m is the total number of wavelengths.

The steps of using AP-PN for variable selection are as follows:

1. Calculate the similarity matrix S according to the Formula (7);
2. Set pk as a value between 0 to 1, staring from 0.00001 and updating by using pk = pk + 0.000001;
3. Set r(i, k) = 0, a(i, k) = 0;
4. Calculate the responsibility information and availability information, and update them according

to the Formulas(1)–(6);
5. Determine the clusters, and go to step 2 until all pk are tried;
6. Determine the pk according to Formula (8) and the corresponding clusters and exemplars;
7. Bring the calculated clustering results into the PN for variable selection.

2.3. Complexity Analysis of AP-PN

The AP algorithm consists of two parts. The first part is to determine the value of pk. The time
complexity of this part is O(max(n2, (1 + M)×ML/2)), where L is the number of bands selected in AP,
M is the number of wavelengths in each cluster, and it is not greater than 4, and n is the number of total
bands. In this paper, M and L are less than n, so the time complexity of the first part of AP is O(n2).
The second part of AP is to determine the clustering results. The time complexity of this part is O(n2).
The space complexity of AP is O(n2). It is worth noting that the similarity matrix is calculated only once.
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The time complexity of PN is O((n + 2)2), and the space complexity is O(n2).

3. Experiment

3.1. Corn Data Set

3.1.1. Data Set

This database is available at [28]. Three different Near Infrared (NIR) spectrometers were used to
measure the corn samples. The whole spectrum was from 1100 to 2498 nm and the scanning resolution
was 2 nm, namely, there were 700 wavelengths in total. There were 80 samples in the database. Each
sample had four measured properties, i.e., water, oil, protein, and starch. The protein content was the
property predicted in this paper. Numerical range of the protein content was from 7.6540 to 9.7110%.
We used the hold-out method to select the training set and test set, i.e., we randomly selected the
training and test sets. There were ten rounds of selection to generate the training set and test set. In each
round, a training set and a test set were randomly produced. A training set consisted of 20 samples
and a test set consisted of the remaining 60 samples. In addition, the performance of the model was
assessed by the predicted root mean square error (RMSEP) and the correlation coefficient (R) between
the predicted values and the real values in the test set. The RMSEP is defined in Formula (9)

RMSEP =

√√√√√ N
∑

i=1
(ŷi − yi)

2

N
(9)

where ŷi are the predicted values, yi are the measured values, and N represents the number of the
test sets.

3.1.2. Data Analysis

The AP-PN-GA-PLS, PLS, GA-PLS, PN-GA-PLS, and AP-GA-PLS were used for comparison.
For PLS, the number of input wavelengths was the number of full-band variables.

For GA-PLS, the parameters of the GA-PLS model were set according to the literature [3], i.e., the
population size was 30, the crossover probability was 50%, the mutation rate was 1%, and the
iteration step was 100. The crossover is an operator used to generate child generation chromosome
by exchanging the subsequences of the parent chromosomes. The crossover probability is the ratio
indicating how many child generations are produced by crossover. The mutation is another operator to
generate child generation chromosome by alerting one or more gene values in the parent chromosomes.
The mutation rate is a ratio of the number of alerted genes to the whole number of genes. Before the
GA-PLS was conducted, the ratio of the number of variables to the number of samples was checked
by using the GAPLSOPT function in the PLS-Genetic Algorithm Toolbox provided by Leardi [3].
Averaging adjacent variables was done if the ratio did not pass the check.

For PN-GA-PLS, the parameters of the PN were set according to the literature [14], i.e., the total
network traffic was 6, the number of iterations was 2000, the threshold of stop was 0.001, and the initial
network continuity was 0.00001. The whole spectrum with W wavelengths was equally divided into
M sub-spectral bands, each of which has P wavelengths (W = M× P). If the sub-spectral band could
not be equally divided (W/P is not an integer), each of the first to the (M-1)-th sub-spectral bands had
P wavelengths, and the last sub-spectral band had W − (M− 1)× P wavelengths. Many sets of M and
P were tried; M = 100 and P = 7 were determined because they gave the minimum RMSEP.

AP itself can give a representative (exemplar) for each sub-spectral band; it is not necessary to
use PN after AP if every exemplar can be used directly to replace a corresponding sub-spectral band.
Therefore, it is interesting to examine whether AP-GA-PLS can be used to replace AP-PN-GA-PLS.
For the AP-GA-PLS, the settings were the same as those in AP-PN-GA-PLS. After the AP, the exemplars
were used directly as the representative of the sub-spectral band, which were input to the GA-PLS.
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For the AP-PN-GA-PLS, since we used the hold-out method to select the training set and the test
set, the training set in each round was different and so too was the pk. In the first round, λ was set
to 0.9, which is a default value suggested in the AP algorithm source code provided in [20], and the
pk was then determined as 0.9996. We then fixed the value of pk and set λ to a value in the range of
0.5 to 0.9 to see whether the number of groups would change. It is shown in Table 1 that different
values of λ produce the same number of groups (184). So we set λ to 0.9 in all the ten rounds. The
other parameters of the PN network are the same as those in PN-GA-PLS.

Table 1. The relationship between λ and the number of groups (corn data).

λ 0.5 0.6 0.7 0.8 0.9

Number of groups 184 184 184 184 184

3.2. Diesel Data Set

3.2.1. Data Set

The database is available at [29]. The dataset includes the near-infrared spectral data of the diesel
samples and its corresponding property values. The whole spectrum was from 750 nm to 1550 nm,
and the scanning resolution was 2 nm.

The property used in this research is the viscosity, whose numerical range is from 1.12 to 4.05.
There were 395 data samples. We used the hold-out method to select the training set and test set.
There were ten rounds for selecting the training set and test set. In each round, a training set and a
test set were randomly produced. A training set consisted of 95 samples and a test set consisted of the
remaining 300 samples.

3.2.2. Data Analysis

The AP-PN-GA-PLS, PLS, GA-PLS, PN-GA-PLS, and AP-GA-PLS were used for comparison.
For the PLS, the number of input wavelengths was the number of the full-band variables.

For the GA-PLS, the parameters were set according to the literature [3]. The population size
was 30, the crossover probability was 50%, the mutation rate was 1%, and the iteration step was 100.
Before the GA-PLS was conducted, the ratio of the number of variables to the number of samples
was checked by using the GAPLSOPT function in the PLS-Genetic Algorithm Toolbox provided by
Leardi [3]. Averaging adjacent variables was done if the ratio did not pass the check.

For the PN-GA-PLS, the total network traffic was 6, the number of iterations was 2000, the
threshold of filtering stop was 0.001, the initial network continuity was 0.00001, M = 120, and P = 3.

For the AP-PN-GA-PLS, λ was set to 0.9 in the first round, which is a default value suggested in
the AP algorithm source code provided in [20], and the pk was then determined as 0.9953. We then
fixed the value of pk and set λ to a value in the range of 0.5 to 0.9 to see whether the number of groups
would change. It is shown in Table 2 that different value of λ produced the same number of groups
(120), so we set λ to 0.9 in all the ten rounds. The other parameters of the PN network were the same
as those in the PN-GA-PLS.

Table 2. The relationship between λ and the number of groups (diesel data).

λ 0.5 0.6 0.7 0.8 0.9

Number of groups 120 120 120 120 120

For the AP-GA-PLS, the settings were the same as those in the AP-PN-GA-PLS. After the AP, the
exemplars were used directly as the representatives of the sub-spectral band, which were input into
the GA-PLS.
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3.3. Sweet Orange Leaves Data Set

3.3.1. Data Set

The data set contained chlorophyll with different concentrations of sweet orange leaves and
was collected by the hyperspectral imaging system (HSI) used by Chongqing Metrology and Quality
Inspection [14]. The HSI system consisted of a spectrometer and Charge-coupled Device (CCD)
sensors, the spectral range was 400–1000 nm, scanning resolution was 0.74 nm–0.81 nm, and the
channel was 761.

The R f is the reflection rate of sweet orange leaves, which can be represented as
R f = (I − D)/(S− D). Where I is the image density, S represents the density of white light, and D
denotes the density of dark light. After hyperspectral imaging, the mesophyll in the leaves was
extracted from the veins. In order to extract chlorophyll from 0.02 g of mesophyll, we used 25 mL of
80% acetone, the concentration of the method described in [30].

One hundred thirty-three samples were included in this data set. We used the hold-out method to
select the training set and the test set. There were ten rounds of selection to generate the training set
and the test set. In each round, a training set and a test set were randomly produced. A training set
consisted of 33 samples and a test set consisted of the remaining 100 samples.

3.3.2. Data Analysis

The AP-PN-GA-PLS, PLS, GA-PLS, PN-GA-PLS and AP-GA-PLS were used for comparison.
For the PLS, the number of input wavelengths was the number of the full-band variables.

For the GA-PLS, the parameters were set according to the literature [3]. The population size
was 30, the crossover probability was 50%, the mutation rate was 1%, and the iteration step was 100.
Before the GA-PLS was conducted, the ratio of the number of variables to the number of samples
was checked by using the GAPLSOPT function in the PLS-Genetic Algorithm Toolbox provided by
Leardi [3]. Averaging adjacent variables was done if the ratio could not pass the check.

For the PN-GA-PLS, the total network traffic was 6, the number of iterations was 2000, the
threshold of filtering stop was 0.001, the initial network continuity was 0.00001, M = 120, and P = 7.

For the AP-PN-GA-PLS, λ was set to 0.9 in the first selection, which is a default value suggested
in the AP Algorithm source code provided in [20], and the pk was then determined as 0.99981. We
then fixed the value of pk and set λ to a value in the range of 0.5 to 0.9 to see whether the number of
groups would change. It is shown in Table 3 that different value of λ produce the same number of
groups (234), so we set λ to 0.9 in all the ten rounds. The other parameters of the PN network were the
same as those in the PN-GA-PLS.

Table 3. The relationship between λ and the number of groups (orange leaves data).

λ 0.5 0.6 0.7 0.8 0.9

Number of groups 234 234 234 234 234

For the AP-GA-PLS, the settings were the same as those in the AP-PN-GA-PLS. After the AP,
the exemplars were used directly as the representatives of the sub-spectral band, which were input
into the GA-PLS.

4. Results and Discussion

4.1. Corn Data Set

The convergence diagram of the AP algorithm run in the first round is shown in Figure 2. With
the increase in the number of iterations, the fitness (net similarity) of quantized intermediate solutions
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gradually increases. When the number of iterations increases to 562, fitness no longer changes. The AP
algorithm converges in the first round as well as in the rest of the rounds.
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The convergence diagram of the PN algorithm run in the first round is shown in Figure 3. The Dij
represents the rate of change of the network continuity. The convergence condition of the PN algorithm
is that all the rates of change of the network continuity are smaller than a threshold (0.001). Figure 3
shows the relationship of one of the rates of change of the network continuity and iterations. With
an increase in the number of iterations, the Dij gradually decreases. When the number of iterations
increases to 10, all the Dij are smaller than the threshold of stop. The PN algorithm converges in the
first selection as well as in the rest of the rounds.
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There were 184 wavelengths selected by the AP-PN in the first round, which are illustrated in
Figure 4a. These 184 wavelengths were input into the GA-PLS. The times of each wavelength selected
by GA-PLS are illustrated in Figure 4b. By using the 16 most selected wavelengths, the root mean
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square errors of cross-validation (RMSECV =

√
n
∑

i=1
(ỹi − yi)

2/n, where ỹi represents the predicted

value of the concentration of the i-th sample in the cross validation set, yi represents the measured value
of the concentration of the i-th sample in the cross validation set, and n is the number of cross validation
sets) can reach the smallest value. These final 16 selected wavelengths found by using AP-PN-GA-PLS
are illustrated in Figure 4c. The scatter plot of the predicted value vs. the measured value is given
in Figure 4d. The curve that fits the data points best is also given in Figure 4d. The AP-PN-GA-PLS
selected 16 wavelengths in the first round, which are shown in Figure 4c.

All five algorithms, i.e., PLS, GA-PLS, PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS, were tested
on the ten rounds, and the average number of selected wavelengths, RMSEP, and Rare summarized
in Table 4.
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Figure 4. Corn data (predicting protein content) wavelength selection result by using AP-PN-GA-PLS
in the first round: (a) spectral responses vs. wavelengths, the 184 wavelengths selected by AP-PN
are marked with circles; (b) times of selection (by GA-PLS) vs. wavelength identifier (1–184),
the wavelengths above the lower line were selected; (c) spectral response vs. wavelengths, the 16
wavelengths selected by AP-PN-GA-PLS are marked with circles; (d) scatter plot of predicted values
vs. the measured values. PLS = partial least square; GA = genetic algorithm.

It is seen from Table 4 that the PN-GA-PLS can achieve similar prediction performance
(RMSEP = 0.0597%) as that of GA-PLS (RMSEP = 0.0431%) but with fewer wavelengths (35 vs. 67).
This result confirms the conclusion in the literature [14]. However, the number of wavelengths
selected or the prediction performance of PN-GA-PLS in this research is larger or better than those
of PN-GA-PLS in the literature [14], as are those of the GA-PLS. These differences in the number of
selected wavelengths or prediction performance are due to the way in which training sets, test sets,
and the sub-spectral bands were selected.

AP-PN-GA-PLS can achieve a similar prediction performance (RMSEP = 0.0397%) as that of
PN-GA-PLS (RMSEP = 0.0597%) but with fewer wavelengths. The number of selected wavelengths
of AP-PN-GA-PLS and PN-GA-PLS was 25 and 35, respectively. This may suggest that by using AP
before PN, AP-PN-GA-PLS can further eliminate the redundant information in variables. Different
from PN, AP optimized both the number of the sub-spectral bands and the number of the wavelengths
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within each sub-spectral band, therefore, AP-PN-GA-PLS can achieve similar prediction performance
with less wavelength.

Table 4. The average values of the number of selected wavelengths, correlation coefficient (R),
and predicted root mean square error (RMSEP) using PLS, GA-PLS, PN-GA-PLS, AP-GA-PLS,
and AP-PN-GA-PLS (corn data).

Method Number of Input Wavelengths Number of Selected Wavelengths R RMSEP(%)

PLS 700 700 0.9832 0.0902
GA-PLS 700 67 0.9989 0.0431

PN-GA-PLS 700 35 0.9960 0.0597
AP-GA-PLS 700 39 0.9941 0.0643

AP-PN-GA-PLS 700 25 0.9970 0.0397

It is also shown in Table 4 that AP-GA-PLS can achieve RMSEP of 0.0643% with 39 wavelengths.
This wavelength selection performance is comparable to that of PN-GA-PLS but is better than
GA-PLS in terms of achieving similar RMSEP with less wavelength. This result suggests that the
exemplars selected by AP can be input into GA-PLS directly, which can improve the wavelength
selection performance.

However, AP-GA-PLS’s wavelength selection performance (39 wavelengths) is worse than that
of AP-PN-GA-PLS (25 wavelengths). Every exemplar selected by the AP is a representative of each
sub-spectral band, but it only represents the local information of the corresponding sub-spectral
band. These exemplars do not consider the global information of the whole spectrum. They do not
guarantee that they have the least correlation in a whole. This limitation of AP can be overcome by
using PN afterwards. The PN selects one wavelength from each sub-spectral band to ensure that all
the wavelengths in a whole have the least correlation. By combining the advantages of both AP and
PN, the AP-PN-GA-PLS can thus achieve the best performance.

AP-PN-GA-PLS achieved very good prediction performance (R = 0.9970, RMSEP = 0.0397%) with
the least number of wavelengths among PLS, GA-PLS, PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS,
whose number of selected wavelengths were 700, 67, 35, 39, and 25, respectively.

There were 25 wavelengths selected by AP-PN-GA-PLS. The selected wavelengths 1778 nm and
1780 nm are similar to 1778 nm, which is the absorption wavelength of wheat gluten [31]. The selected
wavelengths 2154 nm, 2156 nm, 2176 nm, and 2178 nm are within the range of 2100 nm–2200 nm,
which are the absorption wavelengths of wheat gluten [31]. The selected wavelength 2220 nm is similar
to 2230 nm, which is the local minimum absorption wavelength of wheat gluten [31].

4.2. Diesel Data Set

The convergence diagram of the AP algorithm is shown in Figure 5. With the increase of the
number of iterations, the fitness (net similarity) of quantized intermediate solutions gradually increases.
When the number of iterations increases to 386, and fitness no longer changes. The AP algorithm
converges in the first round as well as in the rest of the rounds.

The convergence diagram of the PN algorithm is shown in Figure 6. The Dij represents the rate of
change of the network continuity. With the increase of the number of the iterations, the Dij gradually
decreases. When the number of iterations increases to 18, all the Dij are smaller than the threshold of
stop. The PN algorithm is converged.

The number of wavelengths selected by using AP-PN in the first round was 120, which is
illustrated in Figure 7a. These 120 wavelengths were input into GA-PLS. The times of each wavelength
selected by GA-PLS are illustrated in Figure 7b. By using the 25 most selected wavelengths, the root
mean square errors of cross-validation (RMSECV) can reach the smallest value. These final 25 selected
wavelengths determined by using AP-PN-GA-PLS are illustrated in Figure 7c. The scatter plot of the
predicted value vs. the measured value is given in Figure 7d. The curve that fits the data points best is
also given in Figure 7d.
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Figure 5. The convergence diagram of the AP algorithm (diesel data): Iterations vs. Fitness (net
similarity) of quantized intermediate solution in the first round. When the iteration is 386, the network
is converged.
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Figure 6. The convergence diagram of the PN algorithm (corn data): Iterations vs. Dij (Dij is the rate of
change of the network continuity). When the iteration is 18, all the Dij are smaller than the threshold of
stop, and the network is converged.

All five algorithms, i.e., PLS, GA-PLS, PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS, were tested
in the ten rounds, and the average number of selected wavelength, RMSEP, and R are summarized in
Table 5.

It is seen from Table 5 that AP-PN-GA-PLS can give the largest R (0.9744) and the smallest
RMSEP (0.1167%) among PN-GA-PLS (R = 0.9727, RMSEP = 0.1404%), AP-GA-PLS (R = 0.9722,
RMSEP = 0.1356%), and PLS (R = 0.9716, RMSEP = 0.1370%). It is also observed that the
AP-PN-GA-PLS achieved good prediction performance with the least number of wavelengths among
all methods. The number of selected wavelengths by AP-PN-GA-PLS was 26. The number of selected
wavelengths by AP-GA-PLS, PN-GA-PLS, GA-PLS, and PLS were 66, 40, 142, and 401, respectively.
The AP-PN-GA-PLS model may, thus, achieve the least complexity without degrading the prediction
accuracy. The AP-GA-PLS can further reduce the redundant information in variables, compared with
GA-PLS, but its wavelength selection performance (66 wavelengths selected, RMSEP = 0.1356%) is not
as good as that of PN-GA-PLS (40 wavelengths selected, RMSEP = 0.1404%).
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Figure 7. Diesel data (predicting viscosity content) wavelength selection result in the first round:
(a) spectral responses vs. wavelengths, the 120 wavelengths selected by AP-PN are marked with
circles; (b) times of selection (by GA-PLS) vs. wavelength identifier (1–120); (c) spectral response vs.
wavelengths, the 25 wavelengths selected by AP-PN-GA-PLS are marked with circles; (d) scatter plot
of predicted values vs. the measured values.

Table 5. The average values of the number of selected wavelengths, R, and RMSEP using PLS, GA-PLS,
PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS (diesel data).

Method Number of Input Wavelengths Number of Selected Wavelengths R RMSEP(%)

PLS 401 401 0.9716 0.1370
GA-PLS 401 142 0.9739 0.1203

PN-GA-PLS 401 40 0.9727 0.1404
AP-GA-PLS 401 66 0.9722 0.1356

AP-PN-GA-PLS 401 26 0.9744 0.1167

The AP-PN-GA-PLS selected 26 wavelengths. In general, the polycyclic aromatic hydrocarbon
(PAHs) relates to the viscosity of diesel [32]. The final selected wavelengths of 942 nm and 1046 nm
are similar to 934 nm and 1053 nm, respectively, which are the absorption wavelengths of methylene
that relate to octane number. The selected wavelengths of 1422 nm and 1426 nm are the absorption
wavelengths of the aromatic ring that relates to viscosity [32].

4.3. Sweet Orange Leaves Data Set

The convergence diagram of the AP algorithm in the first round is shown in Figure 8. With the
increase of the number of iterations, the fitness (net similarity) of quantized intermediate solutions
gradually increases. When the number of iterations increases to 486, fitness no longer changes. The AP
algorithm converges in the first round as well as in the other rounds.
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Figure 8. The convergence diagram of the AP algorithm (sweet orange leaves data) in the first round:
Iterations vs. Fitness (net similarity) of quantized intermediate solutions. When the iteration is 486, the
network is converged.

The convergence diagram of the PN algorithm in the first round is shown in Figure 9. The Dij
represents the rate of change of the network continuity. With the increase of the number of the
iterations, the Dij gradually decreases. When the number of iterations increases to 132, all the Dij are
smaller than the threshold of stop. The PN algorithm converges in the first round as well as in the
other rounds.
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Figure 9. The convergence diagram of the PN algorithm (corn data) in the first round: Iterations vs.
Dij (Dij is the rate of change of the network continuity). When the iteration is 132, all the Dij are smaller
than the threshold of stop, and the network is converged.

The number of wavelengths selected by using AP-PN was 234 in the first round, which is
illustrated in Figure 10a. These 234 wavelengths were input into GA-PLS. The times of each
wavelength selected by GA-PLS is illustrated in Figure 10b. By using the 25 most selected wavelengths,
the RMSECV can reach smallest value. These final 25 wavelengths selected by using AP-PN-GA-PLS
are illustrated in Figure 10c. The scatter plot of the predicted value vs. the measured value is given in
Figure 10d. The curve that fits the data points best is also given in Figure 10d.
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Figure 10. Sweet orange leaves data (predicting viscosity content) wavelength selection results in the
first round: (a) spectral responses vs. wavelengths, the 234 wavelengths selected by AP-PN are marked
with circles; (b) times of selection (by GA-PLS) vs. wavelength identifier (1–234); (c) spectral response
vs. wavelengths, the 25 wavelengths selected by AP-PN-GA-PLS are marked with circles; (d) scatter
plot of predicted values vs. the measured values.

All five algorithms, i.e., PLS, GA-PLS, PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS, were tested
in the ten rounds, and the average number of selected wavelength, RMSEP, and R are summarized in
Table 6.

It is seen from Table 6 that the PN-GA-PLS can achieve similar prediction performance
(RMSEP = 1.3206%) as that of GA-PLS (RMSEP = 1.4998%) but with fewer wavelengths (49 vs. 125).
This result confirms the conclusion in the literature [14]. However, the number of wavelengths
selected or the prediction performance of PN-GA-PLS in this research is larger or better than those
of PN-GA-PLS in the literature [14], as are those of the GA-PLS. These differences in the number of
selected wavelengths or prediction performance are due to the way in which training sets, test sets,
and the sub-spectral bands were selected.

It is seen that AP-PN-GA-PLS can give the largest R (0.9220) and the smallest RMSEP (1.2436%)
among PN-GA-PLS (R = 0.9110, RMSEP = 1.3206%), AP-GA-PLS (R = 0.9034, RMSEP = 1.4226%),
GA-PLS (R = 0.9069, RMSEP = 1.4998%), and PLS (R = 0.9025, RMSEP = 1.4124%).

It is also observed that the AP-PN-GA-PLS achieved good prediction performance with the least
number of wavelengths among all methods. The number of selected wavelengths by AP-PN-GA-PLS
was 27. The numbers of selected wavelengths by AP-GA-PLS, PN-GA-PLS, GA-PLS, and PLS were
56, 49, 125, and 761, respectively. The AP-PN-GA-PLS model may, thus, achieve the least complexity
without degrading the prediction accuracy.

The AP-PN-GA-PLS selected 27 wavelengths. The final selected wavelengths of 564 nm and
571 nm are similar to 568 nm. The selected wavelengths 581 nm is similar to 582 nm. The isotropic
absorption point of chlorophyll is 568 nm and that of chlorophyll b is 582 nm [33]. The selected
wavelength of 576 nm is the local maximum absorption wavelength of chlorophyll a [33]. The selected
wavelength of 615 nm is similar to 614 nm, which is the local maximum absorption wavelength of
chlorophyll a [33].
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Table 6. The average values of the number of selected wavelengths, R, and RMSEP using PLS, GA-PLS,
PN-GA-PLS, AP-GA-PLS, and AP-PN-GA-PLS (orange leaves data).

Method Number of Input Wavelengths Number of Selected Wavelengths R RMSEP (%)

PLS 761 761 0.9025 1.4124
GA-PLS 761 125 0.9069 1.4998

PN-GA-PLS 761 49 0.9110 1.3206
AP-GA-PLS 761 56 0.9034 1.4226

AP-PN-GA-PLS 761 27 0.9220 1.2436

5. Conclusions

In spectroscopy, variable selection is important for the establishment of a prediction model.
We proposed a method based on AP and PN for variable selection. The AP overcomes the PN’s limitation
in dividing spectrum for building a network. Instead of dividing the spectrum equally, the AP can find
optimized numbers of sub-spectral bands and numbers of wavelengths in each sub-spectral band.

The AP-PN can achieve higher prediction accuracy with fewer wavelengths than PN. It can
also be combined with other variable selection methods, such as GA-PLS, to further eliminate the
redundant information in variables and, thus, simplify the final prediction model and reduce the
computation load.

The proposed algorithm has been tested on three databases. However, the amount of the samples
in the databases is limited. To gain a large database is always a challenge. In future, the algorithm
could be tested on simulated databases, in which artificial data with changeable parameters exist.
By performing this simulation, more behaviors of the algorithm can be observed, which will help to
improve the algorithm further.
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