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Abstract: The dynamic vehicle routing problem (DVRP) is a variant of the Vehicle Routing Problem
(VRP) in which customers appear dynamically. The objective is to determine a set of routes that
minimizes the total travel distance. In this paper, we propose a monarch butterfly optimization (MBO)
algorithm to solve DVRPs, utilizing a greedy strategy. Both migration operation and the butterfly
adjusting operator only accept the offspring of butterfly individuals that have better fitness than
their parents. To improve performance, a later perturbation procedure is implemented, to maintain
a balance between global diversification and local intensification. The computational results indicate
that the proposed technique outperforms the existing approaches in the literature for average
performance by at least 9.38%. In addition, 12 new best solutions were found. This shows that this
proposed technique consistently produces high-quality solutions and outperforms other published
heuristics for the DVRP.

Keywords: monarch butterfly optimization; dynamic vehicle routing problem; greedy strategy;
local search

1. Introduction

The dynamic vehicle routing problem (DVRP) is a hard combinatorial optimization problem
which is advanced by information and communication technologies that allow information to be
obtained and processed in real time, typically used in distribution logistics and transportation systems.
This system facilitates quick updating of transportation system plans in unexpected or uncertain
events, for example if roads between two customers are blocked off, customers can modify their
orders, or when the travel time for some routes is increased due to bad weather conditions or traffic
congestion, etc. On the other hand, customers in the e-market place increasingly expect quicker
and more flexible fulfilment of their transportation requests. In this context, the DVRP is becoming
increasingly interesting and important.

The DVRP is a variant of the VRP—the well-known NP-hard problem which is used in general
cases. Because VRPs can be regarded as special cases of dynamic VRPs, dynamic VRPs are at least as
hard as VRPs; therefore, research efforts mainly focus on metaheuristics and intelligent optimization
algorithms. For example, Ismail [1] designed a hybrid GA and Tabu Search heuristic to solve the DVRP.
Oliveira et al. [2] applied ant colony system (ACS) techniques to solve the DVRP with time window
constraints and a capacitated fleet. Belfiore and Yoshizaki [3] proposed a scatter search (SS) approach
to deal with real-life heterogeneous fleet vehicle routing with time windows and split deliveries in
Brazil. Chen and Xu [4] proposed a dynamic column generation algorithm for the DVRP with time
windows. de Armas et al. [5] presented a general variable neighborhood search algorithm to solve
a real-world application of the DVRP.
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In this paper, a monarch butterfly optimization (MBO) approach is proposed for the DVRP.
Although MBO has been successfully applied to a great variety of hard combinatorial optimization
problems ([6–9]), this paper, as far as we know, proposes the first MBO-based algorithm for the DVRP.

Biologically-inspired computation is a field focusing on the development of computational tools,
modeled on the principles that exist in natural systems. The results presented in recent publications
show that bio-inspired approaches are now highly competitive with other state-of-the-art heuristics.

MBO was proposed by Wang et al. [10] in 2015. Preliminary studies indicated that MBO is a very
competitive metaheuristic algorithm [10], when compared with ant colony optimization (ACO) [11],
biogeography-based optimization (BBO) [12] and differential evolution (DE) [13], is very easy to
implement because it only needs to fine-tune migration and adjusting operators. In addition, MBO is
very capable of finding the shortest paths [9]. However, MBO may fail to reach optimal performance
on average and standard values in certain test cases [10].

This paper considers a version of the DVRP in which some of the customers’ locations and
associated demands are unknown at the start of the working day and arrive gradually as time
passes. All vehicles start from the depot to serve yesterday’s remaining customers after opening
time and must return to the depot by the closing time. A similar problem was first introduced by
Kilby et al. [14]. In order to overcome the MBO shortcoming, a greedy algorithm is incorporated into
the migration operation and butterfly adjusting operator, and a later perturbation procedure is applied
after the butterfly adjusting operator, to maintain a balance between global diversification and local
intensification. To the best of our knowledge, this is the first MBO implementation for the DVRP. It is
tested using data sets introduced in Kilby et al. [14] and Montemanni et al. [15], and compared to other
well-known meta-heuristics. As a result, we obtain an average gap of −9.38%, provide 12 new best
solutions from 21 instances, and improve the overall performance for this set of instances.

The remainder of this paper is organized as follows: In Section 2, we define the DVRP model
tackled here and present a literature review of the existing papers that deal with the DVRP. Section 3
contains a description of our algorithm. In Section 4, we include the results of the experiment and
the corresponding analysis to test our proposed algorithm. We summarize the major conclusions of
this article in Section 5.

2. Dynamic Vehicle Routing Problem (DVRP)

2.1. Problem Description

To allow better understanding of the DVRP, Figure 1 shows a simple example of a dynamic
vehicle routing problem. In the example, two uncapacitated vehicles must service both advance- and
immediate-request customers. The static customers are represented by white nodes, while those that
are immediate requests are depicted by black nodes. The dashed lines represent the two routes that
the dispatcher has planned prior to the vehicles leaving the depot (Figure 1A). The two dash-dotted
lines indicate the vehicle positions at the time the dynamic requests appear. Ideally, the dispatcher
routes should be adjusted to fulfill the dynamic customers’ requests (Figure 1B). Finally, the vehicles
deliver the demands of all customers and return to the depot (Figure 1C).

The study problem concerns routing a fleet of capacitated vehicles in real time to deliver goods
ordered by a partially-known set of customers. There is a fleet of K homogenous vehicles, each with
an identical capacity (Q), and a set of n customers {1, 2, . . . , n} is considered. The problem can be
modeled by an undirected graph, G = (V, E), where V is a vertex set and E is an edge set (V = {0}∪S∪D,
and E = {(i, j) | i, j ∈ V, i < j}). Vertex 0 denotes a depot, which has a working time from e0 to l0
(0 ≤ e0 < l0). C is a set of customers (requests) to be serviced. For each customer, (I ∈ S∪D), there is
a location (xi, yi), a demand of goods (di), an appearance moment (ai (e0 ≤ ai ≤ l0)), and a service time
(si). At the same time, each edge is defined by a non-negative distance (cij) and the travel time (tij)
between all customers’ locations. For DVRPs, there are two sets of customers: S and D. S is composed
of static customers, who are known from an earlier working day, and D includes all dynamic customers,
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who appear with time. A solution, S, is composed of a set of routes satisfying all customers’ demands
once. Each route (Rk ∈ S) starts and ends at the depot, and does not exceed the vehicle capacity (Q).
A route consists of a sequence of customers to visit (Rk = {0, . . . , j, . . . , 0}), where j ∈ V denotes the j-th
customer. For each customer (I ∈ Rk), wi is the vehicle’s waiting time, and the vehicle’s arriving time
(bi) should satisfy bi = bi−1 + si−1 + wi−1 + ti−1,i (b0 = e0), when we reversely calculate the latest arrival
time with zi = zi+1 − ti+1,i − si (zj+1 = l0).
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Figure 1. An illustration of a typical dynamic vehicle routing problem.

Similar to [14], we also divide a working day (T) into time slices (nts), each with an equal length
of time (T/nts, where T = l0 − e0), where TS = {TS1, TS2, . . . , TSts}. Each time slice represents a partial
static VRP, where TS1 only includes static customers in S. The equation TS\TS1 considers the customers
received at the previous time slice and those who have not been visited yet.

Hence, two decision variables, xijk and yik, are defined as follows:
xijk = 1 if the edge (i, j) is visited by vehicle k and 0 in all other cases.
yik = 1 if customer i is visited by vehicle k and 0 in all other cases.
The general mathematical model for DVRP is described as follows:

min ∑
(i,j)∈E

∑
k∈K

cij·xijk (1)

s.t.

∑
i∈V\{0}

di·yik ≤ Q, ∀k ∈ K (2)

∑
k∈K

yik = 1, ∀i ∈ V (3)

∑
i∈V\{0}

xijk = yjk, ∀k ∈ K, ∀j ∈ V (4)

∑
j∈V\{0}

xijk = yik, ∀k ∈ K, ∀i ∈ V (5)

∑
i∈V\{0}

xijk = ∑
i∈V\{0}

xjik, ∀k ∈ K, ∀j ∈ V (6)

∑
i∈V\{0}

∑
k∈K

x0ik = ∑
i∈V\{0}

∑
k∈K

xi0k ≤ |K| (7)

∑
(i, j)∈E

xijk·tij + ∑
i∈V\{0}

yik·si + ∑
i∈V\{0}

yik·wi ≤ l0, ∀k ∈ K (8)
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The objective (1) is to minimize the total distance travelled during each time slice. Expression (2)
ensures that during each time slice, each vehicle does not exceed its capacity. Expressions (3)–(6) ensure
that each customer, apart from the depot, is visited once, and only once, by one vehicle, during each
time slice. The Expression (7) ensures that all vehicles start from the depot during initialization and
return to the depot at the end of the route. Meanwhile, the number of vehicles out in use cannot exceed
the total quantity at the depot. Expression (8) is the travel time constraints, because every vehicle must
return to the depot before the closing time.

2.2. Related Work

The Dynamic Vehicle Routing Problem (DVRP) with capacity and time duration constraints was
introduced by Kilby et al. [14] and further refined by Montemanni et al. [15]. These authors proposed
some benchmark instances for the DVRP and presented a study on how the degree-of-dynamism
affects the final travel costs. Montemanni et al. [15], who extended Kilby et al.’s work [14], considered
a DVRP as an extension to the standard VRP, by decomposing a DVRP as a sequence of static VRPs,
and then solving them using an ACS algorithm. Other optimization techniques have been applied.
Khouadjia et al. [16] presented particle swarm optimization. Yang et al. [17] proposed a hybrid
large neighborhood search. In a recent survey, Pillac et al. [18] classified routing problems from
the perspective of information quality and evolution. They introduced the notion of degree of
dynamism, and presented a comprehensive review of applications and solution methods for dynamic
vehicle routing problems. Bekta et al. [19] provided another survey in this area, which provided
a deeper and more detailed analysis. Last but not least, Psaraftis et al. [20] shed more light into work
in this area, over more than 3 decades, by developing a taxonomy of DVRP papers according to
11 criteria.

Along with advances in technology, improvements to problem-solving methods have been made
in order to interact with dynamic environments, and to combine fast responses with quality solutions.
Based on the quality of information, Pillac et al. [18] classified DVRPs into two categories: deterministic
and stochastic. The present work falls under the deterministic category, for which approaches are
based on periodic or continuous re-optimization.

Periodic re-optimization approaches typically commence at the beginning of the day,
with an initial optimization that produces an initial set of routes; then the solution is re-optimized
either whenever the available information changes, or at a fixed re-optimization interval. Chen and
Xu [4] proposed a dynamic, column generation approach for solving a DVRP, with hard time windows,
in which all requests need to be serviced. The authors used the concept of decision epochs over
the planning horizon, which indicate the moments of the day when the re-optimization process is
executed. Montemanni et al. [15] employed an ACS to solve the dynamic VRP by dividing the overall
planning horizon into periods (time slices), as in Kilby et al. [14]. During each time slice, a static problem
is solved by considering all requests known at the beginning of this time slice. A similar approach was
also employed by Elhassania et al. [21], Euchi et al. [22] and Mańdziuk and Żychowski [23].

In contrast, continuous re-optimization approaches commence at the beginning of operations with
an initial set of routes, and the vehicles are informed only about their next destination. It keeps high
quality solutions within an adaptive memory. A decision procedure is used to update the solutions in
the adaptive memory whenever the available information is updated. Updates typically occur due to
either a new dynamic customer request service, or the vehicle reaches a customer. Gendreau et al. [24]
were the first to employ continuous re-optimization. These authors proposed a Tabu Search heuristic to
address the DVRP arising in a long-distance courier service, in which time windows could be violated
at some cost. The approach keeps a pool of good solutions in its adaptive memory, which is used to
generate initial solutions for a parallel Tabu Search. Whenever a new customer request arrives, it is
checked against all the solutions from the adaptive memory to decide whether it should be accepted
or rejected. A fast local search procedure is then applied to select the best solution. When the vehicle
reaches a customer, the solution is also updated in the adaptive memory and the next destination of
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the vehicle is identified, based on the best solution. In another study, Bent and Van Hentenryck [25]
generalized this framework and introduced the concept of the multiple plan approach to solve
the DVRP. The method attempts to continuously generate different solutions based on static and
known dynamic customers. A solution pool (routing plans) is used to generate an appropriate solution.
When a new customer arrives, a procedure checks if they can be served or not. If they can be served,
the customer request is inserted into the solution pool and incompatible solutions are discarded.
The solution pool is updated during each event in order to ensure that all solutions are consistent with
the current state of the system.

3. The Proposed Algorithm for DVRP

We used the periodic re-optimization strategy to solve the DVRP. This strategy has been used in
many DVRP works, such as Kilby et al. [14] and Montemanni et al. [15]. The basic idea of the strategy
is to divide a DVRP into a series of static VRPs for every time-slice. The initial states of the static VRPs
are different from standard static VRPs—that is, vehicles start from their position in the last slice.

The modified MBO algorithm we propose includes three important parts: (1) an insert heuristic
to place new requests into the current solution at the end of each time slice; (2) a greedy strategy,
incorporated into the standard MBO, which accepts only the monarch butterfly individuals that have
better fitness than their parents, and (3) a subsequent perturbation (2-opt*) to increase the search
diversity and the chance of escaping local optima. Next, we discuss the proposed algorithm in detail.

3.1. Solution Representation

The representation used in our work is dedicated to the DVRP. We propose a simple and
intuitionistic natural number encode which expresses the route of k vehicles to the n customers
they serve. As previously described, 0 represents the depot, and 1, 2, . . . , n refers to each customer.
As the total number of vehicles is k, the maximum route distribution is also k. Each route begins with
the depot, and ends with the depot. In order to reflect the distribution route in coding, we increase
k − 1 to represent the virtual depots, respectively expressed as n + 1, . . . , n + k − 1. A non-duplication
of a random arrangement of the natural numbers—1, 2, . . . , n, n + 1, . . . , n + k − 1—constitutes
an individual.

An example of butterfly representation and its decoding are presented in Figure 2. There are
seven customers and three vehicles to complete the task of distribution; we use a non-duplication
of a random arrangement of the natural numbers—1, 2, . . . , 9 (among them, 8 and 9 are virtual
depots)—to represent the distribution routes. In Figure 1A, an individual (7 4 6 8 5 2 9 1 3) contains
three distribution routes (route 1: 0-4-6-0, route 2: 0-5-2-0, and route 3: 0-1-3-0), while in Figure 2B,
an individual (7 4 6 5 8 9 2 3 1) corresponds to the program of the distribution path, route 1: 0-7-4-6-5-0,
route 2: 0-2-3-1-0—a total of two distribution routes.
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3.2. Initial Population

In accordance with Kilby et al. [14] and many similar works, a working day is split into nts

equal-length time slices, and in each time slice a static VRP is solved, with the aim of servicing
the known customers so far. We postpone the arrival of a new request to the end of the current
time slice and optimize the next time slice. So, a cut-off time (Tco), is considered, as introduced
in Montemanni et al. [15], which postpones orders after Tco to the next working day. In addition,
an advanced commitment time, (Tac), is also employed to allow a driver to respond to new orders
prior to the time of processing the order itself. The first partial static VRP created at the beginning of
the working day (T1) consists of all static customers which are left over from the previous working day,
as defined by the Tco parameter. We apply a random approach to generate an initial feasible solution
(S). Initially, S consists of k − 1 virtual depots, and then we try to update those routes by inserting
customers randomly. This process is repeated until all customers have been assigned to a route.
Each individual is defined as a random permutation of these known customers and existing routes.
Hence, at each slice, all butterflies have the same length and contain the same numbers (customers’
and vehicles’ identifiers). All butterflies will be verified against the capacity and feasibility rules
described above.

The next static problem considers all orders received during the previous time slice as well as
those which have not been visited by drivers yet. In our simulation, each vehicle (k) starts from
the location of the last visited customer (i), with a departure time (dti) corresponding to the end of
the service time for this customer (dti = bi + si), and with a remaining capacity equal to the capacity left
after serving all previously visited customers.

A decision to wait or go occurs when a vehicle finishes servicing a customer. The algorithm must
choose between keeping the vehicle waiting at its current location or beginning to move towards
the next customer. Assume that in l-th time slice (TSl), the vehicle (k) has finished serving the customer
(i) and is ready to serve the next customer (I + 1) in the route (Rk). If it satisfies the inequalities (9),
the vehicle will wait at the customer until Tl (Tl = l*T/nts), and the wait time (wi) at the customer is
defined in Equation (10)

dti< Tl ∧ bi+1 >Tl ∧ Tl + ti,i+1 < zi (9)

wi = Tl − dti (10)

3.3. Monarch Butterfly Optimization (MBO)

MBO is a new naturally-inspired metaheuristic algorithm, which is proposed by Wang et al. [10]
in 2015. It is inspired by the behavior of the monarch butterfly during migration. In MBO,
all the monarch butterfly individuals are idealized and located in two lands only: northern USA
and southern Canada (Land 1) and Mexico (Land 2). Accordingly, the positions of the monarch
butterflies are updated in two ways: the migration operator and the butterfly adjusting operator.
In the following subsections, we discuss our modified operations for solving the DVRPs.

3.3.1. Migration Operator

The migration operator is designed to update the monarch butterfly migration between Land
1 and Land 2, on which monarch butterflies make up subpopulations 1 and 2 respectively. At first,
the number of monarch butterflies in Lands 1 and 2 can be considered as NP1 = ceil(p*NP) and
NP2 = NP − NP1, respectively, where NP is the total number of monarch butterflies, p is the ratio of
monarch butterflies in Land 1, and ceil(x) rounds x to the nearest integer greater than or equal to x.
Accordingly, migration operator can be formulated as

xt + 1
i,k =

{
xt

r1,k |r ≤ p
xt

r2,k |r > p
(11)
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where xt+1
i,k . represents the kth element of xi at generation t + 1. Similarly, xt

r1,k. indicates the kth
element of xr1 at generation t, and xt

r2,k. represents the kth element of xr2 at generation t. The current
generation number is represented by t. Monarch butterflies (r1 and r2) are selected randomly from
subpopulation 1 and subpopulation 2. The condition variable (r) is calculated as

r = rand * peri (12)

where peri indicates the migration period and is set to 1.2 in the basic MBO method [10] and rand is
a random number derived from a uniform distribution.

3.3.2. Butterfly Adjusting Operator

This operator is used to update the positions of the monarch butterflies in subpopulation 2. It can
be updated as follows:

xt + 1
j,k =

{
xt

best,k |rand ≤ p
xt

r3,k |rand > p
(13)

where xt+1
j,k represents the kth element of xj at generation t + 1; xt

best,k indicates the kth element of xbest

at generation t, which represents the best location of the monarch butterflies in Lands 1 and 2; and xt
r3,k

represents the kth element of xr3 at generation t; the monarch butterfly r3 is selected randomly from
subpopulation 2. If rand > p, there has another step. The position of the butterfly is further updated
using Levy flight, if rand > BAR:

xt + 1
j,k = xt + 1

j,k + α× (dx− 0.5) (14)

where the variable BAR is the butterfly adjusting rate. If BAR is smaller than a random value, the kth
element of xj at generation t + 1 is updated, where α is the weighting factor, as shown in Equation (15).

α = Smax/t2 (15)

where Smax is the maximum walk step. In Equation (14), dx is the walk step of butterfly j that can be
calculated by Levy flight.

dx = Levy(xt
j) (16)

3.4. Greedy Acceptance

In the basic MBO method, all the newly-generated butterflies are accepted, and are kept in the next
generation, while a greedy strategy is used to only accept the butterfly individuals that have better
fitness in our algorithm. This greedy strategy can be formulated as follows:

xt + 1
i,new =

{
xt + 1

i , | f (xt + 1
i ) < f (xt

i )

xt
i , |otherwise

(17)

where xt+1
i,new is a newly-generated butterfly individual for the next generation. The terms f (xt+1

i ) and
f (xt

i ) are the fitness levels of butterfly xt+1
i and xt

i , respectively.

3.5. Later Perturbation

In order to enhance the ability of escaping from a local optimum, we employ a perturbation
method to increase the search diversity. We randomly select an individual from the population,
and then apply the later perturbation to improve the selected solution. If the resultant solution is
feasible, it replaces the worst individual in the population.

The later perturbation uses two improving procedures, as illustrated in Figure 3. First, we use
a 2-opt heuristic, which inverts sequences of one single route; second, we use a 2-opt* heuristic,
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which exchanges the ending segments of two different routes. A first improvement strategy is used,
which means that the local search restarts immediately when an improvement is found. Each local
search runs until no more improvements are possible. The 2-opt local search runs first, its output
solution being the input to the 2-opt* local search. The local search terminates when no 2-opt* move
exists that can further improve the solution.
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3.6. Algorithm Structure

The modified MBO is shown in Algorithm 1. At first, all parameters are initialized. The variable
nts divides the working day (T) into equal time slices. For each time slice, the following procedure
is repeated: dynamic customers arriving at time slice TSl are added to the request pool (U) (Line 4).
Specially, for TS1, U only stores all static customers. For other time slices, the location of each vehicle is
updated by Equations (9) and (10) with the current best solution (S). Then, the unvisited customers
from S are removed and inserted into U (Lines 5–8). The population (P) of NP (=|U|) individuals is
initialized. Next, the basic MBO is repeated. First, the population is divided into two subpopulations,
according to their fitness values, in which subpopulation 1 includes NP1 better individuals and
subpopulation 2 includes the rest. Afterwards, an offspring of subpopulation 1 is generated,
using the migration operator (Lines 14–19). Then, individuals of subpopulation 2 are updated by
the butterfly adjusting operator (Lines 20–25). Note that each two operators only accept the butterfly
individuals that have better fitness (Lines 18 and 24). Next, offspring of the two tsubpopulations are
regrouped into one population. Finally, later perturbations are applied to local search for any one
individual. The current best individual is used as an input in the next time slice. The above procedure
is repeated until the termination condition is satisfied.
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Algorithm 1 MBODVRP

1. Initializing all the parameters
2. S← ϕ, U←ϕ, l←1
3. while (l <= nts) do
4. Add the customers received at the time slice TSl to U.
5. if (S is not null) then
6. Update the location of each vehicle by Equations (9) and (10)
7. Remove the unvisited customers from S and then insert into U.
8. end if
9. Initializing the population P of NP individuals randomly.
10. Evaluate butterfly population
11. while (termination criterion is not reached) do
12. Sort all monarch butterfly individuals in non-ascending order based on fitness.
13. Divide butterflies into two subpopulations.
14. for (each monarch butterfly i in subpopulation 1) do
15. for (each element k in i-th butterfly) do
16. Generate k-th element by Equations (11) and (12).
17. end for k
18. Update i-th butterfly by greedy strategy as Equation (17)
19. end for i
20. for (each monarch butterfly j in subpopulation 2) do
21. for (each element k in j-th butterfly) do
22. Generate k-th element by Equations (13)–(16).
23. end for k
24. Update j-th butterfly by greedy strategy as Equations (17)
25. end for j
26. Combine the two newly-generated subpopulations into one population;
27. Evaluate butterfly population
28. Apply later perturbation
29. S← the current best individual in the population.
30. end while
31. l← l + 1, U←ϕ

32. end while
33. return S.

4. Experimental Results

In this section, some computational results are presented, in order to evaluate the performance
of the improved MBO described in Section 3. We carried out extensive experiments on relevant
benchmarks. We first introduce the benchmarks instances and the parameter settings for
the experiments. We then show the results, along with a comparative analysis, on several public
data sets derived from Montemanni et al. [15] and Kilby et al. [14].

In order to evaluate the performance of the proposed algorithm, we implemented the algorithm
in Visual C# under Windows Server 2012 R2 Standard on a PC with Intel® Xeon® E5-2620 @ 2.40 GHz
CPU and 16 GB RAM.

4.1. Benchmarks Description

Our experimental results are based on the benchmarks proposed by Kilby et al. [14] and extended
by Monemanni et al. [15]. They were derived from publicly available VRP benchmark data from
three separate VRP sources (datasets). The first dataset consists of 12 instances, varying from 75



Algorithms 2017, 10, 107 10 of 19

to 150 customers, taken from Taillard et al. [26]. The second dataset consists of seven instances,
with sizes varying from 50 to 199 customers, derived from Christofides et al. [27]. The third set
consists of two instances, with sizes varying from 71 to 134 customers, derived from Fisher et al. [28].
The number of customers can be inferred from the name of each instance. The service area may consist
of uniformly distributed customers, clustered customers, or a combination of both. In order to obtain
dynamic problems, Kilby et al. [14] added the concept of length of the working day into to these
problem, and gave each instance an appearance time which signifies when the order becomes available
(during the working day) and a duration, namely the time required to perform an order once it reaches
the customer. They also fixed the number of available vehicles to 50 for each problem. More details
can be found in Kilby et al. [14].

In order to compare our results with existing algorithms, a number of parameters needed to be
adjusted. The first was nts, the number of time slices in the optimization. In Montemanni et al. [15],
it was found that setting the parameter to nts = 25 yielded the best trade-off between the objective value
and computational cost. Secondly, the advanced commitment time (Tac) was set at 0. Finally, the cutoff
time (Tco), was set to 0.5T, where T is the total length of the working day. In particular, for each time
slice, we limited computation time to 30 s. Then, T equals 30 × 25 = 750 s for the entire simulation.

4.2. Comparison with the Literature for DVRP

A comparison for the quality of the solution, in terms of minimizing travel distances, was done
between our approach and other metaheuristics proposed previously in the literature. In order to
obtain significant results, our approach was executed five times for each instance. Tables 1 and 2
show the best computational results by our MBO algorithm and the average results over five runs,
respectively. There are six columns in Tables 1 and 2: the instance, our MBO algorithm, the best known
solutions (BKS), the algorithm to find the BKS, the relative error (RE) (i.e., RE = (MBO − BKS)/BKS
× 100%) and the computational time by MBO (note that we cannot compare with other algorithms
as there is no such data available in the public domain or in the literature). There are other best and
average results in Tables 1 and 2 provided by some heuristic algorithms as follows: GA2007 and TS
by Hanshar and Ombuki-Berman [29], DAPSO and VNS by [16], GA2014 by [21], HLNS by [17] and
AAC-2OPT by [22].

Table 1. Comparison of the best Monarch Butterfly Optimization (MBO) results with the hitherto
best-known solutions.

MBO BKS Algorithm RE (%) TMBO (s)

c50 570.61 551.95 AAC-2OPT 3.38 42.44
c75 897.16 962.79 GA −6.82 83.01

c100 915.27 961.10 GA2007 −4.77 80.80
c100b 819.60 800.93 AAC-2OPT 2.33 101.77
c120 1070.18 1049.47 AAC-2OPT 1.97 122.56
c150 1118.03 1318.22 TS −15.19 250.99
c199 1394.74 1640.40 DAPSO −14.98 470.15
f71 271.43 279.52 DAPSO −2.89 51.53
f134 11759.06 13015.56 AAC-2OPT −9.77 205.78

tai75a 1748.71 1755.33 AAC-2OPT −0.38 81.75
tai75b 1371.90 1306.47 AAC-2OPT 5.01 90.42
tai75c 1464.37 1406.27 TS 4.13 77.41
tai75d 1419.00 1334.67 AAC-2OPT 6.32 83.13
tai100a 2185.49 2194.93 AAC-2OPT −0.43 113.82
tai100b 2057.80 2126.09 AAC-2OPT −3.21 108.28
tai100c 1463.42 1490.58 VNS −1.82 131.28
tai100d 1704.35 1834.60 GA2007 −7.10 119.77
tai150a 3560.28 2999.27 AAC-2OPT 18.70 336.75
tai150b 2966.19 2846.28 AAC-2OPT 4.21 333.55
tai150c 2528.04 2612.68 GA2007 −3.24 353.91
tai150d 2980.44 2950.61 GA2007 1.01 292.68

Average 2107.91 2163.70 −1.12 168.18
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Table 2. Comparison of the average MBO results with the hitherto best known solutions.

MBO BKS Algorithm RE (%) TMBO (s)

c50 590.73 570.89 AAC-2OPT 3.48 44.20
c75 909.56 1013.45 TS 2007 −10.25 84.50

c100 930.38 987.59 GA 2007 −5.79 82.43
c100b 839.93 841.44 AAC-2OPT −0.18 103.90
c120 1112.58 1153.29 AAC-2OPT −3.53 126.08
c150 1135.85 1386.93 GA 2007 −18.10 262.19
c199 1414.40 1758.51 AAC-2OPT −19.57 492.80
f71 277.00 306.33 TS 2007 −9.57 52.48
f134 11853.29 15528.81 AAC-2OPT −23.87 215.09

tai75a 1799.15 1782.91 AAC-2OPT 0.91 83.63
tai75b 1385.45 1452.26 AAC-2OPT −4.60 93.61
tai75c 1483.41 1441.91 AAC-2OPT 2.88 81.09
tai75d 1435.62 1422.27 AAC-2OPT 0.94 86.42
tai100a 2212.08 2232.71 AAC-2OPT −0.92 116.53
tai100b 2105.15 2182.61 AAC-2OPT −3.55 111.98
tai100c 1474.32 1541.25 GA 2014 −4.04 137.05
tai100d 1722.88 1912.43 AAC-2OPT −10.78 123.70
tai150a 3539.61 3185.727 AAC-2OPT 8.78 375.45
tai150b 3038.38 2880.57 AAC-2OPT 5.48 365.32
tai150c 2641.62 2743.55 AAC-2OPT −3.72 377.15
tai150d 3047.30 3045.16 GA 2007 0.07 322.49

Average 2140.41 2350.98 −9.38 178.01

As you can see, our approach is very competitive. Table 1 shows that MBO found 12 out of
21 new best solutions, compared to the BKS. The average distance of all instances by the MBO was
2096.55 which is lower than the BKS’s average cost of 2163.70. It made an improvement of 1.12% over
the BKS. Regarding the computation time of MBO, the longest was no more than 470.15 s (much lower
than the time limit of 750 s that we set), and the shortest was 42.44 s, while the average time for each
instance was 168.18 s. In particular, the computation time for each time slice was only 6.73 s on average.
This indicates that MBO has good computational capability.

From Table 2, our average results were superior to GRASP in almost all instances, and better than
BKS in 14 instances. All these results allow us to say that our MBO is effective and shows the viability
to generate very high quality solutions for the DVRP.

In the next experiment, we compared the AAC-2OPT, DAPSO, and GA2007 with our MBO.
The percentage of deviation from the known optimal solution concerning problems can be seen as
a chart in Figure 4. It shows that MBO is superior to other methods. The deviation of MBO is less than
5% for all instances except tail75d and tail150a.

In this experiment, we analyzed the results in detail. Figure 5 shows, for each data set,
the dispersion diagrams of the solutions found by our approach. Note that the solution values
are presented as the relative error from the BKS.

In most cases, our MBO gets a relative error of no greater than 10% from the BKS, and central
values tend to be between 0 and 5%. It is interesting to note that the quality and stability of the solutions
are not size dependent. In particular, f134, c75, c100, c150, c199, and t100d have instances with less
than 5% relative error. This means those instances are better than the BKS.
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5. Conclusions

This paper studied the DVRP, a method where the customers appear dynamically, and which
requires a combination of the vehicles’ current states and the customers’ current information to re-plan
routes. In this paper, an MBO approach, called MBO–DVRP, is proposed for the problem. The approach
is based on a Monarch Butterfly Optimization algorithm and perturbed a 2-opt(*) procedure. To the best
of our knowledge, this is the first time that MBO has been proposed and evaluated by the DVRP.
The experiments conducted on the benchmark for the DVRP clearly demonstrate the efficiency and
the competitiveness of our approach compared to the existing methods in the literature.
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Appendix A

Here, in the appendix, we present the following routes constructed with the available vehicles to
achieve the new best results realized with the MBO with 2-opt.

Table A1. The best results.

Instance: C50 Best: 570.61 Time: 42.44 s

1:0-38-9-49-10-39-30-34-21-50-16-11-0
2:0-47-18-13-25-14-0
3:0-12-5-46-0
4:0-37-33-45-15-44-42-19-40-41-4-17-0
5:0-32-2-29-35-36-20-3-28-31-22-1-0
6:0-27-48-8-26-7-43-24-23-6-0

Instance: c75 Best: 897.16 Time: 83.29 s

1:0-68-2-62-22-28-30-45-0
2:0-63-43-42-64-41-56-23-1-73-0
3:0-51-24-49-16-33-6-17-0
4:0-26-58-72-39-32-40-12-0
5:0-11-66-65-38-10-0
6:0-52-27-13-57-15-20-37-5-29-0
7:0-3-44-50-18-55-25-31-9-0
8:0-8-54-19-59-14-53-35-0
9:0-74-61-69-71-60-70-36-47-21-48-0
10:0-67-7-46-34-4-0
11:0-75-0

Instance: c100 Best: 915.27 time: 80.80 s

1:0-12-80-68-29-24-54-55-25-67-39-4-21-40-0
2:0-69-31-88-62-7-48-47-36-46-45-8-82-18-52-0
3:0-1-70-10-90-63-11-19-49-64-32-66-20-30-0
4:0-13-87-57-2-41-22-23-56-75-74-72-73-0
5:0-94-95-97-92-37-98-100-91-85-93-61-83-89-0
6:0-76-77-3-79-78-34-35-65-71-9-51-81-33-50-0
7:0-60-5-84-17-16-86-38-44-14-43-15-42-0
8:0-59-99-96-6-0
9:0-53-58-26-28-27-0

Instance: c100b Best: 819.60 Time: 102.30 s

1:0-75-1-2-4-6-9-11-8-7-3-5-0
2:0-13-17-18-19-15-16-14-12-10-0
3:0-20-22-24-25-27-29-30-28-26-23-21-0
4:0-32-33-31-35-37-38-39-36-34-0
5:0-81-78-76-71-70-73-77-79-80-72-61-64-68-69-0
6:0-43-42-41-40-44-45-46-48-51-50-52-49-47-0
7:0-57-59-60-58-56-53-54-55-0
8:0-66-62-74-63-65-67-0
9:0-98-96-95-94-92-93-97-100-99-0
10:0-91-89-88-85-84-82-83-86-87-90-0
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Table A1. Cont.

Instance: c120 Best: 1070.18 Time: 129.27 s

1:0-17-16-19-25-22-24-27-33-30-31-34-36-29-35-32-28-26-23-20-21-81-0
2:0-37-38-39-42-41-44-46-47-49-50-51-48-45-43-40-0
3:0-52-54-57-59-65-61-62-64-66-63-60-56-58-55-53-107-0
4:0-8-12-13-14-15-11-10-9-7-6-5-4-3-1-2-88-0
5:0-67-69-70-71-74-72-75-78-80-79-77-68-76-73-103-0
6:0-82-119-0
7:0-92-91-90-109-108-118-114-18-83-113-117-84-112-85-89-87-86-111-0
8:0-95-96-93-94-97-115-110-98-116-100-99-104-101-102-106-105-120-0

Instance: c150 Best: 1118.03 Time: 274.47 s

1:0-122-51-120-9-103-66-71-65-136-35-135-34-78-129-0
2:0-137-2-115-145-41-22-133-74-75-23-56-72-73-21-40-0
3:0-26-149-110-4-139-39-67-25-55-130-54-109-0
4:0-53-105-58-13-94-6-147-112-0
5:0-16-141-86-113-17-84-5-118-60-0
6:0-95-117-97-92-59-98-85-61-93-99-104-96-0
7:0-111-1-30-70-101-69-27-0
8:0-127-31-88-148-10-108-126-63-90-32-131-128-20-132-0
9:0-106-7-47-36-143-49-64-11-107-19-123-62-0
10:0-28-138-12-80-150-134-24-29-121-68-116-0
11:0-37-100-91-119-44-140-38-14-142-42-43-15-57-144-87-0
12:0-146-52-82-48-124-46-45-125-8-114-83-18-89-0
13:0-50-102-33-81-79-3-77-76-0

Instance: c199 Best: 1394.74 Time: 486.88 s

1:0-146-167-127-190-31-162-1-69-132-27-0
2:0-77-3-158-129-79-185-81-33-157-102-176-0
3:0-195-179-4-155-25-55-165-130-54-134-24-163-177-109-0
4:0-18-83-84-17-113-86-16-61-173-5-118-60-0
5:0-88-148-189-10-159-62-182-194-106-153-0
6:0-114-8-82-48-124-46-174-45-125-199-166-0
7:0-51-120-164-34-78-169-29-121-68-150-80-0
8:0-52-123-19-107-175-11-64-49-143-36-47-168-7-0
9:0-105-26-149-198-72-73-21-180-40-58-152-0
10:0-13-117-97-92-151-37-98-91-85-93-59-104-99-96-6-0
11:0-100-193-191-141-44-140-38-119-192-14-142-43-15-0
12:0-101-70-108-126-63-181-90-32-131-160-128-20-30-122-0
13:0-110-139-187-39-170-67-23-186-56-75-197-0
14:0-28-111-76-196-116-184-12-154-138-0
15:0-188-66-71-65-136-35-135-161-103-9-50-0
16:0-144-172-42-57-145-41-22-133-74-171-115-178-2-53-0
17:0-89-147-183-94-95-87-137-112-156-0

Instance: f71 Best: 271.43 Time: 51.75 s

1:0-14-11-18-35-0
2:0-1-15-19-2-13-17-16-12-71-6-10-5-3-8-4-7-9-0
3:0-60-61-58-59-63-62-64-65-66-67-69-37-38-40-68-39-57-56-34-0
4:0-49-51-70-50-47-48-52-45-53-46-43-44-42-27-28-22-21-30-0
5:0-20-29-23-26-24-25-41-55-54-32-31-33-36-0
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Table A1. Cont.

Instance: f134 Best: 11759.06 Time: 210.58 s

1:0-73-74-134-76-77-64-78-63-79-67-70-69-68-80-33-133-0
2:0-72-47-75-1-48-32-34-49-62-61-60-59-31-30-28-26-22-24-23-0
3:0-120-109-108-107-106-114-115-0
4:0-19-65-130-119-117-131-116-132-81-17-66-0
5:0-71-112-125-111-110-122-123-124-126-127-121-128-129-113-18-118-46-0
6:0-58-57-105-97-96-38-95-37-35-36-99-98-100-101-104-102-53-103-56-55-54-52-51-50-0
7:0-82-20-83-85-84-86-87-89-90-16-13-15-88-14-11-12-10-9-8-7-6-5-4-2-42-41-3-40-44-43-39-45-94-93-29-
92-27-25-21-91-0

Instance: tai75a Best: 1748.71 Time: 81.75 s

1:0-54-60-50-46-36-55-31-68-59-45-30-61-65-0
2:0-69-47-43-49-32-34-41-40-42-29-37-33-0
3:0-17-8-5-4-16-0
4:0-25-19-21-27-18-24-12-13-0
5:0-39-48-35-38-44-0
6:0-20-23-15-26-0
7:0-53-62-56-63-64-57-58-0
8:0-6-11-2-3-10-9-7-1-0
9:0-28-22-14-51-67-66-0
10:0-71-73-72-70-52-0
11:0-75-74-0

Instance: tai75b Best: 1371.90 Time: 97.39 s

1:0-43-50-48-0
2:0-2-0
3:0-51-44-37-49-54-42-39-0
4:0-71-40-23-16-19-3-0
5:0-24-28-35-31-17-34-26-18-47-46-41-0
6:0-45-32-27-29-20-25-21-22-30-33-38-52-14-0
7:0-10-12-5-75-72-15-9-4-0
8:0-69-55-56-61-58-57-60-62-68-70-36-0
9:0-53-65-64-67-66-59-63-73-0
10:0-7-13-6-11-1-8-74-0

Instance: tai75c Best: 1464.37 Time: 86.22 s

1:0-58-61-3-64-53-54-1-2-51-57-0
2:0-5-4-65-7-0
3:0-75-48-50-40-33-37-42-39-41-52-0
4:0-47-45-18-17-25-28-12-20-0
5:0-6-8-9-62-24-10-0
6:0-68-66-67-71-69-70-13-26-15-16-19-21-23-14-27-22-55-0
7:0-29-31-32-36-60-0
8:0-30-0
9:0-44-43-35-34-46-49-38-63-56-0
10:0-73-74-72-59-11-0

Instance: tai75d Best: 1419.00 Time: 83.36s

1:0-72-74-73-11-6-3-5-2-0
2:0-37-34-30-32-38-36-33-26-39-29-25-0
3:0-71-75-70-17-12-24-14-15-18-13-16-0
4:0-58-48-41-45-59-51-43-42-54-0-57-0
5:0-55-56-50-28-31-27-35-0
6:0-47-46-53-44-49-52-40-0
7:0-60-64-69-65-68-66-0
8:0-67-62-63-61-4-10-9-1-8-7-0
9:0-20-19-22-23-21-0
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Table A1. Cont.

Instance: tai100a Best: 2185.49 Time: 113.82 s

1:0-19-22-23-21-36-34-20-0
2:0-77-86-78-84-79-83-92-82-88-91-0
3:0-1-13-12-9-5-11-4-10-18-6-17-3-7-0
4:0-98-0
5:0-58-59-40-45-44-39-41-48-50-42-47-52-0
6:0-62-29-27-32-33-31-37-28-55-0
7:0-99-16-8-43-49-51-46-100-0
8:0-35-26-38-30-73-68-74-24-25-65-0
9:0-76-89-87-94-96-97-95-0
10:0-81-80-93-85-90-15-14-2-0
11:0-56-61-63-57-64-0
12:0-67-75-66-69-71-72-70-0
13:0-53-60-54-0

Instance: tai100b Best: 2057.80 Time: 111.99 s

1:0-8-1-7-9-10-3-2-11-6-4-5-0
2:0-84-86-82-83-87-85-88-51-67-66-26-0
3:0-69-60-33-31-29-40-41-34-42-68-45-30-61-0
4:0-65-50-36-46-55-43-44-57-64-54-0
5:0-53-56-58-63-77-52-62-0
6:0-81-80-79-78-70-72-73-71-0
7:0-23-15-74-75-76-25-0
8:0-94-90-96-99-95-89-92-97-0
9:0-24-100-19-21-27-0
10:0-18-93-91-98-12-0
11:0-35-39-49-48-32-37-38-47-59-0
12:0-20-13-16-17-14-22-28-0

Instance: tai100c Best: 1463.42 Time: 136.82 s

1:0-10-12-5-32-27-25-29-20-21-22-30-33-37-42-0
2:0-90-85-50-43-44-96-0
3:0-87-97-88-98-48-0
4:0-13-91-92-89-93-86-94-95-51-39-52-40-14-0
5:0-2-4-9-0
6:0-15-72-75-99-76-77-0
7:0-49-54-78-82-81-84-79-80-83-65-66-67-64-53-0
8:0-18-38-46-41-100-71-0
9:0-69-55-56-61-58-57-60-62-63-59-73-0
10:0-3-47-16-19-23-31-35-28-17-24-34-26-45-0
11:0-74-8-11-1-36-68-70-6-7-0

Instance: tai100d Best: 1704.35 Time: 123.25 s

1:0-98-95-7-0
2:0-55-10-22-27-14-23-21-25-17-28-12-20-18-52-47-61-0
3:0-57-2-1-54-53-64-3-62-9-8-6-51-0
4:0-59-97-94-75-0-60-36-50-48-0
5:0-68-66-67-71-69-88-92-90-87-26-89-19-16-15-93-91-13-70-0
6:0-24-0
7:0-96-30-29-100-80-77-0
8:0-65-56-63-39-34-46-35-43-42-37-33-40-32-31-99-0
9:0-78-76-73-74-81-72-11-0
10:0-5-4-0
11:0-79-0
12:0-58-45-41-82-86-84-49-85-83-44-38-0
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Table A1. Cont.

Instance: tai150a Best: 3560.28 Time: 367.48 s

1:0-108-112-101-107-0
2:0-19-22-29-27-32-33-31-24-37-28-0
3:0-145-141-148-143-85-90-93-80-79-84-78-86-77-81-138-0
4:0-2-13-18-10-4-11-12-5-9-16-8-43-49-51-0
5:0-91-88-83-82-92-87-89-76-0
6:0-97-96-94-95-0
7:0-113-106-104-100-102-109-105-98-99-110-0
8:0-47-42-46-48-50-41-39-44-45-40-52-59-0
9:0-136-135-119-129-117-123-118-115-114-125-120-30-38-25-0
10:0-126-121-128-124-116-0
11:0-53-137-130-131-134-132-133-26-35-0
12:0-70-73-68-74-127-122-65-0
13:0-7-15-3-6-17-14-1-111-103-0
14:0-146-150-140-139-149-142-144-147-0
15:0-23-20-34-36-21-0
16:0-62-56-61-63-55-57-64-0-60-54-0
17:0-72-71-69-66-75-67-58-0

Instance: tai150b Best: 2966.19 Time: 401.60 s

1:0-5-4-6-11-2-3-10-9-7-1-8-0
2:0-13-123-12-128-129-137-121-133-139-135-134-24-132-138-0
3:0-39-44-36-46-33-61-69-148-0
4:0-127-120-136-16-125-126-14-144-0
5:0-142-26-145-0
6:0-74-76-75-110-114-0
7:0-53-54-50-60-55-64-57-63-58-56-52-62-0
8:0-98-94-90-89-95-99-96-102-106-20-0
9:0-81-77-80-79-78-70-0
10:0-116-113-109-112-115-118-111-119-117-71-73-72-0
11:0-30-45-31-29-42-40-41-34-32-37-48-49-35-43-38-47-68-59-0
12:0-101-91-93-0
13:0-28-22-131-17-86-82-87-85-88-83-84-51-67-66-65-150-0
14:0-25-19-21-27-130-100-122-18-0
15:0-105-92-97-103-107-104-108-124-0
16:0-140-143-147-149-146-141-15-23-0

Instance: tai150c Best: 2528.04 Time: 353.91s

1:0-11-1-70-68-8-0
2:0-9-15-106-104-109-100-107-0
3:0-71-12-5-77-76-72-75-69-73-74-10-0
4:0-138-140-26-24-34-17-28-35-31-23-16-19-141-142-0
5:0-27-20-29-25-18-0
6:0-32-33-30-21-22-81-84-79-80-83-82-78-54-49-37-42-0
7:0-91-87-97-98-88-53-90-85-93-0
8:0-41-96-43-50-48-95-0-6-92-89-86-94-36-0
9:0-4-2-0
10:0-14-3-46-45-47-38-44-51-39-52-40-13-7-0
11:0-55-56-61-58-57-60-62-63-59-0
12:0-116-125-118-124-120-123-121-122-119-0
13:0-110-111-115-113-112-114-117-99-102-101-105-108-103-0
14:0-130-132-134-128-129-127-133-135-131-126-136-139-143-137-0
15:0-149-145-146-148-147-150-144-64-67-66-65-0
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Table A1. Cont.

Instance: tai150d Best: 2980.44 Time: 292.68 s

1:0-11-5-1-55-54-53-64-58-65-56-63-61-52-62-3-9-8-6-2-0
2:0-126-129-127-122-0
3:0-41-83-85-131-130-132-133-128-124-84-123-125-86-82-0
4:0-24-13-93-109-110-89-87-90-92-88-91-70-69-71-67-66-68-0
5:0-97-99-31-32-30-0-95-96-94-98-80-77-0
6:0-107-103-106-105-108-104-29-100-101-102-0
7:0-18-20-12-17-25-21-19-111-116-115-118-26-16-23-0
8:0-15-114-119-117-112-120-121-113-0
9:0-135-134-137-136-79-0
10:0-141-138-139-0-140-142-144-147-150-0
11:0-59-60-4-51-57-7-0
12:0-149-146-145-148-143-0
13:0-75-72-81-74-73-76-78-0
14:0-47-45-38-44-39-49-46-34-35-43-42-37-33-40-50-0
15:0-10-22-27-14-28-36-48-0
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