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Abstract:



The bilateral spot electricity market is very complicated because all generation units and demands must strategically bid in this market. Considering renewable resource penetration, the high variability and the non-dispatchable nature of these intermittent resources make it more difficult to model and simulate the dynamic bidding process and the equilibrium in the bilateral spot electricity market, which makes developing fast and reliable market modeling approaches a matter of urgency nowadays. In this paper, a Gradient Descent Continuous Actor-Critic algorithm is proposed for hour-ahead bilateral electricity market modeling in the presence of renewable resources because this algorithm can solve electricity market modeling problems with continuous state and action spaces without causing the “curse of dimensionality” and has low time complexity. In our simulation, the proposed approach is implemented on an IEEE 30-bus test system. The adequate performance of our proposed approach—such as reaching Nash Equilibrium results after enough iterations of training are tested and verified, and some conclusions about the relationship between increasing the renewable power output and participants’ bidding strategy, locational marginal prices, and social welfare—is also evaluated. Moreover, the comparison of our proposed approach with the fuzzy Q-learning-based electricity market approach implemented in this paper confirms the superiority of our proposed approach in terms of participants’ profits, social welfare, average locational marginal prices, etc.
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1. Introduction


In order to further enhance competitiveness, in recent years the bilateral spot electricity market (EM) has been introduced and utilized to improve restructuring in the power industry of many countries [1]. Moreover, increasingly prominent global environment and energy issues make the development of renewable energy resources highly valued by governments of many countries alongside the reform of the power industry [2,3]. Considering renewable resource penetration, these highly random, intermittent, and non-dispatchable power resources make it more difficult to develop a proper EM modeling approach, which is a necessary tool for decision-making analysis, market simulation, relevant policy design analysis, etc. [4,5,6].



In a bilateral spot EM with renewable power penetration, non-renewable power generation companies (NRGenCOs) and distribution companies (or retailers or large consumers; for the sake of convenience, we call all of them DisCOs) must bid in this stochastically fluctuating environment of renewable power generation in order to improve their own profits. The independent system operator (ISO) must clear the market, which means to decide the scheduled power result of every NRGenCO, RPGenCO (renewable power generation company), DisCO and the marginal price of every node under constraints of system balance, congestion, generating limitation, etc. in order to improve social welfare (SW). The aim of this paper is to apply the Gradient Descent Continuous Actor-Critic (GDCAC) algorithm for solving bilateral spot EM modeling problems considering renewable power penetration.



Generally speaking, EM modeling approaches can be divided into two categories: game-based models and agent-based models. In terms of game-based models, [7,8,9] have established EM models based on SFE (supply function equilibrium, [7]), multi-level parametric linear programming ( [8]), and static game model ([9], respectively) to find the Nash Equilibrium (NE) points in EM bidding. Similar studies using game-based models can also be seen in [10,11,12,13,14,15]. However, game-based EM models have the following shortcomings [2,16]: (1) the mathematical forms of some game-based EM modeling approaches are sets of nonlinear equations that are difficult to solve or have no solution; (2) there are many participants bidding in EM; some game-based EM modeling approaches result in repeatedly solving a multi-level mathematical programming model for every participant, the computational complexity of which limits the application in more realistic situations; and (3) participants or players in many game-based EM modeling approaches need common knowledge about other players’ costs or revenue functions, etc., which are hard to obtain in reality.



In order to overcome the deficiencies mentioned above and make EM modeling approaches more applicable in practice, some agent-based EM modeling approaches have been proposed. In a spot EM, the agent can be referred to market participants with adaptive learning ability (e.g., generation companies (GenCOs) in unilateral EM; GenCOs and DisCOs in bilateral EM). EM modeling approaches based on the concept of agent are called agent-based EM modeling approaches, in which the agent can adjust the bidding strategy dynamically in the interaction with the market environment according to its accumulated experience, in order to maximize profit. Common agent-based EM models are: the Q-learning-based EM model proposed in [16], the simulated annealing Q-learning-based EM model proposed in [17], the Roth–Erev reinforcement learning-based EM test bed (called MASCEM: Multi-Agent Simulator of Competitive Electricity Markets) proposed in [18], etc. Similar studies on agent-based EM modeling approaches can also be seen in [19,20,21,22,23]. It can be seen from [16,17,18,19,20,21,22,23] that: (1) most agent-based EM modeling approaches do not need to set up nonlinear equations and repeatedly solve multi-level mathematical programming model for every agent, so the computational complexity of these models is significantly lower than that of game-based EM models; (2) the agent in EM needs no common knowledge about other agents’ costs or revenue functions, etc. when adjusting bidding strategies to improve profit. However, in [16,17,18,19,20,21,22,23], both the EM environment state and agent’s action (bidding strategy) spaces are assumed as discrete, which means the agent can hardly obtain the globally optimal bidding strategy to maximize profit [24]. In the study of Lau et al. [25], a modified Roth–Erev reinforcement learning algorithm was proposed to model GenCOs’ strategic bidding behaviors in continuous state and action spaces, where the superiority of the proposed spot EM model comparing to simulated annealing Q-learning and variant Roth–Erev reinforcement learning EM models was proven, but the proposed EM model in [25] has not taken the renewable power penetration and bilateral bidding environment into consideration.



Recently, studies have taken renewable power penetration into account. Sharma et al. [26] and Vilim et al [27] point out that RPGenCOs (such as wind and solar photovoltaic) often participate in the spot EM as “price takers”, so the production level is therefore the only bidding parameter. Kang et al. [28] hold that with renewable power penetration, other dispatchable EM participants’ (e.g., NRGenCOs) strategic behaviors are significantly affected by these highly random, intermittent, and non-dispatchable power resources, which in turn changes the market clearing price and scheduled power results. Dallinger et al. [29], by combining the agent-based EM model with a stochastic model, have studied the impact of a kind of load with demand-price elasticity but no strategic bidding ability on market price in spot EM with renewable power penetration, which actually is still within the range of unilateral EM because the demands in [29] cannot be considered strategic agents. In the study of Miadreza et al. [30], a heuristic dynamic game-based EM model considering renewable power penetration is proposed to study the market power of NRGenCOs. Reeg et al. [31] studied the policy design problem to foster the integration of renewable energy sources into EM by using an agent-based approach. Haring et al. [32] proposed a multi-agent Q-learning approach to study the effects of renewable power penetration and demand side participation on spot EM. Gabriel et al. [33] modified the MASCEM test bed by considering renewable power penetration. Abrell et al. [34] used the stochastic optimization model to study the effect of the random renewable power output on Nash Equilibrium (NE) in unilateral hour-ahead EM. Zhao et al. [35] estimated the strategic behaviors of NRGenCOs in unilateral hour-ahead EM with renewable power penetration by using a stochastic optimization model. Zou et al. [36] compared different NEs obtained in a unilateral EM game under different proportions in the power structure. Similar studies considering renewable power penetration in EM modeling can also be seen in [2,37,38,39]. However, those non-agent-based EM models considering renewable power penetration mentioned above [30,34,35,36], etc. more or less have the same limits as game-based EM models. Moreover, those agent-based EM models considering renewable power penetration mentioned above [29,31,32,33,37,38,39] cannot solve the contradiction between the reality of continuous state and action spaces in EM and the “curse of dimensionality”.



Mohammal et al. [2] point out that in a spot EM with renewable penetration, when every agent (in [2], NRGenCOs are considered as agents) bids in EM in order to maximize profit, we ought to consider the predicted power output of every RPGenCO, which is a continuous random variable. Hence, in [2], the fuzzy Q-learning algorithm was applied for solving the unilateral hour-ahead EM modeling, in which the EM state space is made continuous but the action set of every NRGenCO is still assumed to be a discrete, scalar one. Moreover, it was verified in [2] that the fuzzy Q-learning approach is more applicable in EM modeling in terms of improving an agent’s obtained profit and the overall SW, etc., compared with other agent-based approaches such as Q-learning.



This paper pays attention to the problem of bilateral hour-ahead EM modeling considering renewable power penetration, and the Gradient Descent Continuous Actor-Critic (GDCAC) algorithm [40] instead of the fuzzy Q-learning approach applied in [2] is adopted in our paper. The GDCAC algorithm is a modified reinforcement learning algorithm (proposed in [40]) that can solve Markov decision-making problems with continuous state and action spaces. Hence, in this paper we propose a GDCAC-based bilateral hour-ahead EM model considering renewable power penetration, by which the impact of renewable power output on hourly equilibrium results will be examined. In addition, the comparison of our proposed model with that proposed in [2] will be implemented under the same conditions in the simulation section of this paper.



The rest of this paper is organized as follows: In Section 2 the multi-agent bilateral hour-ahead EM model considering renewable power penetration is explained. Section 3 and Section 4 describe the detailed procedures for applying the GDCAC approach for EM modeling. Section 5 evaluates and explores the performance of our proposed method and the impact of renewable power output on hourly equilibrium results, based on a case study. Section 6 concludes the paper.




2. Multi-Agent Hour-Ahead EM Modeling


In this paper, we take the bilateral hour-ahead EM into consideration. In our proposed EM, for the sake of simplicity, some assumptions and descriptions are listed as follows:

	(1)

	
Every GenCO (NRGenCO and RPGenCO) has only one generation unit;




	(2)

	
Similar to [2], the considered hour-ahead EM is a single period EM, hence each hour every NRGenCO and DisCO sends its bid curve for the next hour to the ISO. However, the proposed single-period EM modeling approach can be extended to a multi-period one such as a day-ahead EM;




	(3)

	
Each hour, every RPGenCO submits only its own predicted production with bidding price 0 ($/MW) for the next hour to ISO because of its low marginal cost and the role of “price taker” [2,33,35], and the only strategic players are NRGenCOs [2] and DisCOs. Therefore, each NRGenCO and DisCO can be considered an agent that adaptively adjusts the bidding strategy in order to maximize profit.









After receiving all agents’ supply and demand bid curves and all RPGenCOs’ predicted production submission in each hour, ISO performs the process of congestion management and sends the market clearing results, including power schedules and prices, to all market participants (NRGenCOs, RPGenCOs, and DisCOs). The pricing mechanism in the market clearing model is locational marginal price (LMP), which is popular in most developed countries.



A flowchart for describing how the considered bilateral hour-ahead EM works is shown in Figure 1:


Figure 1. Flowchart of the considered bilateral hour-ahead EM in each hour.
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For the next hour t, the supply bid curve submitted by NRGenCO i (i = 1, 2, …, Ng1) to ISO in hour t-1 can be formulated as [13]:


[image: there is no content]



(1)




where, [image: there is no content] is the power production (MW) and bidding strategy ratio of NRGenCO i for the next hour t, respectively. NRGenCO i can change its bid curve by adjusting its parameter [image: there is no content].



The marginal cost function of NRGenCO i is:


[image: there is no content]



(2)




where, [image: there is no content], [image: there is no content] represent the slope and intercept parameters, respectively.



For the next hour t, the demand bid curve submitted by DisCO j (j = 1, 2, …, Nd) to ISO in hour t-1 can be formulated as [13]:


[image: there is no content]



(3)




where, [image: there is no content] is the power demand (MW) and bidding strategy ratio of DisCO j for the next hour t, respectively. DisCO j can change its bid curve by adjusting its parameter [image: there is no content].



The marginal revenue function of DisCO j is:


[image: there is no content]



(4)




where [image: there is no content] and [image: there is no content] represent the slope and intercept parameters, respectively.



In order to generate the LMPs of all nodes as well as the corresponding supply and demand power schedules for the next hour t, ISO must solve the congestion management model as follows [41]:


MaxPgi,t,∀i,Pdj,t,∀j∑j=1Nd[kdj,t(−12cjPdj,t2+diPdj,t)]−∑i=1Ng1[kgi,t(12aiPgi,t2+biPgi,t)]



(5)






[image: there is no content]



(6)






[image: there is no content]



(7)






[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)




where Ng1 is the number of NRGenCOs, Ng2 is the number of RPGenCOs, and Nd is the number of DisCOs. Equation (5) shows that the objective of ISO is to pursue the maximization of social welfare. Equation (6) represents the power balance constraint of the whole system; Equations (7)–(9) represent the power flow constraints in each transmission line l [41]. In this paper, it is assumed that the power production of RPGenCO v (v = 1, 2, …, Ng2) for hour t, which is represented as [image: there is no content], is an exogenous stochastic parameter in our proposed congestion management model.




3. Definitions


In our proposed EM, an agent, by using GDCAC algorithm, can adaptively adjust its bidding strategy (action) during repeated interactions with other participants until it obtains its maximum profit (under any EM environment state). In order to apply the GDCAC algorithm for bilateral spot EM modeling considering renewable power penetration, we use definitions similar to those in [2], organized as follows:

	(1)

	
Iteration: since the market is assumed to be cleared on an hour-ahead basis, we consider each hour as an iteration [2]. Moreover, just like in [2], time differences between hours such as demand preference, generation ramping constraints, number of participants, etc. are neglected. The purpose of doing this is to test whether the proposed modeling approach can automatically converge to the Nash equilibrium (NE) or not under the condition of no other external interference.




	(2)

	
State variable: in iteration t, the predicted power production of each RPGenCO can be defined as one state variable of the EM environment [2]. Due to the intermittent and random nature of the renewable power production, the vth state variable, representing the predicted power production of RPGenCO v, is a random variable, and can be represent as:


[image: there is no content]



(12)




where [image: there is no content] randomly changes within a continuous interval of scalar values over time [2]:


[image: there is no content]



(13)







Hence, in iteration t, all state variables together constitute a state vector:


[image: there is no content]



(14)




where [image: there is no content] represents the continuous state space of the EM environment.




	(3)

	
Action variable: the bidding strategy of every NRGenCO and DisCO is defined as one action variable of an agent. The ith action variable, representing the bidding strategy of NRGenCO i, in iteration t is:


[image: there is no content]



(15)







The jth action variable, representing the bidding strategy of DisCO j, in iteration t is:


[image: there is no content]



(16)







All [image: there is no content]s and [image: there is no content]s can be adjusted, by the corresponding agent, within continuous intervals of scalar values over time, because an agent may not be able to achieve its maximum profit when selecting bidding strategies within a discrete action set.


[image: there is no content]



(17)






[image: there is no content]



(18)








	(4)

	
Reward: In iteration t, NRGenCO i’s (i = 1, 2, …,Ng1) reward is:


rgi,t=LMPgi,tPgi,t−(12aiPgi,t2+biPgi,t).



(19)







DisCO j’s (j = 1, 2, …, Nd ) reward in iteration t is:


rdj,t=(−12cjPdj,t2+diPdj,t)−LMPdj,tPdj,t,



(20)




where [image: there is no content]([image: there is no content]) is the LMP of the bus connecting NRGenCOi (DisCOj), and 12aiPgi,t2+biPgi,t (−12cjPdj,t2+diPdj,t) is the cost (revenue) of NRGenCO i (DisCO j) when its dispatched power production (power demand) is [image: there is no content] ([image: there is no content]).









Based on experiencing these received rewards over enough iterations, an agent in EM can gradually adjust its actions until it obtains the corresponding optimal action:


[image: there is no content]








which brings the most profit under any state ([image: there is no content]) of the EM environment. Hence, [image: there is no content], [image: there is no content] (i = 1, 2, …, Ng1; j = 1, 2, …, Nd) and LMPs are changing dynamically over iterations, which may or may not be constant under the same values of the state vector [image: there is no content] after enough iterations.




4. Applying the GDCAC Algorithm for EM Modeling Considering Renewable Power Penetration


As mentioned in Section 3, both of the state and action spaces in EM with renewable power penetration are continuous, which means it is not suitable for applying table-based reinforcement learning algorithms (TBRLAs) (e.g., SARSA, Q-learning, Roth–Erev reinforcement learning, etc.) in EM modeling. That is because TBRLA can only deal with the Markov decision-making problem with both discrete state and action spaces; otherwise, a problem called “curse of dimensionality” [2] would be caused.



In [2], a fuzzy Q-learning algorithm was proposed to model the unilateral hour-ahead EM considering renewable power penetration. Although the approach proposed in [2] can effectively make the EM state space continuous, the action space of every NRGenCO is still assumed to be a discrete scalar set. Therefore, in this paper, a modified reinforcement learning algorithm called a GDCAC algorithm [40] is applied for bilateral hour-ahead EM modeling considering renewable power penetration.



4.1. Introduction of Gradient Descent Continuous Actor-Critic Algorithm


The GDCAC algorithm is a modified policy search actor-critic-based reinforcement learning method that can rapidly solve Markov decision-making problems with continuous state and action spaces. Based on the actor-critic structure [40], state and action spaces can be made continuous by using a linear combination of many basis functions. The detailed mathematical principle of GDCAC algorithm can be described as follows:



By using a linear function [40], we estimate and repeatedly update in an agent’s critic part a value function defined by the continuous state space[image: there is no content]:


[image: there is no content]



(21)




where [image: there is no content] represents the hth basis function of state [image: there is no content]. Then, the fixed basis function vector of state [image: there is no content] can be described as: [image: there is no content]. The linear parameter vector [image: there is no content] can be described as: [image: there is no content].



By using a linear function [40], we estimate and repeatedly update in an agent’s actor part an optimal policy function [image: there is no content] defined by the continuous state space [image: there is no content]:


ux(optimal)=A^(x)=ϕ(x)Tω x∈X,



(22)




where [image: there is no content] represents the continuous action space of an agent, ux(optimal)∈U represents the optimal action in face of state [image: there is no content]. The linear parameter vector [image: there is no content] can be described as:


[image: there is no content]











An agent must generate a corresponding action [image: there is no content] in the face of any state [image: there is no content] based on the policy maintained and repeatedly updated by its actor part. During the reinforcement learning process, in order to balance the exploration and exploitation [2,16,18,20,21,25,40], the policy must be established as an action-generating model that has the ability to explore. That is to say, the probabilities of selecting sub-optimal actions in the face of any state [image: there is no content] are non-zero. This paper employs a Gaussian distribution function as the policy corresponding to the actor part:


[image: there is no content]



(23)




where [image: there is no content] > 0 is a standard deviation parameter that represents the exploring ability of the algorithm.



In order to determine the linear parameter vector [image: there is no content], the Mean-Squared Error (MSE) function of [image: there is no content] is defined as [40]:


[image: there is no content]



(24)




where [image: there is no content] is the probability density function of the state under policy [image: there is no content]. Hence, the global optimal value of [image: there is no content] defined as [image: there is no content] must satisfy [40]:


[image: there is no content]



(25)







Because there is no a priori knowledge about [image: there is no content], minimizing [image: there is no content] directly is impossible. However, we can calculate the approximate formation of the gradient of [image: there is no content] as follows:


[image: there is no content]



(26)







Since there is no a priori knowledge of [image: there is no content], we use the TD(0) error to approximately replace [image: there is no content] [40].



At iteration t, the agent implements action ut in interacting with environment xt and receives the immediate reward rt, then the state of the environment shifts to xt+1. The TD(0) error at iteration t can be defined as:


[image: there is no content]



(27)




where [image: there is no content] is a discount factor, [image: there is no content] is the estimated value of the linear parameter vector [image: there is no content] at iteration t. Based on the gradient descent method, the updated formula of parameter vector [image: there is no content] is:


[image: there is no content]



(28)




where [image: there is no content] is the step length parameter that satisfies the mathematical conditions as follows:


[image: there is no content]



(29)







Similar to the updating method of value function parameter [image: there is no content], the MSE function of [image: there is no content] is defined as [40]:


[image: there is no content]



(30)




where [image: there is no content] is the sigmoid function of [image: there is no content], which means the TD(0) error of selecting action u in the face of state x. Its formulation is as follows:


[image: there is no content]



(31)







We can calculate the approximate formation of the gradient of [image: there is no content] as follows:


[image: there is no content]



(32)







In iteration t, using [image: there is no content] to replace [image: there is no content] [40], and based on the gradient descent method, the updated formula for parameter vector [image: there is no content] is:


[image: there is no content]



(33)




where [image: there is no content] is the step length parameter that satisfies the mathematical conditions as follows:


[image: there is no content]



(34)








4.2. The Proposed GDCAC-Based EM Procedure Considering Renewable Power Penetration


According to the mathematical principle of GDCAC algorithm introduced in Section 4.1, the step-by-step procedure of implementing the GDCAC algorithm for bilateral hour-ahead EM modeling considering renewable power penetration is described as follows:



	(1)

	
Input: for NRGenCOi ([image: there is no content]) [image: there is no content]: [image: there is no content], step length parameter series {αt(g)}t=1∞ and {βt(g)}t=1∞; for DisCOj ([image: there is no content]) [image: there is no content]: [image: there is no content], step length parameter series {αt(d)}t=1∞ and {βt(d)}t=1∞; and parameters [image: there is no content] for every NRGenCO and DisCO.




	(2)

	
T = 1.




	(3)

	
Initialize the linear parameter vectors θ1(gi) and ω1(gi) for NRGenCOi ([image: there is no content]), linear parameter vectors θ0(dj) and ω0(dj) for DisCOj ([image: there is no content]).




	(4)

	
Random state generation: in iteration t, a random point, [image: there is no content], is generated in the continuous state space [image: there is no content], which represents the continuous state space of power productions by all RPGenCOs.




	(5)

	
In iteration t, NRGenCOi ([image: there is no content]) chooses and implements an action ugi,t~N(ϕg(xt)Tωt(gi),σ2) ([image: there is no content]) from state xt, DisCOj ([image: there is no content]) chooses and implements an action udj,t~N(ϕd(xt)Tωt(dj),σ2) ([image: there is no content]) from state xt, and then ISO implements the congestion management model considering renewable power penetration represented by Equations (5)–(11).




	(6)

	
NRGenCOi ([image: there is no content]) observes the immediate reword rgi,t using Equation (19) and DisCOj ([image: there is no content]) observes the immediate reward rdj,t using Equation (20).




	(7)

	
Discount factor setting: because [image: there is no content] is a stochastic variable independent from [image: there is no content] ([image: there is no content]) and [image: there is no content] ([image: there is no content]), every NRGenCO and DisCO has no idea what the true value of [image: there is no content] while in iteration t. Therefore, similar to [2], we assume that the discount factor [image: there is no content] for every NRGenCO and DisCO in iteration t equals 0.




	(8)

	
Learning: in this step, θt(gi) and ωt(gi) for NRGenCOi ([image: there is no content]) as well as θ0(dj) and ω0(dj) for DisCOj ([image: there is no content]) are updated using TD(0) error and the gradient descent method:



NRGenCOi:


δgi,t=rgi,t+γtϕg(xt+1)Tθt(gi)−ϕg(xt)Tθt(gi)



(35)






θt+1(gi)=θt(gi)+αt(g)δgi,tϕg(xt)



(36)






ωt+1(gi)=ωt(gi)+βt(g)11+e−mδgi,t(ugi,t−ϕg(xt)Tωt(gi))ϕg(xt).



(37)







DisCO j:


δdj,t=rdj,t+γtϕd(xt+1)Tθt(dj)−ϕd(xt)Tθt(dj)



(38)






θt+1(dj)=θt(dj)+αt(d)δdj,tϕd(xt)



(39)






ωt+1(dj)=ωt(dj)+βt(d)11+e−mδdj,t(udj,t−ϕd(xt)Tωt(dj))ϕd(xt).



(40)








	(9)

	
T = t + 1.




	(10)

	
If [image: there is no content], return to (4). T is the terminal number of iterations.




	(11)

	
Output: for NRGenCO i: θgi*=θT+1(gi),ωgi*=ωT+1(gi) and Vgi*(x), Agi*(x); for GenCO i: θdj*=θT+1(dj),ωdj*=ωT+1(dj) and Vdj*(x), Adj*(x).







According to [40], we choose Gaussian radial basis function as [image: there is no content] and [image: there is no content].





5. Discussion of Simulations and Results


5.1. Data and Assumptions


In this Section, by using Matlab R2014a software, our proposed approach is implemented on IEEE 30-bus test system [2, 6] with six NRGenCOs and 20 DisCOs. There are two additional wind farms connected to buses 7 and 10 [2], and the output power of the wind farms connected to bus 7 and 10 lies within the range of [0, 20] MW and [0, 30] MW, respectively. Figure 2 shows the schematic structure of the test system. Parameters of NRGenCOs’ and DisCOs’ bid functions are shown in Table 1 [6] and Table 2 [2], respectively.


Figure 2. Diagram of the test system. Note: For the sake of simplicity, here it is assumed that the maximum congestion constraint in all transmission lines is 25 MW.
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Table 1. Parameters of NRGenCOs’ bid functions.







	
Bus

	
NRGenCO

	
ai (103 $/MW2h)

	
bi (103 $/MWh)

	
Pgi,min (MW)

	
Pgi,max (MW)






	
1

	
NRGenCO1

	
0.2

	
20

	
0

	
80




	
2

	
NRGenCO2

	
0.175

	
17.5

	
0

	
80




	
13

	
NRGenCO3

	
0.625

	
10

	
0

	
50




	
22

	
NRGenCO4

	
0.0834

	
32.5

	
0

	
55




	
23

	
NRGenCO5

	
0.25

	
30

	
0

	
30




	
27

	
NRGenCO6

	
0.25

	
30

	
0

	
30










Table 2. Parameters of DisCOs’ bid functions.







	
Bus

	
DisCO

	
cj (103 $ /MW2h)

	
dj (103 $ /MWh)

	
Pdj,min (MW)

	
Pdj,max (MW)






	
2

	
DisCO1

	
−0.5

	
50

	
16.7

	
26.7




	
3

	
DisCO2

	
−0.5

	
45

	
0

	
7.4




	
4

	
DisCO3

	
−0.5

	
48

	
2.6

	
12.6




	
7

	
DisCO4

	
−0.5

	
55

	
17.8

	
27.8




	
8

	
DisCO5

	
−0.5

	
45*

	
25

	
35




	
10

	
DisCO6

	
−0.5

	
45

	
0.8

	
10.8




	
12

	
DisCO7

	
−0.5

	
60

	
6.2

	
16.2




	
14

	
DisCO8

	
−0.5

	
50

	
1.2

	
11.2




	
15

	
DisCO9

	
−0.5

	
52

	
3.2

	
13.2




	
16

	
DisCO10

	
−0.5

	
40

	
0

	
8.5




	
17

	
DisCO11

	
−0.5

	
53

	
4

	
14




	
18

	
DisCO12

	
−0.5

	
45

	
0

	
8.2




	
19

	
DisCO13

	
−0.5

	
44

	
4.5

	
14.5




	
20

	
DisCO14

	
−0.5

	
60

	
0

	
7.2




	
21

	
DisCO15

	
−0.5

	
45

	
12.5

	
22.5




	
23

	
DisCO16

	
−0.5

	
45*

	
0

	
8.2




	
24

	
DisCO17

	
−0.5

	
42

	
3.7

	
13.7




	
26

	
DisCO18

	
−0.5

	
57

	
0

	
8.5




	
29

	
DisCO19

	
−0.5

	
44

	
0

	
7.4




	
30

	
DisCO20

	
−0.5

	
50

	
5.6

	
15.6








Note: In the 4th column, parameter labeled by “*” are slightly adjusted from [2] in order to ensure that all DisCOs do not lose in competition because of their obvious differencein revenue parameters from other DisCOs. 








In order to verify the superiority of our proposed method, the GDCAC-based method and the fuzzy Q-learning-based method [2] are implemented on this test system. There are three scenarios set in this paper for simulation and comparison.



In Scenario 1, every NRGenCO and DisCO searches for its optimal bidding strategy by using the GDCAC algorithm. In Scenario 2, NRGenCO1 searches for its optimal bidding strategy by using the fuzzy Q-learning algorithm, and other NRGenCOs and DisCOs using the GDCAC algorithm. In Scenario 3, every NRGenCO and DisCO searches for its optimal bidding strategy by using the fuzzy Q-learning algorithm.



In our simulation, the output powers of the two wind farms together constitute the 2-dimensional state vector. Each fuzzy Q-learning-based agent (whose step-by-step learning procedure and method for fuzzy set definition can be found in [2]) defines three triangular fuzzy sets for the state variable 1, and 4 triangular fuzzy sets for state variable 2, as shown in Figure 3 and Figure 4. Table 3 presents the state and action sets of every NRGenCO and DisCO while taking Scenarios 1, 2, and 3 into consideration. The related parameters of the GDCAC algorithm and fuzzy Q-learning algorithm [2], which use the [image: there is no content] method to balance exploration and exploitation, are also listed in Table 3.


Figure 3. Fuzzy sets for state variable 1 in fuzzy Q-learning-based EM model.



[image: Algorithms 10 00053 g003]





Figure 4. Fuzzy sets for state variable 2 in the fuzzy Q-learning-based EM model.



[image: Algorithms 10 00053 g004]






Table 3. Related information about the three scenarios.







	
Scenarios

	
Participants

	
EM State Set (MW)

	
Action Set

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
m






	
Scenario 1

	
All NRGenCOs

	
[0, 20] and [0, 30]

	
[1, 3]

	
-

	
0.5

	
0.1

	
0.1

	
4

	
6

	
1




	
All DisCOs

	
(0, 1]

	
-

	
0.5

	
0.1

	
0.1

	
4

	
6

	
1




	
Scenario 2

	
NRGen1

	
[0, 20] and [0, 30]

	
{Ug1, Ug2, …, Ug100}

	
0.1

	
0.5

	

	

	

	

	




	
Other NRGenCOs

	
[1, 3]

	
-

	
0.5

	
0.1

	
0.1

	
4

	
6

	
1




	
All DisCOs

	
(0, 1]

	
-

	
0.5

	
0.1

	
0.1

	
4

	
6

	
1




	
Scenario 3

	
All NRGenCOs

	
[0, 20] and [0, 30]

	
{Ug1, Ug2, …, Ug100}

	
0.1

	
0.5

	
-

	
-

	
-

	
-

	
-




	
All DisCOs

	
{Ud1, Ud2, …, Ud100}

	
0.1

	
0.5

	
-

	
-

	
-

	
-

	
-








Note: Ug1 represents the median of interval [1, 1.02), Ug2 represents the median of interval [1.02, 1.04), Ug100 represents the median of interval [2.98, 3]; Ud1 represents the median of interval (0, 0.01), Ud2 represents the median of interval [0.01, 0.02), Ud100 represents the median of interval [0.99, 1]. Other parameters of fuzzy Q-learning algorithm can be found in [2].








In the Gauss radial basis function, we set the central point parameter matrix corresponding to state variable 1 and 2, which is expressed as follows:


[image: there is no content]



(41)








5.2. Implementing a GDCAC-Based Approach on the Test System


In this section, the feasibility of the GDCAC-based EM approach is studied by using Scenario 1, as proposed in Section 5.1. In our simulation in Scenario 1, 20,000 iterations are set for every NRGenCO and DisCO to bid in EM. Among the 20,000 iterations, the first 15,000 iterations (training iterations) are used to train every NRGenCO and DisCO to perceive the ability of distinguishing optimal bidding strategies under the exploration and exploitation policy; the last 5000 iterations (decision-making iterations) are used to help every NRGenCO and DisCO with decision-making under the greedy policy.



After 20,000 iterations of the bidding process, a Nash index is adopted in this paper to test whether the obtained bidding strategies of all NRGenCOs and DisCOs under any EM state reach Nash Equilibrium (NE) or not. Similar to the NE testing method in [2], the Nash index is equal to 1 when the NE under an EM state is reached and otherwise is equal to 0.



Because the EM state space is continuous, we cannot display the process of reaching NE under every given EM state in this paper. Figure 5 demonstrates the Nash indices obtained after each iteration in a case in which the state variables 1 and 2 are equal to 20 and 30 MW, respectively. From Figure 5, it can be seen that occurrences of NE during the first 15,000 iterations are very sparse, and the EM can reach NE during the last 5000 iterations. The reasons for this phenomenon are: (1) every NRGenCO and DisCO has not yet accumulated enough experience to make the optimal bidding decision during the first 15,000 iterations; (2) the exploration and exploitation policy may make every NRGenCO and DisCO choose sub-optimal bids during the first 15,000 iterations; (3) 15,000 iterations of the training process are enough for every NRGenCO and DisCO to perceive the ability of distinguishing optimal bidding strategies and to make the optimal bidding decision under greedy policy during the last 5000 iterations.


Figure 5. Nash index during the learning iterations of the proposed GDCAC method when the state vector is (20, 30) MW.



[image: Algorithms 10 00053 g005]






When we make state variable 1 and 2 change randomly within interval [0, 20] MW and [0, 30] MW, respectively, in each iteration, the Nash indices obtained after 20000 iterations in 10 state samples are listed in Table 4.



Table 4. Nash indices in 10 random state samples after 20,000 iterations.







	
State Sample

	
(12, 24)

	
(18, 27)

	
(10, 30)

	
(11, 22)

	
(6, 24)






	
Nash index

	
1

	
1

	
1

	
1

	
1




	
State sample

	
(4, 11)

	
(8, 23)

	
(19, 27)

	
(18, 16)

	
(20, 20)




	
Nash index

	
1

	
1

	
1

	
1

	
1










From Table 4 it can be verified, to a certain extent, that the generalization ability of our proposed GDCAC-based EM approach can make the obtained strategies of all participants in face of any state point within the continuous space [image: there is no content] reach NE based on those finite and discrete sample state points occurred during the 20,000 iterations.



Figure 6 shows NRGenCO 2’s bidding strategy (kg2) in the face of any state point within [image: there is no content] after 20,000 iterations.


Figure 6. Bidding strategy of NRGenCO2 corresponding to the state space after 15,000 training and 5000 decision-making iterations (considering transmission line congestion constraint).



[image: Algorithms 10 00053 g006]






From Figure 6, we can see that after 20,000 iterations, no matter the increase in the power output level of any one of the two wind farms, the value of NRGenCO2’s bidding strategy will increase accordingly. That is because increasing the power output levels of the two wind farms could cause congestion in the transmission lines connecting bus 1 to 2 and connecting bus 12 to 13, which limits the increase in NRGenCO2’s dispatched power output. Gradually, NRGenCO2, through repeatedly interacting with the EM environment over 20,000 iterations, learns that by increasing the value of its bidding strategy so as to maintain or increase the LMP level in bus 2, it could make comparatively more profit. Therefore, taking transmission congestion into account, some NRGenCOs’ market powers could be enhanced while increasing the wind power output.



Figure 7 shows the NRGenCO2’s bidding strategy (kg2) corresponding to the state space after 20,000 iterations in the case of ignoring all transmission lines’ congestions in this test system. From Figure 7, we see that after 20,000 iterations, no matter the increase in the power output level of any one of the two wind farms, the value of NRGenCO2’s bidding strategy will decrease accordingly. In fact, other NRGenCOs’ bidding strategies are also subject to a similarly changing law. Therefore, if we ignore the transmission congestion in the test system, NRGenCOs’ market powers would be weakened while increasing the wind power output.


Figure 7. Bidding strategy of NRGenCO2 corresponding to the state space after 15,000 training and 5000 decision-making iterations (ignoring transmission line congestion constraint).



[image: Algorithms 10 00053 g007]






Figure 8 shows the average LMP of 30 buses (AVLMP) corresponding to the state space after 20,000 iterations.


Figure 8. AVLMP corresponding to the state space after 15,000 training and 5000 decision-making iterations.



[image: Algorithms 10 00053 g008]






Figure 8 reveals that, although the market power of some NRGenCOs could be enhanced if the transmission capacities in some transmission lines were insufficient, the obtained AVLMP after 20,000 iterations decreases while increasing the wind power output level. We think there may be two main reasons for the phenomenon in Figure 8 that need to be further verified: (1) the marginal cost of the wind farm is significantly lower than that of all NRGenCOs (so we assume it is zero), which in turn pulls down the overall LMP level; (2) the increase in wind power output can reduce most agents’ market power and increase the degree of competition in the whole EM.



Figure 9 demonstrates the social welfare (SW) corresponding to the state space after 20,000 iterations. It is concluded from Figure 9 that increasing the wind power output level can not only pull down the overall LMP level, but also increase the overall SW.


Figure 9. Social welfare in state space after 15,000 training and 5000 decision-making iterations.



[image: Algorithms 10 00053 g009]






The computational formula of SW is as follows:


SW=∑j=1Nj(−12cjPdj,t2+diPdj,t)−∑i=1Ni(12aiPgi,t2+biPgi,t).



(42)








5.3. Comparative Study


From the perspective of economics, an effective EM modeling approach has two functions: to provide a bidding decision-making tool for every EM participant so as to increase its own profit in EM competition; and to enhance the economic efficiency of the whole market, e.g., by improving SW and reducing AVLMP. If we compare our proposed GDCAC-based EM approach with other approaches, the superiority of our proposed approach can be verified in two ways. When approaches adopted by other participants for bidding decision-making are fixed, a specific participant can get more profit with our proposed approach in market competition than with other approaches. In addition, with the increase in the number of participants applying our proposed approach as their bidding decision-making tool, SW in the market increases and AVLMP in the market decreases.



In [2], considering wind power penetration, it was verified that the fuzzy Q-learning-based hour-ahead EM modeling approach is superior to other approaches such as Q-learning, etc. in terms of improving SW and reducing AVLMP, etc.



In this section, a comparison between our proposed approach and the fuzzy Q-learning approach is carried out by implementing simulations on Scenarios 1, 2, and 3, respectively. The obtained simulation results of three scenarios after 20,000 iterations are studied and compared, which mainly contain all agents’ final profits, SWs and AVLMPs in those three scenarios (the ability to reach NE after enough iterations by applying the fuzzy Q-learning algorithm in EM modeling has been verified by [2]). In simulations on Scenarios 1, 2, and 3, we also make state variable 1 and 2 change randomly within interval [0 20] MW and [0 30] MW, respectively, in each iteration. Table 5, Table 6 and Table 7 demonstrate the obtained profit of every agent and the SW results of the three scenarios after 20,000 iterations in sample state (20, 30) MW, (10, 15) MW, and (4, 6) MW, respectively. The average AVLMP and SW of [image: there is no content] sample states in three scenarios after 20,000 iterations are demonstrated in Table 8, in which [image: there is no content] sample states constitute a discrete set as follows:


[image: there is no content]



(43)




where [image: there is no content] (MW), [image: there is no content] (MW).



Table 5. Profit of every agent and SW results of three scenarios in sample state (20, 30) MW.







	
Agent

	
Scenario 1

	
Scenario 2

	
Scenario 3




	
Profit ($/h)

	
Social Welfare ($/h)

	
Profit ($/h)

	
Social Welfare ($/h)

	
Profit ($/h)

	
Social Welfare ($/h)






	
NRGenCO1

	
369.5193

	
6177.1

	
296.7915

	
6108.2

	
361.2393

	
6063.4




	
NRGenCO2

	
841.6313

	

	
868.3494

	

	
920.5097

	




	
NRGenCO3

	
626.2233

	

	
461.6129

	

	
486.9912

	




	
NRGenCO4

	
73.2015

	

	
84.9919

	

	
112.3744

	




	
NRGenCO5

	
69.5934

	

	
76.1924

	

	
90.1917

	




	
NRGenCO6

	
71.6746

	

	
78.3050

	

	
96.3077

	




	
DisCO1

	
163.9633

	

	
159.4513

	

	
142.4986

	




	
DisCO2

	
52.8594

	

	
50.8601

	

	
43.3481

	




	
DisCO3

	
111.4239

	

	
108.0196

	

	
95.2289

	




	
DisCO4

	
334.7999

	

	
326.6585

	

	
264.0521

	




	
DisCO5

	
68.5791

	

	
61.8246

	

	
36.4463

	




	
DisCO6

	
67.9662

	

	
65.0482

	

	
52.5140

	




	
DisCO7

	
323.0792

	

	
318.7023

	

	
302.2572

	




	
DisCO8

	
125.3634

	

	
122.3374

	

	
110.9679

	




	
DisCO9

	
167.5498

	

	
163.9834

	

	
150.5836

	




	
DisCO10

	
58.3794

	

	
56.0829

	

	
44.1827

	




	
DisCO11

	
188.9043

	

	
185.1218

	

	
170.9099

	




	
DisCO12

	
56.9339

	

	
54.7185

	

	
46.3944

	




	
DisCO13

	
63.3384

	

	
59.2258

	

	
39.8145

	




	
DisCO14

	
159.7908

	

	
157.8455

	

	
150.5365

	




	
DisCO15

	
73.3520

	

	
69.9748

	

	
57.2856

	




	
DisCO16

	
97.9339

	

	
95.7185

	

	
87.3944

	




	
DisCO17

	
18.7522

	

	
17.7525

	

	
13.9965

	




	
DisCO18

	
160.3794

	

	
158.0829

	

	
149.4542

	




	
DisCO19

	
45.4594

	

	
43.4601

	

	
35.9481

	




	
DisCO20

	
157.4533

	

	
153.2385

	

	
137.4025

	










Table 6. Profit of every agent and SW results of three scenarios in sample state (10, 15) MW.







	
Agent

	
Scenario 1

	
Scenario 2

	
Scenario 3




	
Profit

	
Social Welfare

	
Profit

	
Social Welfare

	
Profit

	
Social Welfare






	
NRGenCO1

	
484.2735

	
5172.2

	
408.0777

	
5123.6

	
465.3822

	
5102.5




	
NRGenCO2

	
771.1077

	

	
895.7815

	

	
927.0036

	




	
NRGenCO3

	
716.2319

	

	
494.1197

	

	
520.4793

	




	
NRGenCO4

	
118.5687

	

	
139.4572

	

	
188.8447

	




	
NRGenCO5

	
87.5541

	

	
114.0872

	

	
138.0355

	




	
NRGenCO6

	
77.6412

	

	
104.6911

	

	
117.8824

	




	
DisCO1

	
156.9877

	

	
137.7368

	

	
120.1286

	




	
DisCO2

	
49.7564

	

	
41.2381

	

	
33.4356

	




	
DisCO3

	
106.1371

	

	
91.6362

	

	
78.3510

	




	
DisCO4

	
251.4634

	

	
230.9143

	

	
212.1463

	




	
DisCO5

	
58.1042

	

	
29.3178

	

	
12.9582

	




	
DisCO6

	
64.6293

	

	
51.0053

	

	
35.1755

	




	
DisCO7

	
315.8062

	

	
297.6379

	

	
280.5569

	




	
DisCO8

	
120.0745

	

	
107.7744

	

	
95.9653

	




	
DisCO9

	
161.0768

	

	
146.8198

	

	
132.9019

	




	
DisCO10

	
55.0596

	

	
45.0306

	

	
34.4523

	




	
DisCO11

	
184.2311

	

	
166.9180

	

	
152.1566

	




	
DisCO12

	
53.4331

	

	
44.0562

	

	
35.4103

	




	
DisCO13

	
29.1544

	

	
23.8397

	

	
19.0950

	




	
DisCO14

	
157.1292

	

	
148.4835

	

	
140.8920

	




	
DisCO15

	
74.9662

	

	
53.7214

	

	
40.5416

	




	
DisCO16

	
92.7551

	

	
85.0562

	

	
76.4103

	




	
DisCO17

	
15.7171

	

	
12.9415

	

	
10.0403

	




	
DisCO18

	
154.5603

	

	
147.0306

	

	
138.0683

	




	
DisCO19

	
41.0299

	

	
33.8381

	

	
24.8451

	




	
DisCO20

	
148.1155

	

	
132.9543

	

	
116.5059

	










Table 7. Profit of every agent and SW results of three scenarios in sample state (4, 6) MW.







	
Agent

	
Scenario 1

	
Scenario 2

	
Scenario 3




	
Profit

	
Social Welfare

	
Profit

	
Social Welfare

	
Profit

	
Social Welfare






	
NRGenCO1

	
326.8942

	
4639.1

	
304.4191

	
4610.7

	
388.4828

	
4562.7




	
NRGenCO2

	
743.4178

	

	
888.2880

	

	
1005.7694

	




	
NRGenCO3

	
810.7907

	

	
517.9187

	

	
523.6115

	




	
NRGenCO4

	
286.2695

	

	
188.4972

	

	
199.8730

	




	
NRGenCO5

	
137.7734

	

	
135.8852

	

	
120.2483

	




	
NRGenCO6

	
146.1923

	

	
147.0384

	

	
125.5433

	




	
DisCO1

	
195.2403

	

	
166.0144

	

	
135.6917

	




	
DisCO2

	
48.5420

	

	
39.9934

	

	
26.2108

	




	
DisCO3

	
99.2394

	

	
83.8855

	

	
78.4685

	




	
DisCO4

	
237.9733

	

	
216.6610

	

	
210.9919

	




	
DisCO5

	
18.9294

	

	
14.9156

	

	
7.1436

	




	
DisCO6

	
43.5275

	

	
30.8638

	

	
28.4429

	




	
DisCO7

	
297.9858

	

	
282.2162

	

	
278.5272

	




	
DisCO8

	
105.9517

	

	
96.6536

	

	
94.3787

	




	
DisCO9

	
142.7742

	

	
133.2911

	

	
130.8633

	




	
DisCO10

	
43.4.56

	

	
33.1210

	

	
26.7329

	




	
DisCO11

	
172.4945

	

	
150.3188

	

	
149.0950

	




	
DisCO12

	
43.7976

	

	
35.0465

	

	
30.7810

	




	
DisCO13

	
24.4293

	

	
18.6988

	

	
18.1886

	




	
DisCO14

	
150.0430

	

	
140.0926

	

	
139.3757

	




	
DisCO15

	
91.3468

	

	
38.3446

	

	
37.5857

	




	
DisCO16

	
75.1005

	

	
76.0202

	

	
74.8914

	




	
DisCO17

	
12.9606

	

	
8.4832

	

	
8.2026

	




	
DisCO18

	
132.1807

	

	
136.0861

	

	
138.8632

	




	
DisCO19

	
24.1012

	

	
23.9223

	

	
19.9277

	




	
DisCO20

	
112.4279

	

	
112.0508

	

	
108.8084

	










Table 8. Average AVLMP and SW results of [image: there is no content] sample states in the three scenarios.







	
Scenarios

	
Scenario 1

	
Scenario 2

	
Scenario 3






	
Average AVLMP

	
37.0352

	
37.4531

	
38.2237




	
Average SW

	
5329.5

	
5280.8

	
5242.9










From Table 5, Table 6 and Table 7, it can be seen that:

	(1)

	
No matter which of the three sample states, in Table 5, NRGenCO1’s final profit in Scenario 1 is 369.5193 ($/h), which is more than that in Scenario 2 (296.7915 ($/h)). In Table 6, NRGenCO1’s final profit in Scenario 1 is 484.2735 ($/h), which is more than that in Scenario 2 (408.0777 ($/h)). In Table 7, NRGenCO1’s final profit in Scenario 1 is 326.8942 ($/h), which is more than that in Scenario 2 (304.4191 ($/h)). Moreover, although we cannot compare NRGenCO1’s final profits in Scenarios 1 and 2 under every state point due to the continuous state space, the phenomenon that NRGenCO1’s final profit in Scenario 1 is more than its final profit in Scenario 2 can actually be found under every state point of the [image: there is no content] sample states in [image: there is no content]. As mentioned in Section 5.1, there is only one difference between Scenarios 1 and 2, which is that NRGenCO1 in Scenario 1 is a GDCAC-based agent that makes its bidding decisions based on our proposed GDCAC approach, while NRGenCO1 in Scenario 2 is a fuzzy Q-learning-based agent that makes its bidding decisions based on the fuzzy Q-learning approach. Therefore, it can, to some extent, be verified that a specific participant can get more profit with our proposed GDCAC approach in market competition than with the fuzzy Q-learning one proposed in [2].




	(2)

	
No matter which of the three sample states, in Table 5, the order of final SWs in the three scenarios from high to low is Scenario 1 (6177.1 ($/h)), Scenario 2 (6108.2 ($/h)), and Scenario 3 (6063.4 ($/h)). In Table 6, the order of final SWs in the three scenarios from high to low is: Scenario 1 (5172.2 ($/h)), Scenario 2 (5123.6 ($/h)), and Scenario 3 (5102.5 ($/h)). In Table 7, the order of the final SWs in the three scenarios from high to low is: Scenario 1 (4639.1 ($/h)), Scenario 2 (4610.7 ($/h)), and Scenario 3 (4562.7 ($/h)). Moreover, although we cannot compare final SWs in Scenarios 1, 2 and 3 for every state point due to the continuous state space, the phenomenon that the order of the final SWs in the three scenarios from high to low are Scenario 1, Scenario 2, and Scenario 3 can actually be found under every state point of the [image: there is no content] sample states in [image: there is no content]. As mentioned in Section 5.1, every participant in Scenario 3 is a fuzzy Q-learning-based agent; NRGenCO1 in Scenario 2 is a fuzzy Q-learning-based agent while all the other participants in Scenario 2 are our proposed GDCAC-based ones, and every participant in Scenario 1 is our proposed GDCAC-based agent. Therefore, it can, to some extent, be verified that with the increase in the number of participants applying our proposed approach as their bidding decision-making tool, SW in the market increases.









From Table 8, it can be seen that:

	(1)

	
The order of final average AVLMPs of [image: there is no content] sample states in the three scenarios, from low to high, is: Scenario 1 (37.0352 ($/MWh)), Scenario 2 (37.4531 ($/MWh)), and Scenario 3 (38.2237 ($/MWh)), which, to some extent, verifies the renewable power penetration in EM. The final average AVLMP of the [image: there is no content] sample states will be lowered by increasing the number of GDCAC-based agents.




	(2)

	
The order of final average SWs of [image: there is no content] sample states in the three scenarios from high to low is: Scenario 1 (5329.5 ($/h)), Scenario 2 (5280.8 ($/h)), and Scenario 3 (5242.9 ($/h)), which, to some extent, verifies the renewable power penetration in EM. The final average SW of [image: there is no content] sample states will be increased by increasing the number of GDCAC-based agents.




	(3)

	
Increasing SW as well as lowering clearing prices (represented by average AVLMPs) stands for the economic efficiency improvement in the whole market, which is proven, to some extent and through this comparative study, to be attributable to our proposed GDCAC approach.









Therefore, from the abovementioned analysis of Table 5, Table 6, Table 7 and Table 8, it is concluded that in bilateral hour-ahead EM with renewable power penetration, our proposed GDCAC approach is superior to the fuzzy Q-learning one from the perspective of economics. That is mainly because: (1) although both state spaces in the two EM modeling approaches are continuous, the action set of every agent in fuzzy Q-learning approach must be discrete, which is not the same as all continuous action spaces in the GDCAC approach; and (2) the phenomenon of discrete action sets makes it harder for an agent to obtain globally optimal actions.



Moreover, although it was verified in [2] that the fuzzy Q-learning approach is superior to the Q-learning one in EM modeling considering renewable power penetration, Table 9 still lists some simulation results obtained - from the GDCAC, fuzzy Q-learning, and Q-learning approaches after 20,000 iterations, respectively. In Table 9, simulation with the GDCAC approach is equivalent to simulation with Scenario 1, simulation with the fuzzy Q-learning approach is equivalent to simulation with Scenario 3, and simulation with Q-learning approach assumes every strategic participant in EM is the Q-learning-based agent with the same discrete action sets and relevant parameters as the fuzzy Q-learning approach (listed in Table 3) and with the same discrete state set as [image: there is no content] for the purpose of comparison.



Table 9. The simulation results of the three approaches.







	
Scenarios

	
GDCAC Approach

	
Fuzzy Q-Learning Approach

	
Q-Learning Approach






	
Average AVLMP

	
37.0352

	
38.2237

	
42.8395




	
Average SW

	
5329.5

	
5242.9

	
4617.1




	
Computational time

	
3.21 m

	
3.16 m

	
3.12 m










From Table 9, it can be seen that, from the perspective of economics, our proposed GDCAC approach is the most promising approach for EM modeling considering the renewable power penetration among the three approaches. The reason for low performance when applying Q-learning approach is due to both the discrete action and state sets within it. In addition, simulation with the Q-learning approach takes only about 3.1 min to reach a final result, which is the lowest among the three approaches. However, the time complexity of our proposed GDCAC approach (about 3.2 min) is also acceptable for hour-ahead EM modeling so that we can extend it to the modeling and simulation of more realistic and complex EM systems.





6. Conclusions


Bilateral spot EM is a more complicated type of EM in many countries in the world, where every player (GenCO and DisCO) chooses its bidding strategy within a continuous interval of values simultaneously in order to make more profit. Considering renewable resource penetration, the random fluctuation and continuous variation of renewable resource power generation make it more difficult to model the dynamic bidding process and the equilibrium in the bilateral spot EM. Since the GDCAC algorithm has been demonstrated to be an effective method in dealing with continuous state and action variables, in this paper we have proposed the application of a GDCAC algorithm for bilateral hour-ahead EM modeling considering renewable power penetration. The simulation results have verified the feasibility and scientific nature of our proposed approach, and some conclusions can be drawn as follows:

	(1)

	
In our proposed GDCAC-based EM modeling approach, every agent needs no common knowledge about other agents’ costs or revenue functions, etc. and can make the decision to select an optimal bidding strategy within a continuous interval of values according to many renewable power generations randomly changing within a continuous state space, which can avoid the “Curse of Dimensionality”. The randomly fluctuating nature of renewable resource output does not affect the proposed EM approach’s ability to reach NE after enough iterations;




	(2)

	
In our proposed GDCAC EM modeling approach, after enough iterations, although with the increase of renewable resource output some agents may have their bidding functions deviate more from their actual marginal cost or revenue functions because of congestions in some transmission lines, the overall SW still increases, which is the same as the conclusions drawn in [2];




	(3)

	
Our proposed GDCAC EM modeling approach is superior to the fuzzy Q-learning approach (mentioned in [2]) in terms of increasing the profit of a specific agent and the overall SW and lowering the overall LMP level;




	(4)

	
According to [40], the time complexity of GDCAC is O(n) (the relevant mathematical proof is proposed in [40]). However, when applying the GDCAC algorithm to EM modeling, because in every iteration we use the active set (AS) algorithm to solve the congestion management model for ISO, which needs 500 extra iterations, the time complexity of our proposed GDCAC-based EM modeling approach is O(500n). Nevertheless, our simulation with the proposed GDCAC-based EM modeling approach takes only about 3.2 min to reach the final result. That is to say, the time complexity of our GDCAC-based EM modeling approach is acceptable so that we can extend it to the modeling and simulation of more realistic and complex EM systems.









Moreover, our proposed approach can provide a bidding decision-making tool for participants to get more profit in EM with renewable power penetration. In addition, our proposed approach can provide an economic analysis tool for governments to design proper policies to promote the development of renewable resources.
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