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Abstract: Monitoring process upsets and malfunctions as early as possible and then finding and
removing the factors causing the respective events is of great importance for safe operation and
improved productivity. Conventional process monitoring using principal component analysis (PCA)
often supposes that process data follow a Gaussian distribution. However, this kind of constraint
cannot be satisfied in practice because many industrial processes frequently span multiple operating
states. To overcome this difficulty, PCA can be combined with nonparametric control charts for
which there is no assumption need on the distribution. However, this approach still uses a constant
confidence limit where a relatively high rate of false alarms are generated. Although nonlinear PCA
(NLPCA) using autoassociative bottle-neck neural networks plays an important role in the monitoring
of industrial processes, it is difficult to design correct monitoring statistics and confidence limits that
check new performance. In this work, a new monitoring strategy using an enhanced bottleneck neural
network (EBNN) with an adaptive confidence limit for non Gaussian data is proposed. The basic idea
behind it is to extract internally homogeneous segments from the historical normal data sets by filling
a Gaussian mixture model (GMM). Based on the assumption that process data follow a Gaussian
distribution within an operating mode, a local confidence limit can be established. The EBNN is
used to reconstruct input data and estimate probabilities of belonging to the various local operating
regimes, as modelled by GMM. An abnormal event for an input measurement vector is detected if
the squared prediction error (SPE) is too large, or above a certain threshold which is made adaptive.
Moreover, the sensor validity index (SVI) is employed successfully to identify the detected faulty
variable. The results demonstrate that, compared with NLPCA, the proposed approach can effectively
reduce the number of false alarms, and is hence expected to better monitor many practical processes.

Keywords: multivariate statistical process control (MSPC); bottleneck neural network (BNN);
Gaussian mixture model (GMM); adaptive confidence limit (ACL); wastewater treatment plant
(WWTP); benchmark simulation model No. 1 (BSM1)

1. Introduction

Recently, increasing sensor availability in process monitoring has led to higher demands on the
ability to early detect and identify any sensor faults, especially when the monitoring procedure is
based on the information obtained from many sensors. Thus, monitoring or control using accurate
measurements is very useful to enhance process performance and improve production quality. In
the literature, multivariate statistical tools have been widely used to enhance process monitoring [1–
11]. Among the popular multivariate statistical process control, the traditional principal component
analysis (PCA) and the independent component analysis (ICA) [10,12,13] are the most early and major
methods often used in monitoring, which serve as reference of the desired process behaviour and
against which new data can be compared (Rosen and Olsson, 2007). However, recent modification

Algorithms 2017, 10, 49; doi:10.3390/a10020049 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a10020049
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 49 2 of 23

of them, such as multiscale PCA, robust NLPCA, kernel PCA, and ICA–PCA combination are used
in the literature (Bakshi, 1998, Xiong Li et al., 2007, Zhao and Xu, 2005). Generally, traditional
industrial process monitoring relies on the Gaussian assumption of mean µ and variance σ which
leads to obtaining a confidence limit as constant threshold. However, in practice, the process variables
follow approximately mixture Gaussian distributions (µj, σj) due to process nonlinearity, which gives
a multimodal behaviour; therefore, an adaptive confidence limit (ACL) is expected to improve the
process performance. In this context, we propose a robust process monitoring strategy based on
Gaussian mixture model (GMM) to extract multiple normal operating modes characterized by m
Gaussian components (µj, σj) during normal conditions [14,15].

In this work, an enhanced bottleneck neural network (EBNN) is used to estimate the monitored
measurements and to classify them according to their probability rates of belonging to various
operating modes. Compared to the classical auto-associative neural networks (AANNs) that can
be used only for mapping inputs to outputs, the proposed EBNN is not limited to mapping the outputs
from input dataset, but also provides a supervised classification of the monitored variables. Then,
the kernel density estimation has been adopted to calculate the local confidence limits of the various
operating modes, [14,16–18].

Subsequently, an ACL is obtained through a weighted sum of the probability rates of each normal
mode estimated by the m neurons of the EBNN output layer dedicated to classification and the m Local
Confidence Limits LCL(KDE)

j of each local SPEj.
The obtained ACL is associated with the global SPE(k), which is able to significantly improve the

monitoring performance, reduce the false alarms, and detect the onset of process deviations earlier
compared to other traditional methods. Traditional contribution plots to the squared prediction error
(SPE) are used to isolate the defective sensor. In order to overcome the drawback of the contribution
plots, we have successfully proposed a variant of the sensor validity index (SVI) method, which is
based on the elimination of the fault on the SPE by reconstructing the faulty variable, the Figure 1
shows a monitoring cycle of the proposed strategy.
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Figure 1. Process monitoring cycle.

The paper is organised as follows: Section 2 introduces the multivariate monitoring tools,
including the Gaussian mixture model for calculating the probability rates of normal operating modes,
which are used as targets to train the EBNN. Section 3 is dedicated to the case study, in which the
effectiveness of the proposed process monitoring strategy is investigated, where we discuss and assess
the different results obtained from the used process monitoring tools which are tested on benchmark
simulation model No. 1 (BSM1), which is introduced by the working group of the International Water
Association (IWA) task group on benchmarking of control strategies for wastewater treatment plants
and on actual process. Finally, conclusions are described in Section 4.
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2. Materials and Methods

2.1. Multivariate Statistical Process Control

2.1.1. Gaussian Mixture Model

The use of Gaussian mixture models for modelling data distribution is motivated by the
interpretation that the Gaussian components represent some general underlying physical phenomena
and the capability of Gaussian mixtures to arbitrary shaped densities model densities. This subsection
describes the form of the Gaussian mixture model (GMM) and motivates its use as a representation
of historical data for advanced statistical process monitoring (SPM). The use of Gaussian mixture
density for process monitoring is motivated by two interpretations. First, the individual component
Gaussians are interpreted to represent some operating modes or classes. These classes reflect some
underlying phenomena having generated data; for example, hydrological or biological in water treatment
plants. Second, a Gaussian mixture density is shown to provide a smooth approximation of the
underlying long-term sample distribution of observations collected from industrial plants. The GMM
parametrization and the maximum-likelihood parameter estimation are described. Multiple operating
modes in normal process conditions can be characterized by different Gaussian components in GMM,
and the prior probability of each Gaussian component represents the percentage of total operation
when the process runs at the particular mode [19,20]. The probability density function of Gaussian
mixture model is equivalent to the weighted sum of the density functions of all Gaussian components as
given below:

p(x|∧) =
K

∑
j=1

β jg(xi|λj) (1)

where x ∈ Rl , β j denotes the prior probability of the jth Gaussian component and g(x|λj) is the
multivariate Gaussian density function of the jth component. For each component, the model
parameters to be estimated are β j and λj =

{
µj, σj

}
, the latter of which include the mean vector µj and

the covariance matrix σj (Duda et al., 2001). During the model learning, the following log-likelihood
function is used as objective function to estimate the parameter values

logL(x|∧) =
N

∑
i=1

log

(
K

∑
j=1

β jg(xi|λj)

)
(2)

where xi is the ith training sample among the total N measurements.
The Gaussian mixture model can be estimated by Expectation-Maximization algorithm through

the following iterative procedure:

• E-Step: compute the posterior probability of the ith training sample xi at the sth iteration

P(s)(mj|xi) =
α
(s)
j g(xi|λ(s)

j )

∑K
l=1 β

(s)
l g(xi|λ(s)

l )
(3)

where mj denotes the jth Gaussian component.

• M-Step: update the model parameters at the (s + 1)th iteration

µ
(s+1)
j =

∑N
i=1 P(s)(mj|xi)xi

∑N
i P(s)(mj|xi)

(4)

σ
(s+1)
j =

∑N
i=1 P(s)(mj|xi)(xi − µ

(s+1)
j )(xi − µ

(s+1)
j )T

∑N
i P(s)(mj|xi)

(5)
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β
(s+1)
j =

∑N
i=1 P(s)(mj|xi)

N
(6)

It should be noted that the number of Gaussian components corresponds to the number of
operating modes in normal conditions [21]. The next phase after extracting the mixture operating
modes consists to design the EBNN model.

2.1.2. Enhanced Bottleneck Neural Network

Auto-associative neural networks are powerful tools for mapping inputs to outputs, especially
when this mapping is nonlinear. In this work, an enhanced bottleneck neural network (EBNN)
topology is used that includes five layers with three hidden layers: mapping layer, bottleneck layer,
and de-mapping layer, the input and output variables [13,22,23]. Once the general structure is defined,
it remains to determine the necessary number of neurons in each hidden layer. This number is
generally determined by cross-validation. In addition, the classification using feedforward artificial
neural networks is an effective tool to produce a specific output pattern for a specific input pattern.
For this purpose, a small artificial neural network classifier (ANNC) is included in the output layer
of EBNN (part dedicated to estimating the probability rates of normal operating modes) as shown
in Figure 2. ANNC is used because of its ability to estimate the probability rates of the monitored
variables, leading to their classification according to their operating modes. In the training phase,
the number of normal operating modes to be extracted is assumed to be known.
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Figure 2. EBNN for variables estimation and modes classification.Figure 2. EBNN for variables estimation and modes classification.

The training of the whole network includes two steps:

• Encoding process (compression): For an input vector xi, the encoding process (compress inputs)
can be described as:

tk =
h

∑
j=1

w(2)
jk σ

(
n

∑
i=1

w(1)
ij xi + θi

)
, k = 1, 2, . . . , q (7)

When the bottleneck layer forces the EBNN to compress the inputs (variables to be monitored).
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• Decoding process (decompression): The bottleneck layer produces the network outputs
(estimation and classification) by decompression, which is given as:

x̂k =
h

∑
j=1

w(4)
jk σ

(
q

∑
i=1

w(3)
ij ti + θi

)
, k = 1, 2, . . . , n (8)

ρ̂m =
h

∑
j=1

w(4)
jk σ

(
q

∑
i=1

w(3)
ij ti + θi

)
, k = 1, 2, . . . , m (9)

with
- n is the number of neurons in the input layer.
- h is the number of neurons in the mapping layer.
- q is the number of neurons in the bottleneck layer.
- w is the weight values of the network.
- θi is the threshold value for the ith node of the mapping layer.
- m is the number of neurons in the output layer of the operating modes classification part.
- σ is the sigmoid transfer function,
where the transfer function in the mapping and de-mapping layers is sigmoid, and in bottleneck
and output layers is linear. Exceptionally, in the output classification part is log-sigmoid in order
to generate a posterior probability rates vary between 0 and 1.

The gradient descent algorithm is adopted to train the BNN and to find the optimal values [24,25].
This is done iteratively by changing the weights w and threshold θ (randomly initialized before the
training) according to the gradient descent so that the difference between the ideal output and the
real output is the smallest. The training process is finished when the cost function E for all samples is
minimized, which is calculated as:

E =
N

∑
n=1

n

∑
i=1

(xn
i − x̂n

i )
2 +

N

∑
n=1

m

∑
j=1

(
ρn

j − ρ̂n
j

)2
(10)

where
- N is the number of training samples.
- n is the number of neurons in the output layer of the estimation part.
- m is the number of neurons in the output layer of the modes classification part.

the variables estimation part:
- xn

i is the n desired values of the ith output neuron.
- x̂n

i is the n actual outputs of that neuron.

the modes classification part:
- ρn

j is the probability rate already obtained with GMM of the jth mode.
- ρ̂n

j is the actual output of jth neuron which corresponds to jth mode.

It should be noted that the number of neurons in the output layer of the modes classification part
corresponds to the extracted normal operating modes.

2.2. Process Monitoring and Diagnosis

2.2.1. Squared Prediction Error

The difference between the enhanced BNN inputs and their estimated values can be used as
an indicator to judge the occurrence of the abnormal events and their severity. Several multivariate
extensions of fault detection approaches have been proposed in literature; the univariate statistic SPE,
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which is established using the error e(k) that follows a central Chi-squared distribution [9,26] has a
fundamental importance for process monitoring because it indicates the changes in the correlation
structure of the measured variables. Its expression at the instant k is given by:

SPE(k) = e(k)e(k)T (11)

where;
e(k) = x(k)− x̂(k) (12)

In offline stage, once the EBNN model is designed, it should be noted that m local SPE(`)
j and

UCL(KDE)
j must be calculated in residual subspace for the various operating modes.
In online phase, the global SPE(k) (which is multimodal) provides fault detection in residual

space. The process is considered in abnormal operating state at the kth observation if the global SPE(k):

SPE(k) > AUCL(KDE) (13)

with AUCL(KDE) is the adaptive upper control limit of the global SPE(k).

2.2.2. Adaptive Upper Control Limits

Once the constants UCL(KDE) of each SPE(`)
j and the probability rates of each operating mode are

calculated, an adaptive upper control limit can be obtained according to the following formula:

AUCL =
m

∑
j=1

(
UCL(KDE)

j ρj(k)
)

, k = 1, 2, ..., n (14)

where
- m is number of Gaussian components corresponding to the normal operating modes.
- ρj is the probability rate of jth mode during the normal operating regime.

- UCL(KDE)
j is the upper control limit using the kernel density estimation (KDE) of each mode during

the normal operating regime.
- n is the number of samples.

2.2.3. Upper Control Limit by KDE

KDE is a powerful data-driven technique for the nonparametric estimation of density
functions [27–29]. Given a sample matrix with n variables and l samples {x1, x2, . . . , xl}T ∈ Rl×n,
a general estimator of the density function f (x) can be defined as:

f̂ (x, H) =
1
l

1
|H|(n+1)/2

n

∑
i=1

K[H−1/2(x− xi)H−1/2] (15)

where H ∈ Rn×n is the bandwidth matrix, |H| indicates the determinant of H, and K(.) is the kernel
function, where the kernel estimator is the sum of the bumps placed at the sample points. The K(.)
defines the shape of the bumps, while the bandwidth defines the width. A popular choice for K(.) is
the Gaussian kernel function:

k(x) = (2π)−n/2exp
(
−1

2
xTx

)
(16)

The critical issue for determining f̂ (x, H) is the selection of bandwidth matrix H. In order to
determine H, we must first determine its matrix structure. Generally, there are three possible matrix
structure cases:
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(1) a full symmetrical positive definite matrix with n(n + 1)/2 parameters h2
rj—for example,

in which h2
rj = h2

jr ;
(2) a diagonal matrix with only l parameters, H = diag(h2

1, h2
2, . . . , h2

n);
(3) a diagonal matrix with one parameter, H = h2I, where, I is unit matrix.

According to [30], the first case is the most accurate, but is unrealistic in terms of computational
load and time, while the third case is the simplest but can cause problems in certain situations due
to the loss of accuracy by forcing the bandwidths in all dimensions to be the same. In this study,
the second matrix structure bandwidth will be studied as a compromise of the first case and the third
case, and an optimal selection of bandwidth matrix algorithm will be used [31].

The above KDE approach is able to estimate the underlying probability density function (PDF)
of the SPE(`)

j matrix. Thus, the corresponding upper control limit UCL(KDE)
j can be obtained from the

PDF of the SPE(`)
j matrix with a given confidence bound α by solving the following equation:

∫ UCL(KDE)
j

α
P(SPE(`)

j )dSPE(`)
j = α, j = 1, 2, . . . , m (17)

where P(SPE(`)
j ) is the probability density function of SPE(`)

j for normal operating data, α is the

confidence level, and SPE(`)
j are the local SPEj.

Therefore, the KDE is a well-established approach to estimating the PDF, particularly for random
variables like SPE which are univariate although the underlying processes are multivariate.

2.3. Fault Isolation

After detecting a fault, it is necessary to identify which sensor becomes faulty. In this section,
we re-examine the concept of contribution plots and SVI based on nonlinear reconstruction.

2.3.1. Isolation by Contribution Plots

The contribution plot is the most conventional method that has been widely used in fault isolation
approaches. This method is generally based on the contribution rate of each variable to indicate which
variable has an extreme contribution to the SPEj. These contributions can be calculated as:

ContSPE
j (k) = (ej(k))2 = (xj(k)− x̂j(k))2 (18)

2.3.2. Sensor Validity Index

This approach is applied when a fault sensor is detected. Thus, it consists of reconstructing its
measurement using the EBNN model which was already trained in normal operating conditions.
Therefore the isolation is performed by calculating the SPEj indicators of each measurement
(j = 1, 2, . . . , N1 is the number of sensors) after the reconstruction of all sensors. It is noted that the
reconstruction of the faulty sensors eliminates the abnormal condition; we must also remember that
the jth indicator SPEj of the faulty sensor calculated after reconstruction is below its adaptive upper
control limit SPEj(k) < AUCL compared to the SPEj(k) of other variables, which are all above their
respective AUCLj [32].

The reconstructed measurement xj(k) can be obtained iteratively, estimated, and re-estimated
(re-injected) by EBNN model until convergence as indicated in Figure 3.
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The SVI is based on the reconstruction principle, which consists to suspect a faulty sensor
and reconstruct (or correct) the value of the faulty sensor based on the EBNN model already
performed and the other measurements of all sensors; the procedure is repeated for each sensor.
The identification is performed by comparing the SVIs before and after reconstruction. The sensor
validity index is a measure of sensor performance; it should have a standardized range regardless
of the number of principal components in the bottleneck layer, noise, measurement variances, or
fault type. The ratio of SPEj(k) and the global SPE can provide these desired properties for the
identification of a sensor fault [4]). The SVI can be calculated as:
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where the SPE is the global squared prediction error calculated before reconstruction and SPEj is the
jth sensor calculated after reconstruction, [33–35].

3. Case Study : Wastewater Treatment Plant (WWTP) Monitoring

The main purpose in biological wastewater treatment is to transform nitrogen compounds
in order to remove them from wastewater, where admissible concentrations of these harmful
pollutants are defined by European standards. In order to generate a limit for the toxic organic
chemicals which have recently caused a lot of harm both to human beings and the environment,
stringent laws have been increasingly imposed on the quality of wastewater discharged in
industrial and municipal effluent. This rising concern about the environmental protection leads
the wastewater treatment plants (WWTPs) to the necessity of running under normal operating
conditions. To improve the operating performance of wastewater treatment plants like all industrial
processes, an on-line monitoring system equipped with electronic sensors is necessary for early
detection and identification of any abnormal event affecting the process [36,37]. The proposed
strategy is applied to the simulated wastewater treatment process BSM1 and to the real-process,
where many sensor are prone to malfunctions [38–40].
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The SVI is based on the reconstruction principle, which consists to suspect a faulty sensor and
reconstruct (or correct) the value of the faulty sensor based on the EBNN model already performed and
the other measurements of all sensors; the procedure is repeated for each sensor. The identification is
performed by comparing the SVIs before and after reconstruction. The sensor validity index is a measure of
sensor performance; it should have a standardized range regardless of the number of principal components
in the bottleneck layer, noise, measurement variances, or fault type. The ratio of SPEj(k) and the global SPE
can provide these desired properties for the identification of a sensor fault [4]. The SVI can be calculated as:

η2
j =

SPE
SPEj

(19)

where the SPE is the global squared prediction error calculated before reconstruction and SPEj is the
jth sensor calculated after reconstruction, [33–35].

3. Case Study : Wastewater Treatment Plant (WWTP) Monitoring

The main purpose in biological wastewater treatment is to transform nitrogen compounds in order
to remove them from wastewater, where admissible concentrations of these harmful pollutants are
defined by European standards. In order to generate a limit for the toxic organic chemicals which have
recently caused a lot of harm both to human beings and the environment, stringent laws have been
increasingly imposed on the quality of wastewater discharged in industrial and municipal effluent.
This rising concern about the environmental protection leads the wastewater treatment plants (WWTPs)
to the necessity of running under normal operating conditions. To improve the operating performance
of wastewater treatment plants like all industrial processes, an on-line monitoring system equipped with
electronic sensors is necessary for early detection and identification of any abnormal event affecting the
process [36,37]. The proposed strategy is applied to the simulated wastewater treatment process BSM1
and to the real-process, where many sensor are prone to malfunctions [38–40].

3.1. Simulated Process Case

This benchmark plant is composed of a five compartment activated sludge reactor consisting of two
anoxic tanks followed by three aerobic tanks (see Figure 4). The plant thus combines nitrification with
pre-denitrification in a configuration that is commonly used for achieving biological nitrogen removal in
full-scale plants. The activated sludge reactor is followed by a secondary settler. The simulated wastewater
treatment process BSM1 (Figure 5) is used under dry weather during 7 days under normal operating
conditions. The sampling period is 15 min, where the training dataset is composed of 673 observations
and 672 observations are used for the test phase. The plant is designed for an average influent dry-weather
flow rate of 18,446 m3·d−1 and an average biodegradable chemical oxygen demand (COD) in the influent
of 300 g·m−3. For more details, the simulated wastewater treatment process BSM1 is available on [41].
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5 Particulate biodegradable organic nitrogen in Tank2 XND
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Figure 5. Simulink of BSM1.

3.2. Real Process Case

In order to illustrate the effectiveness of the proposed strategy, the monitoring approaches have
been tested on real data collected from an actual wastewater treatment process of Annaba, situated in
the North-East Algeria (450 km of Algiers and 8 km east of Annaba city), where the real data contains
1300 observations of some sensors (see Table 2) in normal operating conditions, with a medium flow
of 83,620 m3/day and peak flow during dry weather 5923 m3/h.

The purification process used is activated sludge, and has two principal treatment sectors;
the primary includes bar racks, grit chamber, de-oiling, and sand filters, whose objective is the
removal of solids. The secondary sector is made for removing the organic matter present in the
influent wastewater, where the organic matter pollutants serve as food for microorganisms. This is
done by using either aerobic or anaerobic treatment processes. The schematic of the used actual plant
is shown in Figure 6. The monitored sensors in this work are given in Table 2.

Table 2. The monitored sensors for the real process.

N Monitored Sensors Notation

1 Dissolved oxygen in influent SO
2 Nitrites in influent SNO2
3 Nitrates in influent SNO3
4 Ammoniacal nitrogen in influent NH4
5 Chemical oxygen demand in influent COD
6 Dissolved oxygen in effluent SO
7 Nitrites in effluent SNO2
8 Nitrates in effluent SNO3
9 Ammoniacal nitrogen in effluent NH4

10 Chemical oxygen demand in effluent COD

Figure 5. Simulink of BSM1.
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3.2. Real Process Case

In order to illustrate the effectiveness of the proposed strategy, the monitoring approaches have
been tested on real data collected from an actual wastewater treatment process of Annaba, situated in
the North-East Algeria (450 km of Algiers and 8 km east of Annaba city), where the real data contains
1300 observations of some sensors (see Table 2) in normal operating conditions, with a medium flow of
83,620 m3/day and peak flow during dry weather 5923 m3/h.

The purification process used is activated sludge, and has two principal treatment sectors;
the primary includes bar racks, grit chamber, de-oiling, and sand filters, whose objective is the
removal of solids. The secondary sector is made for removing the organic matter present in the influent
wastewater, where the organic matter pollutants serve as food for microorganisms. This is done by
using either aerobic or anaerobic treatment processes. The schematic of the used actual plant is shown
in Figure 6. The monitored sensors in this work are given in Table 2.

Table 2. The monitored sensors for the real process.

N Monitored Sensors Notation

1 Dissolved oxygen in influent SO
2 Nitrites in influent SNO2
3 Nitrates in influent SNO3
4 Ammoniacal nitrogen in influent NH4
5 Chemical oxygen demand in influent COD
6 Dissolved oxygen in effluent SO
7 Nitrites in effluent SNO2
8 Nitrates in effluent SNO3
9 Ammoniacal nitrogen in effluent NH4

10 Chemical oxygen demand in effluent COD

Figure 6. Schematic of Annaba wastewater treatment plant.
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3.3. Results and Discussion

This section presents a simulation study with some comments about the obtained results to
examine the effectiveness of the proposed strategy for on-line process monitoring applied to simulated
wastewater treatment process BSM1 and to real data.

In order to illustrate the advantages of the AUCL based on EBNN compared to two base-line
multivariate statistical monitoring methods (namely the nonlinear PCA (NLPCA) and ICA), simulation
tests were carried out on BSM1 and on actual data. Figures 7 and 8 show the SPE during normal conditions
using ICA of BSM1 data and real data, respectively. The upper control limit (UCL) was made constant.
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Figure 7. Squared prediction error (SPE) during normal operating state (no fault) using independent
component analysis (ICA) for the BSM1 data.
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Figure 8. SPE during normal operating state (no fault) using ICA for real data.

Figures 9 and 10 present the SPE using the traditional NLPCA based on AANN with a constant
UCL of the BSM1 data and real data, respectively. The high number of false alarms can be seen. In the
following part of this section, the results of the proposed method using UACL based on EBNN show
the effectiveness in overcoming this drawback.

Before the construction of EBNN, a normalization of the monitored variables is necessary.
Each variable of the training and testing data matrices are centred and scaled by subtracting and
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dividing, respectively, the mean/standard-deviation from/by each column to render the results
independent of the used units.
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Figure 9. SPE during normal operating state (no fault) using ICA for the BSM1 data.
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Figure 10. SPE during normal operating state (no fault) with nonlinear principal component analysis
(NLPCA) for the actual wastewater treatment plant (WWTP) data.

In the testing phase under normal operating conditions, as illustrative examples, three of the
estimated variables and the output classified modes (for q = 5 the number of components in bottleneck
layer and m = 5 the number of normal operating modes) are plotted in Figures 11 and 12 for the BSM1
case and Figures 13 and 14 for real data, respectively.
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Figure 11. Evolution of SO, SNO, and SND after normalization and their estimations of BSM1 data.
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Figure 12. Evolution of SO, SNO, and SND after normalization and their estimations of real data.
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Figure 13. Probability rates of various operating modes of BSM1 data.
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Figure 14. Probability rates of various operating modes of real data.

It can be clearly seen that the monitored variables have been reconstructed and the probability
rates are successfully estimated.

Figure 15 for BSM1 data and Figure 16 for real data represent the evolutions of the filtered SPE for
BSM1 and real data, respectively, with an AUCL using KDE at a confidence level of 95% under normal
operating conditions. To reduce the false alarms, an exponentially weighted moving average (EWMA)
is used to filter the effect of outliers and noise, as shown in figures of the filtered SPE.
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Figure 15. Filtered SPE during normal operating state (no fault) with an adaptive upper control limit
(AUCL) based on kernel density estimation (KDE) of BSM1 data.
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Figure 16. Filtered SPE during normal operating state (no fault) with an adaptive UCL based on KDE
of real data.

The formulation of the process monitoring strategy of this work focuses on the problem of faulty
sensors precisely in WWTP, which may exhibit partial failures such as precision degradation due to
significant noise, bias, or drift due to sludge clogging [42,43], which can be defined below:

a- Precision degradation : The precision degradation model is defined as a Gaussian random
process with zero mean and unknown covariance matrix.

b- Bias : The bias error evolution can be characterized by positive or negative value.
c- Drift : This error follows an increasing deviation, such as polynomial change.

Figures 17 and 18 show the results from a precision degradation fault tested on both cases of data,
where the filtered SPE moves up and down many times above its AUCL.
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Figure 17. Filtered SPE for precision degradation fault in sensor SNH of BSM1.
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Figure 18. Filtered SPE for precision degradation fault in sensor NH4 of real data.

Bias fault can be detected by filtered SPE, as shown in Figure 19 for BSM1 data and Figure 20 for
real data.
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Figure 19. Filtered SPE for bias fault in sensor SO sensor of the BSM1 data.
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Figure 20. Filtered SPE for bias fault in sensor SO sensor of the real data.
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The last simulation test concerns the drift fault, which can also be detected by filtered SPE,
as indicated in Figures 21 and 22 for BSM1 data and real data, respectively.
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Figure 21. Filtered SPE for drift fault in sensor SNO2 sensor of the BSM1 data.
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Figure 22. Filtered SPE for drift fault in sensor NH4 sensor of the real data.

It is worth noting that the selected abnormal events correspond, respectively, to precision
degradation, bias, and drift malfunctions related to the sensors of dissolved oxygen, nitrate, and nitrite
nitrogen, which are the most important sensors in WWTP. However, SO represents a high correlation
with the other variables. It can be seen that the SPE indicator exceeds its adaptive upper control limit
in the case of bias and drift faults; however, in the precision degradation case, it can be seen that this
malfunction type is translated by discontinuous alarms despite the use of AUCL. It is clear that the
different faults are detected at various samples according to the type of fault, as indicated in Table 3.
The results show the proposed robust monitoring performance in the presence of faults and produces
few alarms. For identification, we cannot observe anything in the previous figures.
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Table 3. Summary of fault scenarios.

Fault Type Precision Degradation Bias Drift

Fault expression ζi = w(µ, σ2) ζi = const ζi = k1 ∗ εn
i−1 + k2 ∗ εn−1

i−1 + ...k0.
Faulty sensor expression Sensor(t) + (0, σ2) Sensor(t) + 1.2 Sensor(t) + 0.5t

Fault time 336 366 366

Detection time 349.4 for BSM1 data and 336.7 for BSM1 data and 342.3 for BSM1 data and
346.2 for real data 337.2 for real data 392.1 for real data

Sensor Fault Identification and Reconstruction

Once a fault is detected, it is necessary to identify the faulty sensor according to the contribution
plots approach, as given in Figures 23 and 24 for BSM1 data and real data, respectively (drift fault
case), where in the detection moment the SO sensor having the largest contribution to the SPE is
the faulty sensor. To overcome the drawbacks of the traditional contribution plots, identification via
reconstruction is proposed, as illustrated in the figures below.
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Figure 23. Fault isolation by contribution plots for drift fault of BSM1 data (Sensor SO).
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Figure 24. Fault isolation by contribution plots for drift fault of real data (Sensor SO).
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Figures 25 and 26 illustrate the sensor validity indexes of BSM1 data and real data of all sensors
after reconstruction for bias fault, and Figures 27 and 28 for drift fault, in which the faults are eliminated
by the correction of erroneous measure using the reconstruction principle. In this way, it is clear that
the corrected sensor is faulty.
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Figure 25. Fault isolation by sensor validity indexes for bias fault of BSM1 data.
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Figure 26. Fault isolation by sensor validity indexes for bias fault of real data.
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Figure 27. Fault isolation by sensor validity indexes for drift fault of BSM1 data.
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Figure 28. Fault isolation by sensor validity indexes for drift fault of real data.

The SVIs can be immediately displayed on-line as soon as the abnormal event is detected.
According to these SVIs which are not limited to isolating the faulty sensor, but can also show
the correlation of the faulty sensor with other variables, in this way it can be seen that some sensors
have been influenced by the reconstruction (as the sensor having the second largest contribution; see
Figures 23 and 24) due to high correlation with the faulty sensor. This can help the operator to provide
a feasible interpretation. It should be noted that we can easily test any type of fault on any sensor,
except the precision degradation fault is not localizable by the contribution plots or SVIs.

Finally, the comparative study shows that the proposed strategy has superior performance and is
more effective for fault monitoring and diagnosis compared to the traditional methods like NLPCA or
ICA, which are sensitive with the false alarms because of their constant confidence limit, and also are
considered very late in fault detection.

4. Conclusions

The study described in this work concerns an enhanced control chart to monitor nonlinear
processes and detect abnormal behaviours. The proposed strategy combines a Gaussian mixture model
(GMM) with enhanced bottleneck neural networks (EBNN) to improve multivariate statistical process
control (MSPC) using an adaptive upper control limit which is able to reduce the false alarms usually
generated when the traditional upper control limit is used, since the proposed EBNN not only provides
an estimated value of the input vector, but also probability rates of belonging to different operating
modes. In addition, the filter applied to the SVI and SPE adds an important feature to minimize the
number of false alarms.

To identify the faulty sensor, SVI based on the reconstruction error of the erroneous measure is
successfully employed which gives a better diagnosis rate compared to the traditional contribution
plots. However, the reconstruction allows the faulty sensor to be identified by comparing the sensor
validity indexes before and after reconstructions of all measurements for each sensor—this can lead to
the isolation of the faulty sensor.
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Abbreviations

The following abbreviations are used in this manuscript:

PCA Principal Component Analysis
ICA Independent Component Analysis
BNN Bottleneck Neural Network
EBNN Enhanced Bottleneck Neural Network
GMM Gaussian Mixture Model
KDE Kernel Density Estimation
MSPC Multivariate Statistical Process Control
SVI Sensor Validity Index
AUCL Adaptive Upper Control Limit
UCL Upper Control Limit
SPE Squared Prediction Error
AANN Auto-Associative Neural Network
ANNC Artificial Neural Network Classifier
IWA International Water Association
EWMA Exponentially Weighted Moving Average
WWTP Wastewater Treatment Plant
BSM1 Benchmark Simulation Model No. 1
SPM Statistical Process Monitoring
SPC Statistical Process Control
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