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Abstract:



Monitoring process upsets and malfunctions as early as possible and then finding and removing the factors causing the respective events is of great importance for safe operation and improved productivity. Conventional process monitoring using principal component analysis (PCA) often supposes that process data follow a Gaussian distribution. However, this kind of constraint cannot be satisfied in practice because many industrial processes frequently span multiple operating states. To overcome this difficulty, PCA can be combined with nonparametric control charts for which there is no assumption need on the distribution. However, this approach still uses a constant confidence limit where a relatively high rate of false alarms are generated. Although nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks plays an important role in the monitoring of industrial processes, it is difficult to design correct monitoring statistics and confidence limits that check new performance. In this work, a new monitoring strategy using an enhanced bottleneck neural network (EBNN) with an adaptive confidence limit for non Gaussian data is proposed. The basic idea behind it is to extract internally homogeneous segments from the historical normal data sets by filling a Gaussian mixture model (GMM). Based on the assumption that process data follow a Gaussian distribution within an operating mode, a local confidence limit can be established. The EBNN is used to reconstruct input data and estimate probabilities of belonging to the various local operating regimes, as modelled by GMM. An abnormal event for an input measurement vector is detected if the squared prediction error (SPE) is too large, or above a certain threshold which is made adaptive. Moreover, the sensor validity index (SVI) is employed successfully to identify the detected faulty variable. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms, and is hence expected to better monitor many practical processes.
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1. Introduction


Recently, increasing sensor availability in process monitoring has led to higher demands on the ability to early detect and identify any sensor faults, especially when the monitoring procedure is based on the information obtained from many sensors. Thus, monitoring or control using accurate measurements is very useful to enhance process performance and improve production quality. In the literature, multivariate statistical tools have been widely used to enhance process monitoring [1,2,3,4,5,6,7,8,9,10,11]. Among the popular multivariate statistical process control, the traditional principal component analysis (PCA) and the independent component analysis (ICA) [10,12,13] are the most early and major methods often used in monitoring, which serve as reference of the desired process behaviour and against which new data can be compared (Rosen and Olsson, 2007). However, recent modification of them, such as multiscale PCA, robust NLPCA, kernel PCA, and ICA–PCA combination are used in the literature (Bakshi, 1998, Xiong Li et al., 2007, Zhao and Xu, 2005). Generally, traditional industrial process monitoring relies on the Gaussian assumption of mean [image: there is no content] and variance [image: there is no content] which leads to obtaining a confidence limit as constant threshold. However, in practice, the process variables follow approximately mixture Gaussian distributions [image: there is no content] due to process nonlinearity, which gives a multimodal behaviour; therefore, an adaptive confidence limit (ACL) is expected to improve the process performance. In this context, we propose a robust process monitoring strategy based on Gaussian mixture model (GMM) to extract multiple normal operating modes characterized by m Gaussian components [image: there is no content] during normal conditions [14,15].



In this work, an enhanced bottleneck neural network (EBNN) is used to estimate the monitored measurements and to classify them according to their probability rates of belonging to various operating modes. Compared to the classical auto-associative neural networks (AANNs) that can be used only for mapping inputs to outputs, the proposed EBNN is not limited to mapping the outputs from input dataset, but also provides a supervised classification of the monitored variables. Then, the kernel density estimation has been adopted to calculate the local confidence limits of the various operating modes, [14,16,17,18].



Subsequently, an ACL is obtained through a weighted sum of the probability rates of each normal mode estimated by the m neurons of the EBNN output layer dedicated to classification and the m Local Confidence Limits [image: there is no content] of each local [image: there is no content].



The obtained ACL is associated with the global [image: there is no content], which is able to significantly improve the monitoring performance, reduce the false alarms, and detect the onset of process deviations earlier compared to other traditional methods. Traditional contribution plots to the squared prediction error (SPE) are used to isolate the defective sensor. In order to overcome the drawback of the contribution plots, we have successfully proposed a variant of the sensor validity index (SVI) method, which is based on the elimination of the fault on the SPE by reconstructing the faulty variable, the Figure 1 shows a monitoring cycle of the proposed strategy.


Figure 1. Process monitoring cycle.



[image: Algorithms 10 00049 g001]






The paper is organised as follows: Section 2 introduces the multivariate monitoring tools, including the Gaussian mixture model for calculating the probability rates of normal operating modes, which are used as targets to train the EBNN. Section 3 is dedicated to the case study, in which the effectiveness of the proposed process monitoring strategy is investigated, where we discuss and assess the different results obtained from the used process monitoring tools which are tested on benchmark simulation model no. 1 (BSM1), which is introduced by the working group of the International Water Association (IWA) task group on benchmarking of control strategies for wastewater treatment plants and on actual process. Finally, conclusions are described in Section 4.




2. Materials and Methods


2.1. Multivariate Statistical Process Control


2.1.1. Gaussian Mixture Model


The use of Gaussian mixture models for modelling data distribution is motivated by the interpretation that the Gaussian components represent some general underlying physical phenomena and the capability of Gaussian mixtures to arbitrary shaped densities model densities. This subsection describes the form of the Gaussian mixture model (GMM) and motivates its use as a representation of historical data for advanced statistical process monitoring (SPM). The use of Gaussian mixture density for process monitoring is motivated by two interpretations. First, the individual component Gaussians are interpreted to represent some operating modes or classes. These classes reflect some underlying phenomena having generated data; for example, hydrological or biological in water treatment plants. Second, a Gaussian mixture density is shown to provide a smooth approximation of the underlying long-term sample distribution of observations collected from industrial plants. The GMM parametrization and the maximum-likelihood parameter estimation are described. Multiple operating modes in normal process conditions can be characterized by different Gaussian components in GMM, and the prior probability of each Gaussian component represents the percentage of total operation when the process runs at the particular mode [19,20]. The probability density function of Gaussian mixture model is equivalent to the weighted sum of the density functions of all Gaussian components as given below:


[image: there is no content]



(1)




where [image: there is no content][image: there is no content], [image: there is no content] denotes the prior probability of the [image: there is no content] Gaussian component and [image: there is no content] is the multivariate Gaussian density function of the [image: there is no content] component. For each component, the model parameters to be estimated are [image: there is no content] and [image: there is no content], the latter of which include the mean vector [image: there is no content] and the covariance matrix [image: there is no content] (Duda et al., 2001). During the model learning, the following log-likelihood function is used as objective function to estimate the parameter values


[image: there is no content]



(2)




where [image: there is no content] is the [image: there is no content] training sample among the total N measurements.



The Gaussian mixture model can be estimated by Expectation-Maximization algorithm through the following iterative procedure:

	
E-Step: compute the posterior probability of the [image: there is no content] training sample [image: there is no content] at the [image: there is no content] iteration


[image: there is no content]



(3)




where [image: there is no content] denotes the [image: there is no content] Gaussian component.



	
M-Step: update the model parameters at the [image: there is no content] iteration


[image: there is no content]



(4)






[image: there is no content]



(5)






[image: there is no content]



(6)












It should be noted that the number of Gaussian components corresponds to the number of operating modes in normal conditions [21]. The next phase after extracting the mixture operating modes consists to design the EBNN model.




2.1.2. Enhanced Bottleneck Neural Network


Auto-associative neural networks are powerful tools for mapping inputs to outputs, especially when this mapping is nonlinear. In this work, an enhanced bottleneck neural network (EBNN) topology is used that includes five layers with three hidden layers: mapping layer, bottleneck layer, and de-mapping layer, the input and output variables [13,22,23]. Once the general structure is defined, it remains to determine the necessary number of neurons in each hidden layer. This number is generally determined by cross-validation. In addition, the classification using feedforward artificial neural networks is an effective tool to produce a specific output pattern for a specific input pattern. For this purpose, a small artificial neural network classifier (ANNC) is included in the output layer of EBNN (part dedicated to estimating the probability rates of normal operating modes) as shown in Figure 2. ANNC is used because of its ability to estimate the probability rates of the monitored variables, leading to their classification according to their operating modes. In the training phase, the number of normal operating modes to be extracted is assumed to be known.


Figure 2. EBNN for variables estimation and modes classification.
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The training of the whole network includes two steps:

	
Encoding process (compression): For an input vector [image: there is no content], the encoding process (compress inputs) can be described as:


[image: there is no content]



(7)




When the bottleneck layer forces the EBNN to compress the inputs (variables to be monitored).



	
Decoding process (decompression): The bottleneck layer produces the network outputs (estimation and classification) by decompression, which is given as:


[image: there is no content]



(8)






[image: there is no content]



(9)




with

	-

	
n is the number of neurons in the input layer.




	-

	
h is the number of neurons in the mapping layer.




	-

	
q is the number of neurons in the bottleneck layer.




	-

	
w is the weight values of the network.




	-

	
[image: there is no content] is the threshold value for the [image: there is no content] node of the mapping layer.




	-

	
m is the number of neurons in the output layer of the operating modes classification part.




	-

	
[image: there is no content] is the sigmoid transfer function,






where the transfer function in the mapping and de-mapping layers is sigmoid, and in bottleneck and output layers is linear. Exceptionally, in the output classification part is log-sigmoid in order to generate a posterior probability rates vary between 0 and 1.








The gradient descent algorithm is adopted to train the BNN and to find the optimal values [24,25]. This is done iteratively by changing the weights w and threshold [image: there is no content] (randomly initialized before the training) according to the gradient descent so that the difference between the ideal output and the real output is the smallest. The training process is finished when the cost function E for all samples is minimized, which is calculated as:


[image: there is no content]



(10)




where

	-

	
N is the number of training samples.




	-

	
n is the number of neurons in the output layer of the estimation part.




	-

	
m is the number of neurons in the output layer of the modes classification part.






the variables estimation part:

	-

	
[image: there is no content] is the n desired values of the [image: there is no content] output neuron.




	-

	
[image: there is no content] is the n actual outputs of that neuron.






the modes classification part:

	-

	
[image: there is no content] is the probability rate already obtained with GMM of the [image: there is no content] mode.




	-

	
[image: there is no content] is the actual output of [image: there is no content] neuron which corresponds to jth mode.









It should be noted that the number of neurons in the output layer of the modes classification part corresponds to the extracted normal operating modes.





2.2. Process Monitoring and Diagnosis


2.2.1. Squared Prediction Error


The difference between the enhanced BNN inputs and their estimated values can be used as an indicator to judge the occurrence of the abnormal events and their severity. Several multivariate extensions of fault detection approaches have been proposed in literature; the univariate statistic SPE, which is established using the error [image: there is no content] that follows a central Chi-squared distribution [9,26] has a fundamental importance for process monitoring because it indicates the changes in the correlation structure of the measured variables. Its expression at the instant k is given by:


[image: there is no content]



(11)




where;


[image: there is no content]



(12)







In offline stage, once the EBNN model is designed, it should be noted that m local [image: there is no content] and [image: there is no content] must be calculated in residual subspace for the various operating modes.



In online phase, the global [image: there is no content] (which is multimodal) provides fault detection in residual space. The process is considered in abnormal operating state at the [image: there is no content] observation if the global [image: there is no content]:


[image: there is no content]



(13)




with [image: there is no content] is the adaptive upper control limit of the global [image: there is no content].




2.2.2. Adaptive Upper Control Limits


Once the constants [image: there is no content] of each [image: there is no content] and the probability rates of each operating mode are calculated, an adaptive upper control limit can be obtained according to the following formula:


[image: there is no content]



(14)




where

	-

	
m is number of Gaussian components corresponding to the normal operating modes.




	-

	
[image: there is no content] is the probability rate of [image: there is no content] mode during the normal operating regime.




	-

	
[image: there is no content] is the upper control limit using the kernel density estimation (KDE) of each mode during the normal operating regime.




	-

	
n is the number of samples.










2.2.3. Upper Control Limit by KDE


[image: there is no content] is a powerful data-driven technique for the nonparametric estimation of density functions [27,28,29]. Given a sample matrix with n variables and l samples [image: there is no content][image: there is no content], a general estimator of the density function [image: there is no content] can be defined as:


[image: there is no content]



(15)




where [image: there is no content] is the bandwidth matrix, [image: there is no content] indicates the determinant of H, and [image: there is no content] is the kernel function, where the kernel estimator is the sum of the bumps placed at the sample points. The [image: there is no content] defines the shape of the bumps, while the bandwidth defines the width. A popular choice for [image: there is no content] is the Gaussian kernel function:


[image: there is no content]



(16)







The critical issue for determining [image: there is no content] is the selection of bandwidth matrix H. In order to determine H, we must first determine its matrix structure. Generally, there are three possible matrix structure cases:

	(1)

	
a full symmetrical positive definite matrix with [image: there is no content] parameters [image: there is no content]—for example, in which [image: there is no content] = [image: there is no content];




	(2)

	
a diagonal matrix with only l parameters, [image: there is no content];




	(3)

	
a diagonal matrix with one parameter, [image: there is no content], where, I is unit matrix.









According to [30], the first case is the most accurate, but is unrealistic in terms of computational load and time, while the third case is the simplest but can cause problems in certain situations due to the loss of accuracy by forcing the bandwidths in all dimensions to be the same. In this study, the second matrix structure bandwidth will be studied as a compromise of the first case and the third case, and an optimal selection of bandwidth matrix algorithm will be used [31].



The above [image: there is no content] approach is able to estimate the underlying probability density function (PDF) of the [image: there is no content] matrix. Thus, the corresponding upper control limit [image: there is no content] can be obtained from the [image: there is no content] of the [image: there is no content] matrix with a given confidence bound [image: there is no content] by solving the following equation:


[image: there is no content]



(17)




where [image: there is no content] is the probability density function of [image: there is no content] for normal operating data, [image: there is no content] is the confidence level, and [image: there is no content] are the local [image: there is no content].



Therefore, the KDE is a well-established approach to estimating the PDF, particularly for random variables like [image: there is no content] which are univariate although the underlying processes are multivariate.





2.3. Fault Isolation


After detecting a fault, it is necessary to identify which sensor becomes faulty. In this section, we re-examine the concept of contribution plots and SVI based on nonlinear reconstruction.



2.3.1. Isolation by Contribution Plots


The contribution plot is the most conventional method that has been widely used in fault isolation approaches. This method is generally based on the contribution rate of each variable to indicate which variable has an extreme contribution to the [image: there is no content]. These contributions can be calculated as:


[image: there is no content]



(18)








2.3.2. Sensor Validity Index


This approach is applied when a fault sensor is detected. Thus, it consists of reconstructing its measurement using the EBNN model which was already trained in normal operating conditions. Therefore the isolation is performed by calculating the [image: there is no content] indicators of each measurement ([image: there is no content] is the number of sensors) after the reconstruction of all sensors. It is noted that the reconstruction of the faulty sensors eliminates the abnormal condition; we must also remember that the [image: there is no content] indicator [image: there is no content] of the faulty sensor calculated after reconstruction is below its adaptive upper control limit [image: there is no content] compared to the [image: there is no content] of other variables, which are all above their respective [image: there is no content] [32].



The reconstructed measurement [image: there is no content] can be obtained iteratively, estimated, and re-estimated (re-injected) by EBNN model until convergence as indicated in Figure 3.


Figure 3. Reconstruction principle.



[image: Algorithms 10 00049 g003]






The SVI is based on the reconstruction principle, which consists to suspect a faulty sensor and reconstruct (or correct) the value of the faulty sensor based on the EBNN model already performed and the other measurements of all sensors; the procedure is repeated for each sensor. The identification is performed by comparing the SVIs before and after reconstruction. The sensor validity index is a measure of sensor performance; it should have a standardized range regardless of the number of principal components in the bottleneck layer, noise, measurement variances, or fault type. The ratio of [image: there is no content] and the global SPE can provide these desired properties for the identification of a sensor fault [4]). The SVI can be calculated as:


[image: there is no content]



(19)




where the SPE is the global squared prediction error calculated before reconstruction and SPEj is the [image: there is no content] sensor calculated after reconstruction, [33,34,35].






3. Case Study : Wastewater Treatment Plant (WWTP) Monitoring


The main purpose in biological wastewater treatment is to transform nitrogen compounds in order to remove them from wastewater, where admissible concentrations of these harmful pollutants are defined by European standards. In order to generate a limit for the toxic organic chemicals which have recently caused a lot of harm both to human beings and the environment, stringent laws have been increasingly imposed on the quality of wastewater discharged in industrial and municipal effluent. This rising concern about the environmental protection leads the wastewater treatment plants (WWTPs) to the necessity of running under normal operating conditions. To improve the operating performance of wastewater treatment plants like all industrial processes, an on-line monitoring system equipped with electronic sensors is necessary for early detection and identification of any abnormal event affecting the process [36,37]. The proposed strategy is applied to the simulated wastewater treatment process BSM1 and to the real-process, where many sensor are prone to malfunctions [38,39,40].



3.1. Simulated Process Case


This benchmark plant is composed of a five compartment activated sludge reactor consisting of two anoxic tanks followed by three aerobic tanks (see Figure 4). The plant thus combines nitrification with pre-denitrification in a configuration that is commonly used for achieving biological nitrogen removal in full-scale plants. The activated sludge reactor is followed by a secondary settler. The simulated wastewater treatment process BSM1 (Figure 5) is used under dry weather during 7 days under normal operating conditions. The sampling period is 15 min, where the training dataset is composed of 673 observations and 672 observations are used for the test phase. The plant is designed for an average influent dry-weather flow rate of 18,446 m3·d−1 and an average biodegradable chemical oxygen demand (COD) in the influent of 300 g·m−3. For more details, the simulated wastewater treatment process BSM1 is available on [41].


Figure 4. General overview of the benchmark simulation model no. 1 (BSM1) plant.



[image: Algorithms 10 00049 g004]





Figure 5. Simulink of BSM1.



[image: Algorithms 10 00049 g005]






The monitored sensors of the BSM1 used in this work are given in Table 1.



Table 1. The monitored sensors for BSM1 plant.







	
N

	
Monitored Sensors

	
Notation






	
1

	
Dissolved oxygen in [image: there is no content]

	
[image: there is no content]




	
2

	
Nitrate and nitrite nitrogen in [image: there is no content]

	
[image: there is no content]




	
3

	
[image: there is no content] nitrogen in [image: there is no content]

	
[image: there is no content]




	
4

	
Soluble biodegradable organic nitrogen in [image: there is no content]

	
[image: there is no content]




	
5

	
Particulate biodegradable organic nitrogen in [image: there is no content]

	
[image: there is no content]




	
6

	
Dissolved oxygen in [image: there is no content]

	
[image: there is no content]




	
7

	
Nitrate and nitrite nitrogen in [image: there is no content]

	
[image: there is no content]




	
8

	
[image: there is no content] nitrogen in [image: there is no content]

	
[image: there is no content]




	
9

	
Soluble biodegradable organic nitrogen in [image: there is no content]

	
[image: there is no content]




	
10

	
Particulate biodegradable organic nitrogen in [image: there is no content]

	
[image: there is no content]











3.2. Real Process Case


In order to illustrate the effectiveness of the proposed strategy, the monitoring approaches have been tested on real data collected from an actual wastewater treatment process of Annaba, situated in the North-East Algeria (450 km of Algiers and 8 km east of Annaba city), where the real data contains 1300 observations of some sensors (see Table 2) in normal operating conditions, with a medium flow of 83,620 m3/day and peak flow during dry weather 5923 m3/h.



Table 2. The monitored sensors for the real process.







	
N

	
Monitored Sensors

	
Notation






	
1

	
Dissolved oxygen in influent

	
[image: there is no content]




	
2

	
Nitrites in influent

	
[image: there is no content]




	
3

	
Nitrates in influent

	
[image: there is no content]




	
4

	
Ammoniacal nitrogen in influent

	
[image: there is no content]




	
5

	
Chemical oxygen demand in influent

	
[image: there is no content]




	
6

	
Dissolved oxygen in effluent

	
[image: there is no content]




	
7

	
Nitrites in effluent

	
[image: there is no content]




	
8

	
Nitrates in effluent

	
[image: there is no content]




	
9

	
Ammoniacal nitrogen in effluent

	
[image: there is no content]




	
10

	
Chemical oxygen demand in effluent

	
[image: there is no content]










The purification process used is activated sludge, and has two principal treatment sectors; the primary includes bar racks, grit chamber, de-oiling, and sand filters, whose objective is the removal of solids. The secondary sector is made for removing the organic matter present in the influent wastewater, where the organic matter pollutants serve as food for microorganisms. This is done by using either aerobic or anaerobic treatment processes. The schematic of the used actual plant is shown in Figure 6. The monitored sensors in this work are given in Table 2.


Figure 6. Schematic of Annaba wastewater treatment plant.



[image: Algorithms 10 00049 g006]







3.3. Results and Discussion


This section presents a simulation study with some comments about the obtained results to examine the effectiveness of the proposed strategy for on-line process monitoring applied to simulated wastewater treatment process BSM1 and to real data.



In order to illustrate the advantages of the AUCL based on EBNN compared to two base-line multivariate statistical monitoring methods (namely the nonlinear PCA (NLPCA) and ICA), simulation tests were carried out on BSM1 and on actual data. Figure 7 and Figure 8 show the SPE during normal conditions using ICA of BSM1 data and real data, respectively. The upper control limit (UCL) was made constant.


Figure 7. Squared prediction error (SPE) during normal operating state (no fault) using independent component analysis (ICA) for the BSM1 data.



[image: Algorithms 10 00049 g007]





Figure 8. SPE during normal operating state (no fault) using ICA for real data.



[image: Algorithms 10 00049 g008]






Figure 9 and Figure 10 present the SPE using the traditional NLPCA based on AANN with a constant UCL of the BSM1 data and real data, respectively. The high number of false alarms can be seen. In the following part of this section, the results of the proposed method using UACL based on EBNN show the effectiveness in overcoming this drawback.


Figure 9. SPE during normal operating state (no fault) using ICA for the BSM1 data.



[image: Algorithms 10 00049 g009]





Figure 10. SPE during normal operating state (no fault) with nonlinear principal component analysis (NLPCA) for the actual wastewater treatment plant (WWTP) data.



[image: Algorithms 10 00049 g010]






Before the construction of EBNN, a normalization of the monitored variables is necessary. Each variable of the training and testing data matrices are centred and scaled by subtracting and dividing, respectively, the mean/standard-deviation from/by each column to render the results independent of the used units.



In the testing phase under normal operating conditions, as illustrative examples, three of the estimated variables and the output classified modes (for q = 5 the number of components in bottleneck layer and m = 5 the number of normal operating modes) are plotted in Figure 11 and Figure 12 for the BSM1 case and Figure 13 and Figure 14 for real data, respectively.


Figure 11. Evolution of [image: there is no content], and [image: there is no content] after normalization and their estimations of BSM1 data.



[image: Algorithms 10 00049 g011]





Figure 12. Evolution of [image: there is no content], and [image: there is no content] after normalization and their estimations of real data.



[image: Algorithms 10 00049 g012]





Figure 13. Probability rates of various operating modes of BSM1 data.



[image: Algorithms 10 00049 g013]





Figure 14. Probability rates of various operating modes of real data.



[image: Algorithms 10 00049 g014]






It can be clearly seen that the monitored variables have been reconstructed and the probability rates are successfully estimated.



Figure 15 for BSM1 data and Figure 16 for real data represent the evolutions of the filtered SPE for BSM1 and real data, respectively, with an AUCL using KDE at a confidence level of [image: there is no content] under normal operating conditions. To reduce the false alarms, an exponentially weighted moving average (EWMA) is used to filter the effect of outliers and noise, as shown in figures of the filtered SPE.


Figure 15. Filtered SPE during normal operating state (no fault) with an adaptive upper control limit (AUCL) based on kernel density estimation (KDE) of BSM1 data.



[image: Algorithms 10 00049 g015]





Figure 16. Filtered SPE during normal operating state (no fault) with an adaptive UCL based on KDE of real data.



[image: Algorithms 10 00049 g016]






The formulation of the process monitoring strategy of this work focuses on the problem of faulty sensors precisely in WWTP, which may exhibit partial failures such as precision degradation due to significant noise, bias, or drift due to sludge clogging [42,43], which can be defined below:

	
a- Precision degradation: The precision degradation model is defined as a Gaussian random process with zero mean and unknown covariance matrix.



	
b- Bias: The bias error evolution can be characterized by positive or negative value.



	
c- Drift: This error follows an increasing deviation, such as polynomial change.








Figure 17 and Figure 18 show the results from a precision degradation fault tested on both cases of data, where the filtered SPE moves up and down many times above its AUCL.


Figure 17. Filtered SPE for precision degradation fault in sensor [image: there is no content] of BSM1.



[image: Algorithms 10 00049 g017]





Figure 18. Filtered SPE for precision degradation fault in sensor [image: there is no content] of real data.



[image: Algorithms 10 00049 g018]






Bias fault can be detected by filtered SPE, as shown in Figure 19 for BSM1 data and Figure 20 for real data.


Figure 19. Filtered SPE for bias fault in sensor [image: there is no content] sensor of the BSM1 data.



[image: Algorithms 10 00049 g019]





Figure 20. Filtered SPE for bias fault in sensor [image: there is no content] sensor of the real data.



[image: Algorithms 10 00049 g020]






The last simulation test concerns the drift fault, which can also be detected by filtered SPE, as indicated in Figure 21 and Figure 22 for BSM1 data and real data, respectively.


Figure 21. Filtered SPE for drift fault in sensor [image: there is no content] sensor of the BSM1 data.



[image: Algorithms 10 00049 g021]





Figure 22. Filtered SPE for drift fault in sensor [image: there is no content] sensor of the real data.



[image: Algorithms 10 00049 g022]






It is worth noting that the selected abnormal events correspond, respectively, to precision degradation, bias, and drift malfunctions related to the sensors of dissolved oxygen, nitrate, and nitrite nitrogen, which are the most important sensors in WWTP. However, [image: there is no content] represents a high correlation with the other variables. It can be seen that the SPE indicator exceeds its adaptive upper control limit in the case of bias and drift faults; however, in the precision degradation case, it can be seen that this malfunction type is translated by discontinuous alarms despite the use of AUCL. It is clear that the different faults are detected at various samples according to the type of fault, as indicated in Table 3. The results show the proposed robust monitoring performance in the presence of faults and produces few alarms. For identification, we cannot observe anything in the previous figures.



Table 3. Summary of fault scenarios.







	
Fault type

	
Precision degradation

	
Bias

	
Drift






	
Fault expression

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content].




	
Faulty sensor expression

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Fault time

	
336

	
366

	
366




	
2*Detection time

	
349.4 for BSM1 data and

	
336.7 for BSM1 data and

	
342.3 for BSM1 data and




	

	
346.2 for real data

	
337.2 for real data

	
392.1 for real data










Sensor Fault Identification and Reconstruction


Once a fault is detected, it is necessary to identify the faulty sensor according to the contribution plots approach, as given in Figure 23 and Figure 24 for BSM1 data and real data, respectively (drift fault case), where in the detection moment the [image: there is no content] sensor having the largest contribution to the SPE is the faulty sensor. To overcome the drawbacks of the traditional contribution plots, identification via reconstruction is proposed, as illustrated in the figures below.


Figure 23. Fault isolation by contribution plots for drift fault of BSM1 data (Sensor SO).



[image: Algorithms 10 00049 g023]





Figure 24. Fault isolation by contribution plots for drift fault of real data (Sensor SO).
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Figure 25 and Figure 26 illustrate the sensor validity indexes of BSM1 data and real data of all sensors after reconstruction for bias fault, and Figure 27 and Figure 28 for drift fault, in which the faults are eliminated by the correction of erroneous measure using the reconstruction principle. In this way, it is clear that the corrected sensor is faulty.


Figure 25. Fault isolation by sensor validity indexes for bias fault of BSM1 data.
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Figure 26. Fault isolation by sensor validity indexes for bias fault of real data.
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Figure 27. Fault isolation by sensor validity indexes for drift fault of BSM1 data.
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Figure 28. Fault isolation by sensor validity indexes for drift fault of real data.
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The SVIs can be immediately displayed on-line as soon as the abnormal event is detected. According to these SVIs which are not limited to isolating the faulty sensor, but can also show the correlation of the faulty sensor with other variables, in this way it can be seen that some sensors have been influenced by the reconstruction (as the sensor having the second largest contribution; see Figure 23 and Figure 24) due to high correlation with the faulty sensor. This can help the operator to provide a feasible interpretation. It should be noted that we can easily test any type of fault on any sensor, except the precision degradation fault is not localizable by the contribution plots or SVIs.



Finally, the comparative study shows that the proposed strategy has superior performance and is more effective for fault monitoring and diagnosis compared to the traditional methods like NLPCA or ICA, which are sensitive with the false alarms because of their constant confidence limit, and also are considered very late in fault detection.






4. Conclusions


The study described in this work concerns an enhanced control chart to monitor nonlinear processes and detect abnormal behaviours. The proposed strategy combines a Gaussian mixture model (GMM) with enhanced bottleneck neural networks (EBNN) to improve multivariate statistical process control (MSPC) using an adaptive upper control limit which is able to reduce the false alarms usually generated when the traditional upper control limit is used, since the proposed EBNN not only provides an estimated value of the input vector, but also probability rates of belonging to different operating modes. In addition, the filter applied to the SVI and SPE adds an important feature to minimize the number of false alarms.



To identify the faulty sensor, SVI based on the reconstruction error of the erroneous measure is successfully employed which gives a better diagnosis rate compared to the traditional contribution plots. However, the reconstruction allows the faulty sensor to be identified by comparing the sensor validity indexes before and after reconstructions of all measurements for each sensor—this can lead to the isolation of the faulty sensor.
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	ICA
	Independent Component Analysis
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	KDE
	Kernel Density Estimation



	MSPC
	Multivariate Statistical Process Control
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	Sensor Validity Index
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	Adaptive Upper Control Limit
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	Upper Control Limit
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	Squared Prediction Error



	AANN
	Auto-Associative Neural Network



	ANNC
	Artificial Neural Network Classifier
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	International Water Association
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	Benchmark Simulation Model no. 1
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	Statistical Process Monitoring



	SPC
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