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Abstract: The Dynamic Search Fireworks Algorithm (dynFWA) is an effective algorithm for solving
optimization problems. However, dynFWA easily falls into local optimal solutions prematurely and it
also has a slow convergence rate. In order to improve these problems, an adaptive mutation dynamic
search fireworks algorithm (AMdynFWA) is introduced in this paper. The proposed algorithm
applies the Gaussian mutation or the Levy mutation for the core firework (CF) with mutation
probability. Our simulation compares the proposed algorithm with the FWA-Based algorithms and
other swarm intelligence algorithms. The results show that the proposed algorithm achieves better
overall performance on the standard test functions.

Keywords: dynamic search fireworks algorithm; Gaussian mutation; Levy mutation; mutation
probability; standard test functions

1. Introduction

Fireworks Algorithm (FWA) [1] is a new group of intelligent algorithms developed in recent years
based on the natural phenomenon of simulating fireworks sparking, and can solve some optimization
problems effectively. Compared with other intelligent algorithms such as particle swarm optimization
and genetic algorithms, the FWA adopts a new type of explosive search mechanism, to calculate
the explosion amplitude and the number of explosive sparks through the interaction mechanism
between fireworks.

However, many researchers quickly find that traditional FWA has some disadvantages in solving
optimization problems; the main disadvantages include slow convergence speed and low accuracy,
thus, many improved algorithms have been proposed. So far, research on the FWA has concentrated
on improving the operators. One of the most important improvements of the FWA is the enhanced
fireworks algorithm (EFWA) [2], where the operators of the conventional FWA were thoroughly
analyzed and revised. Based on the EFWA, an adaptive fireworks algorithm (AFWA) [3] was proposed,
which was the first attempt to control the explosion amplitude without preset parameters by detecting
the results of the search process. In [4], a dynamic search fireworks algorithm (dynFWA) was proposed
which divided the fireworks into core firework and non-core fireworks according to the fitness value
and adaptive adjustment of the explosion amplitude for the core firework. Based on the analysis of
each operator of the fireworks algorithm, an improvement of fireworks algorithm (IFWA) [5] was
proposed. Since the FWA was proposed, it has been applied to many areas [6], including digital
filter design [7], nonnegative matrix factorization [8], spam detection [9], image identification [10],
mass minimization of trusses with dynamic constraints [11], clustering [12], power loss minimization
and voltage profile enhancement [13], etc.
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The aforementioned dynFWA variants can improve the performance of FWA to some extent.
However, the inhibition of premature convergence and solution accuracy improvement are still
challenging issues that require further research on dynFWA.

In this paper, an adaptive mutation dynamic search fireworks algorithm (AMdynFWA) is
presented. In AMdynFWA, the core firework chooses either Gaussian mutation or Levy mutation
based on the mutation probability. When it chooses the Gaussian mutation, the local search ability of
the algorithm will be enhanced, and by choosing Levy mutation, the ability of the algorithm to jump
out of local optimization will be enhanced.

The paper is organized as follows. In Section 2, the dynamic search fireworks algorithm is
introduced. The AMdynFWA is presented in Section 3. The simulation experiments and analysis of
the results are given in detail in Section 4. Finally, the conclusion is summarized in Section 5.

2. Dynamic Search Fireworks Algorithm

The AMdynFWA is based on the dynFWA because it is very simple and it works stably.
In this section, we will briefly introduce the framework and the operators of the dynFWA for
further discussion.

Without the loss of generality, consider the following minimization problem:

min f (x) (1)

The object is to find an optimal x with a minimal evaluation (fitness) value.
In dynFWA, there are two important components: the explosion operator (the sparks generated

by the explosion) and the selection strategy.

2.1. Explosion Operator

Each firework explodes and generates a certain number of explosion sparks within a certain range
(explosion amplitude). The numbers of explosion sparks (Equation (2)) are calculated according to the
qualities of the fireworks.

For each firework Xi, its explosion sparks’ number is calculated as follows:

Si = m× ymax − f (Xi) + ε
N
∑

i=1
(ymax − f (Xi)) + ε

(2)

where ymax = max (f (Xi)), m is a constant to control the number of explosion sparks, and ε is the
machine epsilon to avoid Si equal to 0.

In order to limit the good fireworks that do not produce too many explosive sparks, while the
poor fireworks do not produce enough sparks, its scope Si is defined as.

Si =


round(a×m), Si < a×m
round(b×m), Si > b×m
round(Si), otherwise

(3)

where a and b are fixed constant parameters that confine the range of the population size.
In dynFWA, fireworks are divided into two types: non-core fireworks and core firework, and the

core firework (CF) is the firework with the best fitness, and is calculated by Equation (4).

XCF = min f (xi) (4)
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The calculations of the amplitude of the non-core fireworks and the core firework are different.
The non-core fireworks’ explosion amplitudes (except for CF) are calculated just as in the previous
versions of FWA:

Ai = A× f (Xi)− ymin + ε
N
∑

i=1
( f (Xi)− ymin) + ε

(5)

where ymin = min f (Xi), A is a constant to control the explosion amplitude, and ε is the machine epsilon
to avoid Ai equal to 0.

However, for the CF, its explosion amplitude is adjusted according to the search results in the
last generation:

ACF(t) =


ACF(1) t = 1
Cr ACF(t− 1) f (XCF(t)) = f (XCF(t− 1))
Ca ACF(t− 1) f (XCF(t)) < f (XCF(t− 1))

(6)

where ACF(t) is the explosion amplitude of the CF in generation t. In the first generation, the CF is the
best among all the randomly initialized fireworks, and its amplitude is preset to a constant number
which is usually the diameter of the search space.

Algorithm 1 describes the process of the explosion operator in dynFWA.

Algorithm 1. Generating Explosion Sparks

Calculate the number of explosion sparks Si
Calculate the non-core fireworks of explosion amplitude Ai
Calculate the core firework of explosion amplitude ACF

Set z = rand (1, d)
For k = 1:d do

If k ∈ z then
If Xj

k is core firework then
Xj

k = Xj
k + rand (0, ACF)

Else
Xj

k = Xj
k + rand (0, Ai)

If Xj
k out of bounds

Xj
k = Xmin

k + |Xj
k| % (Xmax

k − Xmin
k)

End if
End if

End for

Where the operator % refers to the modulo operation, and Xmin
k and Xmax

k refer to the lower and
upper bounds of the search space in dimension k.

2.2. Selection Strategy

In dynFWA, a selection method is applied, which is referred to as the Elitism-Random Selection
method. In this selection process, the optima of the set will be selected firstly. Then, the other
individuals are selected randomly.

3. Adaptive Mutation Dynamic Search Fireworks Algorithm

The mutation operation is an important step in the swarm intelligence algorithm. Different mutation
schemes have different search characteristics. Zhou pointed out that the Gaussian mutation has
a strong local development ability [14]. Fei illustrated that the Levy mutation not only improves the
global optimization ability of the algorithm, but also helps the algorithm jump out of the local optimal
solution and keeps the diversity of the population [15]. Thus, combining the Gaussian mutation with
the Levy mutation is an effective way to improve the exploitation and exploration of dynFWA.
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For the core firework, for each iteration, two mutation schemes are alternatives to be conducted
based on a probability p. The new mutation strategy is defined as:

X′CF =

{
XCF + XCF ⊗ Gaussian() , i f E < p
XCF + XCF ⊗ Levy(), Otherwise

(7)

where p is a probability parameter, XCF is the core firework in the current population, and the symbol⊗
represents the dot product. Gaussian() is a random number generated by the normal distribution with
mean parameter mu = 0 and standard deviation parameter sigma = 1, and Levy() is a random number
generated by the Levy distribution, and it can be calculated with the parameter β = 1.5 [16]. The value
of E varies dynamically with the evolution of the population, with reference to the annealing function
of the simulated annealing algorithm, and the value of E is expected to change exponentially, and it is
calculated as follows:

E = e−(2t/Tmax)
2

(8)

where t is the current function evaluations, and Tmax is the maximum number of function evaluations.
To sum up, another type of sparks, the mutation sparks, are generated based on an adaptive

mutation process (Algorithm 2). This algorithm is performed Nm times, each time with the core
firework XCF (Nm is a constant to control the number of mutation sparks).

Algorithm 2. Generating Mutation Sparks

Set the value of mutation probability p
Find out the core firework XCF in current population
Calculate the value of E by Equation (8)
Set z = rand (1, d)
For k = 1:d do

If k ∈ z then
Produce mutation spark XCF’ by Equation (7)
If XCF’ out of bounds

XCF’ = Xmin + rand * (Xmax − Xmin)
End if

End if
End for

Where d is the number of dimensions, Xmin is the lower bound, and Xmax is the upper bound.
As Figure 1 shows, the Levy mutation has a stronger perturbation effect than the Gaussian

mutation. In the Levy mutation, the occasional larger values can effectively help jump out of the local
optimum and keep the diversity of the population. On the contrary, the Gaussian mutation has better
stability, which improves the local search ability.
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The flowchart of the adaptive mutation dynamic search fireworks algorithm (AMdynFWA) is
shown in Figure 2.Algorithms 2017, 10, 48 5 of 17 
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Figure 2. The flowchart of AMdynFWA.

Algorithm 3 demonstrates the complete version of the AMdynFWA.

Algorithm 3. Pseudo-Code of AMdynFWA

Randomly choosing m fireworks
Assess their fitness
Repeat

Obtain Ai (except for ACF)
Obtain ACF by Equation (6)
Obtain Si
Produce explosion sparks
Produce mutation sparks
Assess all sparks’ fitness
Retain the best spark as a firework
Select other m−1 fireworks randomly
Until termination condition is satisfied

Return the best fitness and a firework location

4. Simulation Results and Analysis

4.1. Simulation Settings

Similar to dynFWA, the number of fireworks in AMdynFWA is set to five, the number of mutation
sparks is also set to five, and the maximum number of sparks in each generation is set to 150.
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In the experiment, the function of each algorithm is repeated 51 times, and the final results
after 300,000 function evaluations are presented. In order to verify the performance of the algorithm
proposed in this paper, we use the CEC2013 test set [16], including 28 different types of test functions,
which are listed in Table 1. All experimental test function dimensions are set to 30, d = 30.

Table 1. CEC2013 test set.

Function Type Function Number Function Name Optimal Value

Unimodal Functions

1 Sphere function −1400
2 Rotated high conditioned elliptic function −1300
3 Rotated bent cigar function −1200
4 Rotated discus function −1100
5 Different powers function −1000

Basic Multimodal
Functions

6 Rotated rosenbrock’s function −900
7 Rotated schaffers F7 function −800
8 Rotated Ackley’s function −700
9 Rotated weierstrass function −600
10 Rotated griewank’s function −500
11 Rastrigin’s function −400
12 Rotated rastrigin’s function −300
13 Non-continuous rotated rastrigin’s function −200
14 Schewefel’s function −100
15 Rotated schewefel’s function 100
16 Rotated katsuura function 200
17 Lunacek Bi_Rastrigin function 300
18 Rotated Lunacek Bi_Rastrigin function 400
19 Expanded griewank’s plus rosenbrock’s function 500
20 Expanded scaffer’s F6 function 600

Composition Functions

21 Composition function 1 (N = 5) 700
22 Composition function 2 (N = 3) 800
23 Composition function 3 (N = 3) 900
24 Composition function 4 (N = 3) 1000
25 Composition function 5 (N = 3) 1100
26 Composition function 6 (N = 5) 1200
27 Composition function 7 (N = 5) 1300
28 Composition function 8 (N = 5) 1400

Finally, we use the Matlab R2014a software on a PC with a 3.2 GHz CPU (Intel Core i5-3470),
4 GB RAM, and Windows 7 (64 bit).

4.2. Simulation Results and Analysis

4.2.1. Study on the Mutation Probability p

In AMdynFWA, the mutation probability p is introduced to control the probability of selecting
the Gaussian and Levy mutations. To investigate the effects of the parameter, we compare the
performance of AMdynFWA with different values of p. In this experiment, p is set to 0.1, 0.3, 0.5, 0.7,
and 0.9, respectively.

Table 2 gives the computational results of AMdynFWA with different values of p, where ‘Mean’ is
the mean best fitness value. The best results among the comparisons are shown in bold. It can be seen
that p = 0.5 is suitable for unimodal problems f1 − f5. For f6 − f20, p = 0.3 has a better performance
than the others. When p is set as 0.1 or 0.9, the algorithm obtains better performance on f21 − f28.

The above results demonstrate that the parameter p is problem-oriented. For different problems,
different p may be required. In this paper, taking into account the average ranking, p = 0.3 is regarded
as the relatively suitable value.
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Table 2. Mean value and average rankings achieved by AMdynFWA with different p, where the ‘mean’
indicates the mean best fitness value.

Functions
p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

Mean Mean Mean Mean Mean

f1 −1400 −1400 −1400 −1400 −1400
f2 3.76 × 105 3.84 × 105 4.56 × 105 3.96 × 105 4.13 × 105

f3 1.01 × 108 8.32 × 107 5.56 × 107 7.16 × 107 6.69 × 107

f4 −1099.9872 −1099.98 −1099.988 −1099.9870 −1099.984
f5 −1000 −1000 −1000 −1000 −1000
f6 −870.38 −876.05 −875.5 −875.29 −874.71
f7 −713.59 −711.45 −713.69 −712.66 −702.99
f8 −679.069 −679.057 −679.052 −679.063 −679.067
f9 −578.503 −577.189 −577.75 −577.436 −576.518

f10 −499.976 −499.968 −499.968 −499.972 −499.974
f11 −305.44 −302.436 −307.02 −311.215 −309.596
f12 −164.688 −174.843 −163.865 −173.722 −154.561
f13 −31.9988 −36.4318 −35.7453 −30.6652 −32.3421
f14 2616.647 2543.716 2676.641 2586.064 2704.535
f15 3664.113 3974.245 3888.197 3946.214 3723.16
f16 200.3942 200.3496 200.3884 200.3441 300.3698
f17 437.5601 425.8707 426.4633 424.32 428.1304
f18 583.18 577.8134 578.672 576.0805 573.5208
f19 506.931 506.5545 506.6363 507.0156 506.3289
f20 613.1458 613.154 613.113 613.594 613.423
f21 1047.089 1051.01 1016.475 1035.483 1049.556
f22 3871.804 3928.667 4109.614 4059.632 4032.769
f23 5402.42 5574.529 5524.135 5597.751 5338.983
f24 1264.25 1265.845 1265.61 1268.231 1264.214
f25 1390.105 1387.764 1387.808 1390.035 1391.654
f26 1408.752 1412.901 1424.752 1414.98 1412.238
f27 2203.579 2187.724 2192.054 2191.372 2181.232
f28 1812.154 1762.647 1707.262 1771.612 1830.575

Average Ranking

2.93 2.82 2.86 3.07 2.93

4.2.2. Comparison of AMdynFWA with FWA-Based Algorithms

To assess the performance of AMdynFWA, AMdynFWA is compared with enhanced fireworks
algorithm (EFWA), dynamic search fireworks algorithms (dynFWA), and adaptive fireworks algorithm
(AFWA), and the EFWA parameters are set in accordance with [2], the AFWA parameters are set in
accordance with [3], and the dynFWA parameters are set in accordance with [4].

The probability p used in AMdynFWA is set to 0.3. For each test problem, each algorithm runs
51 times, all experimental test function dimensions are set as 30, and their mean errors and total
number of rank 1 are reported in Table 3.

The results from Table 3 indicate that the total number of rank 1 of AMdynFWA (23) is the best of
the four algorithms.
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Table 3. Mean errors and total number of rank 1 achieved by EFWA, AFWA, dynFWA,
and AMdynFWA.

Functions
EFWA AFWA dynFWA AMdynFWA

Mean Error Mean Error Mean Error Mean Error

f1 7.82 × 10−2 0 0 0
f2 5.43 × 105 8.93 × 105 7.87 × 105 3.84 × 105

f3 1.26 × 108 1.26 × 108 1.57 × 108 8.32 × 107

f4 1.09 11.5 12.8 2.02 × 10−2

f5 7.9 × 10−2 6.04 × 10−4 5.42 × 10−4 1.86 × 10−4

f6 34.9 29.9 31.5 23.9
f7 1.33 × 102 9.19 × 101 1.03 × 102 8.85 × 101

f8 2.10 × 101 2.09 × 101 2.09 × 101 2.09 × 101

f9 3.19 × 101 2.48 × 101 2.56 × 101 2.28 × 101

f10 8.29 × 10−1 4.73 × 10−2 4.20 × 10−2 3.18 × 10−2

f11 4.22×102 1.05 × 102 1.07 × 102 9.75 × 101

f12 6.33 × 102 1.52 × 102 1.56 × 102 1.25 × 102

f13 4.51 × 102 2.36 × 102 2.44 × 102 1.63 × 102

f14 4.16 × 103 2.97 × 103 2.95 × 103 2.64 × 103

f15 4.13 × 103 3.81 × 103 3.71 × 103 3.87 × 103

f16 5.92 × 10−1 4.97 × 10−1 4.77 × 10−1 3.4 × 10−1

f17 3.10 × 102 1.45 × 102 1.48 × 102 1.25 × 102

f18 1.75 × 102 1.75 × 102 1.89 × 102 1.77 × 102

f19 12.3 6.92 6.87 6.55
f20 14.6 13 13 13
f21 3.24 × 102 3.16 × 102 2.92 × 102 3.51 × 102

f22 5.75 × 103 3.45 × 103 3.41 × 103 3.12 × 103

f23 5.74 × 103 4.70 × 103 4.55 × 103 4.67 × 103

f24 3.37 × 102 2.70 × 102 2.72 × 102 2.65 × 102

f25 3.56 × 102 2.99 × 102 2.97 × 102 2.87 × 102

f26 3.21 × 102 2.73 × 102 2.62 × 102 2.12 × 102

f27 1.28 × 103 9.72 × 102 9.92 × 102 8.87 × 102

f28 4.34 × 102 4.37 × 102 3.40 × 102 3.62 × 102

total number of rank 1

1 4 7 23

Figure 3 shows a comparison of the average run-time cost in the 28 functions for AFWA, EFWA,
dynFWA, and AMdynFWA.
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The results from Figure 3 indicate that the average run-time cost of EFWA is the most expensive
among the four algorithms. The time cost of AFWA is the least, but the run-time cost of AMdynFWA is
almost the same compared with AFWA. The run-time cost of AMdynFWA is less than that of dynFWA.
Taking into account the results from Table 3, AMdynFWA performs significantly better than the other
three algorithms.

To evaluate whether the AMdynFWA results were significantly different from those of the EFWA,
AFWA, and dynFWA, the AMdynFWA mean results during the iteration for each test function were
compared with those of the EFWA, AFWA, and dynFWA. The T test [17], which is safe and robust,
was utilized at the 5% level to detect significant differences between these pairwise samples for each
test function.

The ttest2 function in Matlab R2014a was used to run the T test, as shown in Table 4. The null
hypothesis is that the results of EFWA, AFWA, and dynFWA are derived from distributions of equal
mean, and in order to avoid increases of type I errors, we correct the p-values using the Holm’s method,
and order the p-values for the three hypotheses being tested from smallest to largest, and we then
have three T tests. Thus, the p-value 0.05 is changed to 0.0167, 0.025, and 0.05, and then the corrected
p-values were used to compare with the calculated p-values, respectively.

Table 4. T test results of AMdynFWA compared with EFWA, AFWA and dynFWA.

Functions p/Significance EFWA AFWA dynFWA

f1
p-value 0 NaN NaN

significance + - -

f2
p-value 1.5080 × 10−32 5.1525 × 10−50 2.6725 × 10−49

significance + + +

f3
p-value 0.8004 0.4302 0.0778

significance - - -

f4
p-value 1.5546 × 10−136 1.8922 × 10−246 8.8572 × 10−235

significance + + +

f5
p-value 0 NaN NaN

significance + - -

f6
p-value 1.5957 × 10−14 0.7108 0.0139

significance + - +

f7
p-value 1.8067 × 10−36 0.5665 0.0084

significance + - +

f8
p-value 0.1562 0.0137 9.2522 × 10−6

significance - + +

f9
p-value 7.0132 × 10−27 0.0278 6.6090 × 10−8

significance + + +

f10
p-value 2.7171 × 10−134 7.3507 × 10−6 0.0364

significance + + +

f11
p-value 2.2083 × 10−100 3.0290 × 10−10 0.0437

significance + + +

f12
p-value 1.7319 × 10−101 1.3158 × 10−11 1.8212 × 10−7

significance + + +

f13
p-value 2.3914 × 10−89 4.1645 × 10−36 8.6284 × 10−37

significance + + +

f14
p-value 0.0424 0.0117 4.4964 × 10−5

significance + + +

f15
p-value 1.1749 × 10−6 0.9976 0.6064

significance + - -

f16
p-value 2.2725 × 10−17 8.9230×10−12 2.3427 × 10−13

significance + + +
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Table 4. Cont.

Functions p/Significance EFWA AFWA dynFWA

f17
p-value 1.5713 × 10−81 7.3257 × 10−10 1.0099 × 10−6

significance + + +

f18
p-value 0.8510 0.2430 0.1204

significance - - -

f19
p-value 3.6331 × 10−25 5.3309 × 10−6 0.0086

significance + + +

f20
p-value 3.5246 × 10−14 0.2830 0.4615

significance + - -

f21
p-value 2.2455 × 10−6 0.0120 0.0028

significance + + +

f22
p-value 3.2719 × 10−46 0.0634 0.0344

significance + - -

f23
p-value 2.1191 × 10−33 0.1225 0.4819

significance + - -

f24
p-value 8.9612 × 10−69 9.0342 × 10−5 6.0855 × 10−4

significance + + +

f25
p-value 1.2812 × 10−59 1.0745 × 10−6 1.6123 × 10−8

significance + + +

f26
p-value 4.6864 × 10−39 2.5440 × 10−16 1.1739 × 10−11

significance + + +

f27
p-value 2.3540 × 10−46 4.8488 × 10−6 2.1456 × 10−7

significance + + +

f28
p-value 6.4307 × 10−92 0.4414 0.0831

significance + - -

Where the p-value is the result of the T test. The ‘+’ indicates the rejection of the null hypothesis
at the 5% significance level, and the ‘-’ indicates the acceptance of the null hypothesis at the 5%
significance level.

Table 5 indicates that AMdynFWA showed a large improvement over EFWA in most functions.
However, in Unimodal Functions, AMdynFWA is not significant when compared with AFWA and
dynFWA. In Basic Multimodal Functions and Composition Functions, the AMdynFWA also showed
a large improvement over AFWA and dynFWA.

Table 5. Total number of significance of AMdynFWA compared with EFWA, AFWA and dynFWA.

Functions Type EFWA AFWA dynFWA

Unimodal Functions (f1 − f5) 4 2 2
Basic Multimodal Functions (f6 − f20) 13 10 12

Composition Functions (f21 − f28) 8 5 5

Total number of significance in EFWA, AFWA and dynFWA

25 17 19

Figure 4 shows the mean fitness searching curves of the 28 functions for EFWA, AFWA, dynFWA,
and AMdynFWA.
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Figure 4. The EFWA, AFWA, dynFWA, and AMdynFWA searching curves. (a) f1 function;
(b) f2 function; (c) f3 function; (d) f4 function; (e) f5 function; (f) f6 function; (g) f7 function;
(h) f8 function; (i) f9 function; (j) f10 function; (k) f11 function; (l) f12 function; (m) f13 function;
(n) f14 function; (o) f15 function; (p) f16 function; (q) f17 function; (r) f18 function; (s) f19 function;
(t) f20 function; (u) f21 function; (v) f22 function; (w) f23 function; (x) f24 function; (y) f25 function;
(z) f26 function; (A) f27 function; (B) f28 function.

4.2.3. Comparison of AMdynFWA with Other Swarm Intelligence Algorithms

In order to measure the relative performance of the AMdynFWA, a comparison among the
AMdynFWA and the other swarm intelligence algorithms is conducted on the CEC2013 single objective
benchmark suite. The algorithms compared here are described as follows.

(1) Artificial bee colony (ABC) [18]: A powerful swarm intelligence algorithm.
(2) Standard particle swarm optimization (SPSO2011) [19]: The most recent standard version of the

famous swarm intelligence algorithm PSO.
(3) Differential evolution (DE) [20]: One of the best evolutionary algorithms for optimization.
(4) Covariance matrix adaptation evolution strategy (CMA-ES) [21]: A developed evolutionary algorithm.

The above four algorithms use the default settings. The comparison results of ABC, DE, CMS-ES,
SPSO2011, and AMdynFWA are presented in Table 6, where the ’Mean error’ is the mean error of the
best fitness value. The best results among the comparisons are shown in bold. ABC beats the other
algorithms on 12 functions (some differences are not significant), which is the most, but performs
poorly on the other functions. CMA-ES performs extremely well on unimodal functions, but suffers
from premature convergence on some complex functions. From Table 7, the AMdynFWA ranked the
top three (22/28), which is better than the other algorithms (except the DE), and in terms of average
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ranking, the AMdynFWA performs the best among these five algorithms on this benchmark suite due
to its stability. DE and ABC take the second place and the third place, respectively. The performances
of CMS-ES and the SPSO2011 are comparable.

Table 6. Mean errors and ranking achieved by ABC, DE, CMS-ES, SPSO2011, and AMdynFWA.

Functions Mean Error/Rank ABC DE CMS-ES SPSO2011 AMdynFWA

f1
Mean error 0 1.89 × 10−3 0 0 0

Rank 1 2 1 1 1

f2
Mean error 6.20 × 106 5.52 × 104 0 3.38 × 105 3.84 × 105

Rank 5 2 1 3 4

f3
Mean error 5.74 × 108 2.16 × 106 1.41 × 101 2.88 × 108 8.32 × 107

Rank 5 2 1 4 3

f4
Mean error 8.75 × 104 1.32 × 10−1 0 3.86 × 104 2.02 × 10−2

Rank 5 3 1 4 2

f5
Mean error 0 2.48 × 10−3 0 5.42 × 10−4 1.86 × 10−4

Rank 1 4 1 3 2

f6
Mean error 1.46 × 101 7.82 7.82 × 10−2 3.79 × 101 2.39 × 101

Rank 3 2 1 5 4

f7
Mean error 1.25 × 102 4.89×101 1.91 × 101 8.79 × 101 8.85 × 101

Rank 5 2 1 3 4

f8
Mean error 2.09 × 101 2.09 × 101 2.14 × 101 2.09 × 101 2.09 × 101

Rank 1 1 2 1 1

f9
Mean error 3.01 × 101 1.59 × 101 4.81 × 101 2.88 × 101 2.28 × 101

Rank 4 1 5 3 2

f10
Mean error 2.27 × 10−1 3.42 × 10-2 1.78 × 10−2 3.40 × 10−1 3.18 × 10−2

Rank 4 3 1 5 2

f11
Mean error 0 7.88 × 101 4.00 × 102 1.05 × 102 9.75 × 101

Rank 1 2 5 4 3

f12
Mean error 3.19 × 102 8.14 × 101 9.42 × 102 1.04 × 102 1.25 × 102

Rank 4 1 5 2 3

f13
Mean error 3.29 × 102 1.61 × 102 1.08 × 103 1.94 × 102 1.63 × 102

Rank 4 1 5 3 2

f14
Mean error 3.58 × 10−1 2.38 × 103 4.94 × 103 3.99 × 103 2.64 × 103

Rank 1 2 5 4 3

f15
Mean error 3.88 × 103 5.19 × 103 5.02 × 103 3.81 × 103 3.87 × 103

Rank 3 5 4 1 2

f16
Mean error 1.07 1.97 5.42 × 10−2 1.31 3.4 × 10−1

Rank 3 5 1 4 2

f17
Mean error 3.04 × 101 9.29 × 101 7.44 × 102 1.16 × 102 1.25 × 102

Rank 1 2 5 3 4

f18
Mean error 3.04 × 102 2.34 × 102 5.17 × 102 1.21 × 102 1.77 × 102

Rank 4 3 5 1 2

f19
Mean error 2.62 × 10−1 4.51 3.54 9.51 6.55

Rank 1 3 2 5 4

f20
Mean error 1.44 × 101 1.43 × 101 1.49 × 101 1.35 × 101 1.30 × 101

Rank 4 3 5 2 1

f21
Mean error 1.65 × 102 3.20 × 102 3.44 × 102 3.09 × 102 3.51 × 102

Rank 1 3 4 2 5

f22
Mean error 2.41 × 101 1.72 × 103 7.97 × 103 4.30 × 103 3.12 × 103

Rank 1 2 5 4 3

f23
Mean error 4.95 × 103 5.28 × 103 6.95 × 103 4.83 × 103 4.67 × 103

Rank 3 4 5 2 1

f24
Mean error 2.90 × 102 2.47 × 102 6.62 × 102 2.67 × 102 2.65 × 102

Rank 4 1 5 3 2

f25
Mean error 3.06 × 102 2.89 × 102 4.41 × 102 2.99 × 102 2.87 × 102

Rank 4 2 5 3 1
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Table 6. Cont.

Functions Mean Error/Rank ABC DE CMS-ES SPSO2011 AMdynFWA

f26
Mean error 2.01 × 102 2.52 × 102 3.29 × 102 2.86 × 102 2.12 × 102

Rank 1 3 5 4 2

f27
Mean error 4.16 × 102 7.64 × 102 5.39 × 102 1.00 × 103 8.87 × 102

Rank 1 4 2 5 3

f28
Mean error 2.58 × 102 4.02 × 102 4.78 × 103 4.01 × 102 3.62 × 102

Rank 1 4 5 3 2

Table 7. Statistics of rank (SR) and average rankings (AR).

SR/AR ABC DE CMS-ES SPSO2011 AMdynFWA

Total number of rank 1 12 5 9 4 5
Total number of rank 2 0 10 3 4 11
Total number of rank 3 4 7 0 9 6
Total number of rank 4 8 4 2 7 5
Total number of rank 5 4 2 14 4 1
Total number of rank 76 72 93 87 70

Average ranking 2.71 2.57 3.32 3.11 2.5

5. Conclusions

AMdynFWA was developed by applying two mutation methods to dynFWA. It selects the
Gaussian mutation or Levy mutation according to the mutation probability. We apply the CEC2013
standard functions to examine and compare the proposed algorithm AMdynFWA with ABC, DE,
SPSO2011, CMS-ES, AFWA, EFWA, and dynFWA. The results clearly indicate that AMdynFWA can
perform significantly better than the other seven algorithms in terms of solution accuracy and stability.
Overall, the research demonstrates that AMdynFWA performed the best for solution accuracies.

The study on the mutation probability p demonstrates that there is no constant p for all the test
problems, while p = 0.3 is regarded as the relatively suitable value for the current test suite. A dynamic
p may be a good choice. This will be investigated in future work.
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