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Abstract: This paper presents a variant of the iterative shrinkage-thresholding (IST) algorithm,
called backtracking-based adaptive IST (BAIST), for image compressive sensing (CS) reconstruction.
For increasing iterations, IST usually yields a smoothing of the solution and runs into prematurity.
To add back more details, the BAIST method backtracks to the previous noisy image using L2 norm
minimization, i.e., minimizing the Euclidean distance between the current solution and the previous
ones. Through this modification, the BAIST method achieves superior performance while maintaining
the low complexity of IST-type methods. Also, BAIST takes a nonlocal regularization with an adaptive
regularizor to automatically detect the sparsity level of an image. Experimental results show that our
algorithm outperforms the original IST method and several excellent CS techniques.

Keywords: iterative shrinkage-thresholding (IST); backtracking; compressive sensing (CS);
nonlocal regularization

1. Introduction

Exploiting a prior knowledge of the original signals is critical to the success of compressive
sensing recovery. For compressive sensing (CS) imaging applications, methods that only seek a domain
(e.g., discrete cosine transform (DCT), wavelet, and contourlet) to represent and recover images often
fail, since they cannot achieve a high enough degree of sparsity. Researchers have therefore explored
the use of more elaborate structures, such as minimal total variation [1], block sparsity [2], wavelet
trees [3], group sparsity [4], Markov mixture models [5] and nonlocal sparsity [6–9].

Among these structures, nonlocal sparsity [6–8], which exploits the self-repetitive structure
exhibited often in natural images, has shown great potential. In NLR-CS (CS via nonlocal low-rank
regularization) [6], a patch-based low-rank regularization model is built to enforce the low-rank
property over the sets of nonlocal similar patches. In contrast, the D-AMP (denoising-based
approximate message passing) algorithm [7] exploits the image self-similarity through the use of
nonlocal-based denoisers, such as the BM3D (block-matching and 3D filtering) denoiser [10], which
performs hard or soft thresholding with a 3D orthogonal dictionary (3D filtering) on 3D image blocks
built by stacking similar patches together (block-matching). Closely relating to D-AMP, BM3D-CS [8]
iteratively adds Gaussian noise to approximate the missing part of the spectra and then applies BM3D
to the result.

On the other hand, the iterative shrinkage-thresholding (IST) algorithm [11] is frequently adopted
to solve sparse models, e.g., in [1,3,6,12], because of the low computational cost. Each IST iteration takes
a step in the direction of the negative gradient of the data-fidelity term, followed by the application of
the shrinkage function. The two-step IST (TwIST) algorithm [13], the fast IST algorithm (FISTA) [14],
and the sparse reconstruction by separable approximation (SpaRSA) algorithm [15] are all accelerated
variants of IST.
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In this paper, a modified IST method, named backtracking-based adaptive IST (BAIST), is proposed
for image CS reconstruction. Similar to IST-type methods, it recovers images with forward-backward
iterations. However, unlike IST-type methods that generally yield an over-smoothed solution, BAIST
incorporates a backtracking constraint to add back-filtered details and enforce a noisier image through
the minimization of the distance between the current solution and the previous ones. Furthermore,
the nonlocal regularization with an adaptive regularization parameter set according to the current
residual is to adaptively estimate the sparsity level of the image. Experimental results show that our
method impressively outperforms previous methods in terms of reconstruction accuracy, and also
achieves a competitive advantage in computation complexity.

2. Compressive Sensing and IST Algorithm

The CS recovery method recovers a signal x0 ∈ Cn from its randomized linear measurements
y = Ax0, y ∈ Cm, where A ∈ Cm×n is the measurement matrix. Since m < n, it is an underdetermined
problem. More than one solution can yield the same measurements, but if x is sparse, we can recover
the original signal by minimizing the following L1 problem:

x̂ = argmin
x

1
2
‖y−Ax‖2

2 + λ‖x‖1 (1)

where λ is a regularization parameter.
The above problem can be efficiently solved by the IST algorithm [11]. Specifically, the general step

of IST is summarized in Algorithm 1. IST recovers the original signal with forward-backward iterations
alternating between a gradient descent step (step (a)) and a proximal denoising correction (step (b)).
In step (a), the data-fidelity term is f (x) = ‖y−Ax‖2

2/2 and ∇ f (xk) = A∗(Axk − y) is its gradient at
the point xk; A∗ is the conjugate transpose of A; and c is a step size. A = SF is the undersampled Fourier
matrix used in the paper, where F is the 2D Fourier transform and S is a selection matrix containing m
rows of the identity matrix. Step (b) is a proximity operator, which has a close form solution:

xk = soft(xg, λc) = sgn(xg) ·max(abs(xg)− λc, 0) (2)

Algorithm 1 IST [11]

Input: y, A, λ, c, x0 = 0
for k = 1 to K do
(a) xg = xk − c∇ f (xk)

(b) xk = argmin
x
{λ‖x‖1 + ‖x− xg‖2

2/(2c)}
end for

3. Image CS Recovery via Backtracking-Based Adaptive IST

3.1. New Objective Function

There exist abundant similar image patches in natural images, which can be utilized through
nonlocal regularizations for high-order sparsity in image CS recovery. In the paper, the image
self-similarity is characterized by means of the last item in the following equation:

x̂ = argmin
x

1
2
‖y−Ax‖2

2 + µ
G

∑
i=1
‖Γ3Dxi‖0 (3)

where the last item is derived from BM3D [10], which is used to seek patch correlation in image
denoising. To obtain Γ3Dxi, we first stack similar image patches to a 3D group, where xi is the i-th group
and G is the total number of groups; then 3D wavelet transform (WT) Γ3D is conducted on xi, which is
achieved by conducting 2D WT on each patch and then conducting 1D WT along the third axis.
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Problem (3) can be solved by IST; however, as the iteration increases, the recovered image tends
to be over-smoothed. As a result, the algorithm runs into prematurity. To avoid this problem, we add
a backtracking constraint to add back-filtered details and force a noisier image:

x(k) = argmin
x

1
2
‖y−Ax‖2

2 + µ
G

∑
i=1
‖Γ3Dxi‖0 +

B

∑
j=1

bj

2
‖x− x(k−j)‖

2
2 (4)

The last item in Equation (4) enforces the current solution which is similar to the previous noisier
ones, and the similarity degrees between them are controlled by parameters b1, b2, . . . , bB. Intuitively,
a larger bj means more noise added back. We have observed, in a large number of experiments, that
the algorithm always achieves improvements and converges for a wide range of choices of parameters
b1, b2, . . . , bB.

3.2. BAIST Algorithm for Solving the New Objective Function

Firstly, we offer the procedure for solving Equation (3) with the IST algorithm outlined in
Algorithm 2, named ISTANR (IST with adaptive nonlocal regularization). In step (a), the fidelity
term is optimized by gradient descent to get a solution xg, which can be regarded as a noise image.
Step (b) is a proximity denoising correction step implemented through the use of nonlocal thresholding.

Algorithm 2 IST with Adaptive Nonlocal Regularization

Input: y, A, s, c, x0 = 0
for k = 1 to K do
(a) xg = xk − c∇ f (xk)

(b) xk = argmin
x
{µ

G
∑

i=1
‖Γ3Dxi‖0 + ‖x− xg‖2

2/(2c)}

end for

Secondly, we solve Equation (4) with ISTANR by letting g(x) = 1
2‖y−Ax‖2

2 +
B
∑

j=1

bj
2 ‖x− x(k−j)‖2

2,

and substituting f (x) for g(x). The proposed method named BAIST (backtracking-based adaptive IST)

is summarized in Algorithm 3, where ∇g(xk) = −A∗(y−Axk) +
B
∑

j=1
bj(xk − x(k−j)). Unlike ISTANR

which obtains the noisy observation of x (i.e., xg) using the fidelity term, BAIST super-adds the
difference between the current solution and the previous ones, and thus obtains a noisier xg for
avoiding prematurity. It can be confirmed in Figure 1 that BAIST yields the intermediate result of xg

with more details.

Algorithm 3 Backtracking-Based Adaptive IST

Input: y, A, b1, b2, . . . , bB, s, c, x0 = 0
for k = 1 to K do
(a) xg = xk − c∇g(xk)

(b) xk = argmin
x
{µ

G
∑

i=1
‖Γ3Dxi‖0 + ‖x− xg‖2

2/(2c)}

end for

The key to success in implementing both BAIST and ISTANR is to compute the proximity
denoising correction. We use a lemma in [15], namely the minimization problem:

x̂ = argmin
x

1
2
‖x− a‖2

2 + λ‖x‖0 (5)
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which has a closed form solution, expressed as:

x̂ = hard(a,
√

2λ) =

{
a, if abs(a)−

√
2λ > 0

0, otherwise
(6)

Since the orthogonal transform Γ3D has the property of energy conservation, step (b) can be
written as:

x = argmin
x
{3µ ∑

i∈G
‖Γ3Dxi‖0 +

∑
i∈G
‖Γ3Dxi − Γ3D(xg)i‖

2
2

2cN
} (7)

Its solution is:

(x)i = hard(Γ3D(xg)i,
√

6µcN) =

{
Γ3D(xg)i, if abs(Γ3D(xg)i)−

√
6µcN > 0

0, otherwise
(8)

where xi and (xg)i are the i-th similar patches 3D group of x and xg, respectively. Since a patch
may be assigned to several 3D groups, the patches in the last item of Equation (7) are repetitively
computed. Let N be a scale factor for balancing the increasing energy caused by the repetitive
computation; however, we can directly set the threshold of the hard thresholding operator in Equation
(8) δ =

√
6µcN, rather than computing N and selecting an appropriate regularization parameter µ.

Apparently, the threshold δ should be reduced with the increasing iteration number to gain a more and
more clear image, which is similar to the continuation strategy [15] in IST-type methods. A natural
idea is that δ is proportional to the observation residual in CS reconstruction:

δ = s
√
‖y−Axg‖2

2/m (9)

where s is a scale factor and can be set empirically. As a result, we obtain an adaptive thresholding
method. Note that when more noise is added back to the current solution xg by BAIST, the threshold
δ is simultaneously increased, and thus the solution would not get noisier and the algorithm can
approach the noise-free image.
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Figure 1. Visual intermediate results of ISTANR (a) and BAIST (b). 
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nonparametric method BM3D-CS [8]. Three experiments are carried out on 20 standard test images 
with a size of 256 × 256 (shown in Figure 2) at five sampling ratios (16%, 18%, 20%, 22%, and 24%). 

Figure 1. Visual intermediate results of ISTANR (a) and BAIST (b).

4. Experiments

To evaluate the reconstruction performances of the proposed algorithm in items of average peak
signal to noise ratio (PSNR), runtime and visual quality, we compare the BAIST algorithm with six
excellent algorithms, including the ISTANR algorithm; two other algorithms based on the IST method
FCSA [1]; WaTMRI [3]; two Bayesian CS methods, Turbo-AMP [5], D-AMP [7]; and the nonparametric
method BM3D-CS [8]. Three experiments are carried out on 20 standard test images with a size of
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256 × 256 (shown in Figure 2) at five sampling ratios (16%, 18%, 20%, 22%, and 24%). All experiments
are conducted on a desktop with 3.80 GHz AMD A10-5800K CPU. The Matlab version is R2014a.
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Several parameters need to be set for running BAIST and ISTANR. We set the step size c = 1, and
the scale factor of the threshold in Equation (9) s = 10 in the first 10 iterations, and s = 3 in the rest of the
iterations because of the presence of more noise in the early iterations. The 3D wavelet transform Γ3D

is composed of 2D bior1.5 and 1D Haar. To construct 3D groups by stacking similar patches, we need
to set the following parameters: the size of each patch is 8 × 8; the size of the window for searching
matched patches is 25 × 25; the number of best-matched patches is 16; and the sliding step to process
every next reference patch is set to six. For BAIST, a wide range of choices of parameters b1, b2, . . . , bB
is available to achieve improvements; in our experiments, we set b1 = 0.9, b2 = 0.7, b3 = 0.4, b4 = 0.3,
and backtracking is adopted after 10 iterations. We set the maximum iterations K = 10 for Turbo-AMP,
K = 100 for BM3D-CS, and K = 50 for the rest of the algorithms. For the algorithms except for BAIST
and ISTANR, the default settings in their codes are used.

4.1. Average PSNR Evaluation

In the experiments, we generated CS measurements by randomly sampling the Fourier transform
coefficients of input images by following the previous works [1,3]. The average PSNR results from
running each image five times are shown in Figure 3. From Figure 3, one can see that (1) four nonlocal
sparsity-based methods, BAIST, ISTANR, D-AMP, and BM3D-CS, performed better than the others;
(2) the highest PSNR results were achieved by the proposed algorithm BAIST, the average PSNR gains
of which, compared to the next-best algorithm D-AMP, can be as much as 0.71 dB; (3) through the use
of backtracking, BAIST outperformed its original IST version ISTANR by 0.83 dB on average; (4) and
the standard deviations of all algorithms at low sampling ratios were much greater than the ones at
high sampling ratios because the randomness is higher at low sampling ratios. These results validate
the superiority of BAIST in objective quality and the effectiveness of backtracking.
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4.2. Visual Quality and Runtime Evaluation on Boat Image

For better quality perception, experiments performed on the boat image presented similar PSNR
results, shown in Figure 4. The CPU time vs. PSNR and the iteration number vs. PSNR of different
algorithms carried out on the boat image with 20% sampling are presented in Figures 5 and 6,
respectively. The corresponding recovered images are given in Figure 7. From Figure 7, we can
clearly see that four nonlocal sparsity-based methods are still better than the others. Among them,
BAIST enjoyed great advantages over ISTANR in producing a clearer image, e.g., on the area of the
prow, due to the backtracking strategy. The reconstructed boat image of BAIST and D-AMP was
close to some degree at 20% sample rates, but BAIST was still clearer than D-AMP with a zoomed-in
version, also achieving higher PSNR results after 19 s as shown in Figure 5, and after 34 iterations as
shown in Figure 6. Besides, for BM3D-CS with more iterations, its results are presented for every two
iterations in Figure 6. The superiority of the proposed algorithm in visual quality and runtime could
be demonstrated by these results.
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5. Conclusions 

A new iterative regularization method for image compressive sensing recovery is proposed in 
this paper. By adapting a simple backtracking constraint to the IST method, the proposed method 
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and hence gives a much better reconstruction performance than the tested IST method ISTANR. 
Also, it is very appropriate for image CS reconstruction applications since a nonlocal wavelet 
thresholding method with an adaptive threshold is able to achieve high enough degree of sparsity. 
In the experiments, our algorithm was shown to outperform six excellent algorithms in 
reconstruction quality, and also achieved a competitive advantage in runtime. 
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5. Conclusions

A new iterative regularization method for image compressive sensing recovery is proposed in this
paper. By adapting a simple backtracking constraint to the IST method, the proposed method BAIST
can flexibly add back some details that are filtered out incorrectly in the previous processing, and hence
gives a much better reconstruction performance than the tested IST method ISTANR. Also, it is very
appropriate for image CS reconstruction applications since a nonlocal wavelet thresholding method
with an adaptive threshold is able to achieve high enough degree of sparsity. In the experiments,
our algorithm was shown to outperform six excellent algorithms in reconstruction quality, and also
achieved a competitive advantage in runtime.
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