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Abstract: An algorithm is presented for the simulation of two partially flexible macromolecules where
the interaction between the flexible parts and rigid parts is represented by energy grids associated
with the rigid part of each macromolecule. The proposed algorithm avoids the transformation of the
grid upon molecular movement at the expense of the significantly lesser effect of transforming the
flexible part.
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1. Introduction

Atomic level simulation of macromolecules is currently performed almost exclusively by
molecular dynamics. Its success, due to it following the actual time course of the system, is also
the source of its ultimate limitation—that of the time scale reachable by it. However, it was argued
earlier that Monte Carlo, the preferred technique at the early times of molecular simulations, has the
potential of overcome this limitation as it is not bound to time [1]. In spite of this potential, there are
few groups working along this line [2–4]. A further advantage of the Monte Carlo approach over
molecular dynamics is the ease of limiting the sampling to certain parts of the system and/or to
a limited set of degrees of freedom.

Representing the field of rigid macromolecules on grids specific to the type of the interacting
atoms is a standard technique employed in many docking softwares [5,6] where the target is held
rigid and a flexible ligand is moved around the target. Assuming that there are NR atoms in the rigid
part, in the energy calculation for each moving atom, the grid representation of the rigid part of the
macromolecule replaces the calculation of NR distances with the calculation of the distances from
the eight nearest gridpoints followed by interpolating the corresponding eight energy terms adding
an effort equivalent to about two more distance calculations. Since the most likely macromolecule type
to be thus modeled is a protein and protein domains have well over a thousand atoms (i.e., NR ' 1000
is a low estimate in most cases), using the grid representation saves a factor of NR/10, that is, likely
a factor of ~100 or more. This idea has also been combined with the Monte Carlo approach for the
simulation of protein loops [7] where only a small part of the molecule is moved during the simulation,
achieving similar speedup. The fact that the rigid part of the macromolecule is also kept in place
was an important aspect for the success of these applications since it allowed keeping the grid(s)
unchanged during the entire simulation. The algorithm described here is designed to maintain the
gains achievable by the use of the grids for the case when a macromolecule is moved.

When modeling the interaction of two partially rigid macromolecules, the straightforward
extension of these algorithms would run into the difficulty of having to move at least one of the
sets of grids. This introduces additional computation expenses: (a) finding the nearest eight gridpoints
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would be more involved since the rotated grids would not be aligned with the Cartesian axes and (b) the
additional computational burden of transforming Nt * Ng

3 grid values (with Nt being the number
of grid types and Ng the number of gridpoints along one Cartesian direction) whenever a whole
macromolecule is moved. The proposed algorithm would eliminate these problems at negligible added
computational cost.

2. The Algorithm Proposed

This note describes an algorithm that allows the movement of the rigid part while maintaining
the grids in their original positions, giving rise to the same savings as obtained for the single
molecule system.

Figure 1 shows the schematics of the system considered. The rigid parts of the macromolecules are
represented by the oblongs labeled with R1 and R2 and the flexible parts are represented by the loops
F1 and F2. Macromolecule 2 will be held in place with only the F2 part moving while macromolecule 1
is allowed to translate/rotate whilst also changing the conformation of the part represented by the
atoms forming F1.
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the proposed algorithm avoids this. Instead, the algorithm introduces the alternative position of 
macromolecule 2, R2′. It is constructed by translating/rotating the whole complex in such a way that 
the rigid part of macromolecule 1 is overlaid on its initial position/orientation. Note that, in reality, 
only the coordinates of the flexible part F2 are involved in the calculation.  
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Figure 1. Schematics of the system considered. R1, R2: rigid part of macromolecules 1 and 2,
respectively; F1, F2: flexible part of macromolecules 1 and 2, respectively.

The key to the algorithm proposed is the simultaneous updating of two equivalent copies of the
flexible parts, labeled F1

′ and F2
′ in Figure 2. The difference between the primed and unprimed versions

is just a translation/rotation of the rigid part; their conformations are identical. The initial position of
macromolecule 1 is R1 and its position after rigid translation/rotation is R1

′. Such a transformation
would also require the transformation of grid G1 into G1

′, as shown in Figure 2, but the proposed
algorithm avoids this. Instead, the algorithm introduces the alternative position of macromolecule 2,
R2
′. It is constructed by translating/rotating the whole complex in such a way that the rigid part of

macromolecule 1 is overlaid on its initial position/orientation. Note that, in reality, only the coordinates
of the flexible part F2 are involved in the calculation.

Since E(F1
′,G1

′) = E(F1,G1) and E(F2,G1
′) = E(F2

′,G1) where E(F,G) represents the energy of flexible
part F interacting with grid G, this arrangement allows the calculation of the energy of a new complex
as follows:

E = E(F1,G1) + E(F2,G2) + E(F1
′,G2) + E(F2

′,G1) + E(F1
′,F2) (1)

where E(F1
′,F2) is the energy of the interaction between flexible parts F1

′ and F2.
Two kinds of changes are considered: translate/rotate macromolecule 1 in the current

conformation of its flexible part, F1, or change the conformation of the flexible part of one of the
macromolecules, F1 or F2. When macromolecule 1 is translated/rotated, the coordinates of F1

′ and F2
′

have to be updated. When the flexible part of macromolecule 1 is changed, the coordinates of F1 and
F1
′ have to be updated. When the flexible part of macromolecule 2 is changed, the coordinates of F2

and F2
′ have to be updated.

Note that in Equation (1), the energy of the interaction between the two rigid parts, being separated
by the layers of the flexible part, is assumed to be negligible. For the Van der Waals interactions,
this assumption holds to a good approximation. As for the electrostatic interactions, it is possible to
include them, at negligible computational expense, using a multipole representation of the charge
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distribution since the two rigid parts can be enclosed into nonoverlapping spheres, ensuring the
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Figure 2. Schematics of the copies needed for the proposed algorithm. R1, R2: rigid part of 
macromolecules 1 and 2, respectively; F1, F2: flexible part of macromolecules 1 and 2, respectively; G1, 
G2: The set of grids representing the field of the rigid parts R1 and R2, respectively; Primed items 
represent the systems after change from the initial position, orientation and conformation. The two 
interacting systems are shown with their distance increased for clarity. 
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Figure 2. Schematics of the copies needed for the proposed algorithm. R1, R2: rigid part of
macromolecules 1 and 2, respectively; F1, F2: flexible part of macromolecules 1 and 2, respectively;
G1, G2: The set of grids representing the field of the rigid parts R1 and R2, respectively; Primed items
represent the systems after change from the initial position, orientation and conformation. The two
interacting systems are shown with their distance increased for clarity.

3. Discussion

This note presented an algorithm that extends the use of grid-based force fields to the modeling of
two partially flexible macromolecules by eliminating the added computation involved in determining
the nearest gridpoints, and the computation to transform the grids. As for the determination of
the nearest gridpoints, the proposed algorithm’s use of a transformed copy is adding a similar
computational expense, so there is no net effect. The main saving is achieved by eliminating the
transformation of the grids.

Assuming that there are 10 different grids corresponding to different atom types, the proposed
algorithm would save the transformation of ~10×Ng3 points at the negligible expense of transforming
the additional NF atoms of the flexible part. Assuming that Ng ' 200 (a reasonable value in
our experience) and that the flexible part is about 10% of the whole molecule, about ~8 × 105

transformations can be eliminated at the negligible expense of ~2 × 102 additional transformations
of the flexible part. The estimate of the overall effect is less straightforward. It is reasonable to
assume that the volume of the grid is proportional to the volume of the flexible atoms or, equivalently,
that the number of grids along an axis is proportional to the cube root of the number of flexible
atoms, i.e., Ng = c1 × NF

1/3, and that the overall energy calculation will be dominated by the direct
interactions of the flexible parts. Assuming further, as is generally true for Markov-chain Monte
Carlo, that a move involves a small limited fraction of the atoms available for moving, the work
in calculating the energy change is c2 × NF. This means that the ratio of the work involved in the
energy calculation per step and the corresponding savings by using the algorithm proposed here is
[c2 × (NF)]/[W × 10 × (c1 × NF

1/3)3] = c2/(10 ×W × c1
3) where W is the fraction of the time during

which the whole molecule is moved. Thus, in the limit of a large number of flexible atoms, the expense
of transforming the grid is commensurable to the rest of the energy calculation, thus the upper limit of
the savings is a constant, depending, among others, on the frequency of whole molecule moves. Likely
applications, however, are far from this limit: assuming (a relatively large) NF ' 100 and Ng ' 200 and
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the number of changed flexible atoms ~50 (an overestimate), the ratio of the energy calculation to the
grid transformation calculation would be (50 × 100)/(W × 10 × 2003) = 10 −4(5/(W × 8) × F where
F is the ratio of the computation expenses of calculating a distance and transforming a coordinate.
Clearly, it shows a significant gain for systems of systems of likely size.

Thus, it is expected that this algorithm would significantly speed up the modeling of protein
complexes where the interaction region is relatively small compared to the overall volume of the
complex and foster further developments in the Monte Carlo methodology. It is planned to implement
it into the program called MMC [4] that already includes the single grid version. A typical example
for its use would be modeling major histocompatibility complexes (MHC) [8]. An example for such
a system is shown in Figure 3.
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Figure 3. Crystal structure of MHC class I HLA-A2.1 bound to a photocleavable peptide  
(PDB ID: 2X70). The possible choices of flexible parts corresponding to F1 and F2 are shown in red 
and blue spheres, respectively. 
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