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Abstract: Sentiment analysis has played a primary role in text classification. It is an undoubted fact
that some years ago, textual information was spreading in manageable rates; however, nowadays,
such information has overcome even the most ambiguous expectations and constantly grows within
seconds. It is therefore quite complex to cope with the vast amount of textual data particularly if we
also take the incremental production speed into account. Social media, e-commerce, news articles,
comments and opinions are broadcasted on a daily basis. A rational solution, in order to handle
the abundance of data, would be to build automated information processing systems, for analyzing
and extracting meaningful patterns from text. The present paper focuses on sentiment analysis
applied in Greek texts. Thus far, there is no wide availability of natural language processing tools
for Modern Greek. Hence, a thorough analysis of Greek, from the lexical to the syntactical level,
is difficult to perform. This paper attempts a different approach, based on the proven capabilities
of gradient boosting, a well-known technique for dealing with high-dimensional data. The main
rationale is that since English has dominated the area of preprocessing tools and there are also quite
reliable translation services, we could exploit them to transform Greek tokens into English, thus
assuring the precision of the translation, since the translation of large texts is not always reliable
and meaningful. The new feature set of English tokens is augmented with the original set of Greek,
consequently producing a high dimensional dataset that poses certain difficulties for any traditional
classifier. Accordingly, we apply gradient boosting machines, an ensemble algorithm that can learn
with different loss functions providing the ability to work efficiently with high dimensional data.
Moreover, for the task at hand, we deal with a class imbalance issues since the distribution of
sentiments in real-world applications often displays issues of inequality. For example, in political
forums or electronic discussions about immigration or religion, negative comments overwhelm the
positive ones. The class imbalance problem was confronted using a hybrid technique that performs a
variation of under-sampling the majority class and over-sampling the minority class, respectively.
Experimental results, considering different settings, such as translation of tokens against translation
of sentences, consideration of limited Greek text preprocessing and omission of the translation
phase, demonstrated that the proposed gradient boosting framework can effectively cope with both
high-dimensional and imbalanced datasets and performs significantly better than a plethora of
traditional machine learning classification approaches in terms of precision and recall measures.

Keywords: gradient boosting machines; sentiment analysis; high-dimensional data; Modern Greek

Algorithms 2017, 10, 34; doi:10.3390/a10010034 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms


Algorithms 2017, 10, 34 2 of 21

1. Introduction

Undoubtedly, the way that machines and humans search, retrieve and manage information
changes at a high rate. The potential information resources have increased because of the advent of
Web 2.0 technologies. User-generated content is available from a large pool of sources, such as online
newspapers, blogs, e-commerce sites, social media, etc. The quantity of information is continuously
increasing in every domain. Initially, it was online retailers, such as Amazon, that identified possible
profits by exploiting users’ opinions. However, nowadays, almost everyone has realized that quality
of services, marketing and maximization of sales cannot be achieved without considering the textual
content that is generated by Internet users. Therefore, the task of identifying relevant information from
the vast amount of human communication information over the Internet is of utmost importance for
robust sentiment analysis. In fact, the existence of opinion data has resulted in the development of
Web Opinion Mining (WOM) [1], as a new concept in web intelligence. WOM focuses on extracting,
analyzing and combining web data about user thoughts. The analysis of users’ opinions is substantial
because they provide the elements that determine how people feel about a topic of interest and know
how it was received by the market. In general, traditional sentiment analysis mining techniques
apply to social media content, as well; however, there are certain factors that make Web 2.0 data more
complicated and difficult to parse. An interesting study about the identification of such factors was
made by Maynard et al. [2], in which they exposed important features that pose certain difficulties to
traditional approaches when dealing with social media streams. The key difference lies in the fact that
users are not passive information consumers, but are also prolific content creators. Social media can be
categorized on a diverse spectrum, based on the type of connection amongst users, how information is
shared and how users interact with the media streams:

• Interest-graph media [3], such as Twitter, encourage users to form connections with others, based
on shared interests, regardless of whether they know the other person in real life. Connections do
not always need to be reciprocated. Shared information comes in the form of a stream of messages
in reverse chronological order.

• Professional Networking Services (PNS), such as LinkedIn, aim to provide an introduction service
in the context of work, where connecting to a person implies that you vouch for that person to a
certain extent and would recommend them as a work contact for others. Typically, professional
information is shared, and PNS tend to attract older professionals [4].

• Content sharing and discussion services, such as blogs, video sharing (e.g., YouTube, Vimeo),
slide sharing (e.g., SlideShare) and user discussion forums (e.g., CNET). Blogs usually contain
longer contributions. Readers might comment on these contributions, and some blog sites create
a time stream of blog articles for followers to read. Many blog sites also advertise automatically
new blog posts through their users’ Facebook and Twitter accounts.

The following challenging features are also recognized by researchers and classified as openings
for the development of new semantic technology and text mining approaches, which will be better
suited to social media streams:

• Short messages (microtexts): Twitter and most Facebook messages are very short (140 characters
for tweets). Many semantic-based methods reviewed below supplement these with extra
information and context coming from embedded URLs and hashtags. For instance, in the work
of [5], the authors augment tweets by linking them to contemporaneous news articles, whereas
in [6], online hashtag glossaries are exploited to augment tweets.

• Noisy content: social media content often has unusual spelling (e.g., 2moro), irregular
capitalization (e.g., all capital or all lowercase letters), emoticons (e.g., :-P) and idiosyncratic
abbreviations (e.g., ROFL for “Rolling On Floor Laughing”, ZOMG for “Zombies Oh My God”).
Spelling and capitalization normalization methods have been developed [7], coupled with studies
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of location-based linguistic variations in shortening styles in microtexts [8]. Emoticons are used
as strong sentiment indicators in opinion mining algorithms.

The Modern Greek language poses additional complications to sentiment analysis since the
majority of preprocessing tools for Greek, such as the Part-of-Speech (POS) tagger, shallow syntactic
parsers and polarity lexica, are not freely available. In the current work, we deal with modeling a
sentiment analysis framework for Modern Greek, based on a simple, yet functional and effective idea.
We propose an alternative approach that capitalizes on the power of existing induction techniques
while enriching the language of representation, namely exploring new feature spaces.

We bypass the need for extensive preprocessing tools and utilize a freely available translation API
that is provided by Google®, in order to augment the feature set of the training data. Nevertheless,
since automatic translation of large sentences is often reported as portraying low accuracy, mainly
due to the large degree of ambiguity, especially in the case of Modern Greek, we followed a simple
approach, translating each Greek token individually, a process that rarely makes errors. The resulting
feature set portrayed, as expected, an approximate doubling of the original size, which also poses
certain difficulties to the majority of classification algorithms. Hence, we experimented with an
ensemble classification algorithm known as Gradient Boosting Machines (GBM), which is theoretically
proven to be able to cope with a large number of features [9]. According to the referenced work,
“a possible explanation why boosting performs well in the presence of high-dimensional data is that
it does variable selection (assuming the base learner does variable selection) and it assigns variable
amount of degrees of freedom to the selected predictor variables or terms”. Moreover, apart from the
high-dimensional nature of our task at hand, a class imbalance issue appeared since the distribution of
sentiment in Web 2.0 resources often portrays signs of imbalance. Imbalanced datasets correspond
to domains where there are many more instances of some classes than others. For example, there
are frequent occasions in political or religion discussions about a given topic over social media that
generally present a skewed polarity distribution. In order to confront that phenomenon, a hybrid
technique that performs a modification over a former technique [10] was applied. More specifically,
we applied under-sampling to the instances that belong to the majority class and over-sampling to the
minority class, respectively.

We experimented with numerous well-known algorithms using the initial Greek-only feature
set (obtained upon preprocessing with basic filters, such as tokenization and stemming), as well as
the enhanced translated one and also some basic feature reduction techniques, such as principal
component analysis [11] and feature selection. Through extensive experimental evaluations, we
found that GBM are superior to any other implementation. Additionally, when coping with the class
imbalance issue, experimental results justify the use of the bootstrapping method since traditional
algorithms favor the majority class in their predictions. GBM was again the best choice in the latter
case, i.e., the imbalanced dataset.

This paper is organized as follows: Section 2 deals with related work on this domain, while
Section 3 provides brief insight on GBM. Section 4 discusses the main rationale for using the translation
of Greek terms as a feature generation technique. Section 5 describes the data formulation and
manipulation steps, along with the experimental setup process, and finally, Section 6 presents the
outcomes of empirical experimental evaluations. Section 7 concludes with some revision remarks
about the contribution of this article and its main findings.

2. Related Work

Throughout recent years, a vast number of articles studying different types of sentiment analysis
in English documents has been observed. Examples of such types include objectivity and subjectivity
detection, opinion identification, polarity classification, entity or aspect-based sentiment classification,
etc. Detailed insights into the aforementioned approaches can be found in survey papers authored
by Pang and Lee [12], Liu and Zhang [13], as well as Mohammad [14]. However, only a few studies
address the problem of sentiment analysis in Greek. In the following paragraphs, the related work
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is subdivided into a brief outline on current methods for sentiment analysis with emphasis on social
media content, followed by relevant research on Greek texts and, finally, discussing the use of resources
from another language, i.e., multilingual sentiment analysis.

2.1. Sentiment Analysis and Social Media

When dealing with information services, social events and e-commerce, the human urge to
populate thoughts has resulted in the great popularity of opinionated textual content. For example,
taking the fact that the most common type of message on Twitter is about “me now” [15], it is
evident that users frequently externalize their current state of mind, their emotions and their mood.
Bollen et al. [16] argued that users express both their own mood in tweets about themselves and more
generally in messages about other subjects. Additionally, many users, upon reading an article or
buying a product, feel the need to share their opinion online about this [17]. We can safely say that a
great part of information generated, but not limited, by specific resources is consumed and commented
on positively or negatively in Web 2.0 content. In the same article (i.e., [17]), it is estimated that about
19% of microblog messages include a brand name, and 20% contains sentiment.

The research of [12] focused on more traditional ways of automatic sentiment analysis techniques.
We can categorize sentiment analysis approaches into two classes: the techniques that are based on
some polarity lexica (e.g., [18]) and the methods that are based on machine learning (e.g., [19]). In the
former case, pre-compiled terms have been collected and annotated with an a priori sentiment score,
which can be aggregated in order to extract the sentiment of a document or a sentence. Moghaddam and
Popowich [20] constitute the polarity of product reviews by identifying the polarity of the adjectives
that appear in them, with a reported accuracy of about 10% higher than traditional machine learning
techniques. Nevertheless, such relatively high-precision techniques often fail to generalize when
shifted to other, new domains or text formats, because they are not flexible regarding the ambiguity
of sentiment terms. A significant number of lexicon-based methods has portrayed the benefits of
contextual information [21,22] and has also indicated specific context words with a high impact on the
polarity of ambiguous terms [23]. A frequent drawback of such solutions is the time-consuming and
painstaking procedure of forming these polarity dictionaries of sentiment terms, despite the fact that
there exist solutions in the form of distributed techniques.

The latter class of sentiment analysis methods, that of machine learning, operates by extracting
syntactic and linguistic features [24,25] from text corpora that have been manually annotated as regards
their sentiment. Subsequently, classification algorithms attempt to construct computational models
of the separation boundary between the positive and negative sentiment. Certainly, there is research
that performs a combination of these two trends (e.g., [25]). The machine learning techniques can
be divided into supervised approaches like naive Bayes, decision trees, Support Vector Machines
(SVM) ([26,27]), and unsupervised approaches [28], like pattern-logic classification according to a
lexicon. It should be mentioned that in [29], a naive Bayes algorithm was found to perform better than
many other typical classifiers.

Pak and Paroubek [24] aimed to classify random tweets by building a binary classifier, which used
n-grams and POS features. Their model was trained on instances that had been annotated according to
the existence of positive and negative emoticons (i.e., pictorial representations of a facial expression
using punctuation marks, numbers and letters). Similar methods have been also suggested by [30],
which also used unigrams, bigrams and POS features, though the former proved through experimental
analysis that the distribution of certain POS tags varies between positive and negative posts. One of the
reasons for the relative lack of linguistic techniques for opinion mining on social media is most likely
due to the inherent difficulties in applying standard Natural Language Processing (NLP) techniques
on low quality texts, something that machine learning techniques can, to some extent, overcome with
sufficient training data. A characteristic example that demonstrates the above is that the Stanford
Name Entity Recognizer (NER) drops from a 90.8% F-measure to merely 45.88% when applied to a set
of tweets [31].
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Recent advances in the domain introduce the use of semantics as an attempt to enhance existing
features with semantic ones. By using linked data, ontologies and various lexical online resources,
studies, such as [32–34], portray the advantages of having a semantic framework for identifying
opinion holders and building sentiment scoring algorithms on its top. Note however that in order to
include high-level semantics in sentiment analysis projects, lexical resources such as SentiWordNet,
YAGO (Yet Another Great Ontology) ConceptNet, etc., are required, being for now mostly available
in English.

2.2. Sentiment Analysis for Greek Texts

Greek is a language with limited, freely-available, linguistic resources. Therefore, most research
on sentiment analysis for Greek relies on handcrafted sentiment lexica. For example, the authors of [35]
construct an emotional sentiment lexicon for Greek and apply it on a Twitter dataset, created by [36].
The entries of this sentiment lexicon were collected through crawling the electronic version of the
Greek dictionary by Triantafyllides [37]. The work of [38] also describes the use of a manual sentiment
lexicon for Greek, containing about 27,000 types of positive words and 41,000 types of negative words.
The authors also presented an open-source tool that inflects words in a semi-automatic manner. Upon
creation of the lexicon, they used a simple bag-of-words approach that aggregated the sentiment
score over all of the words within a document. A set of 1800 evaluations from the Greek version of
TripAdvisor was used, and SVM was applied as the classification method.

A commercial software for polarity detection for entities and sentiment analysis, called
“OpinionBuster”, is presented in [39]. They presented a name entity recognition module that has been
trained to locate entities from the reputation management domain, such as political parties, products
of particular vendors and their competitors and perform sentiment analysis using Hidden Markov
Models (HMM). Their corpus consisted of about 1300 RSS feeds from Greek political newspapers
(Kathimerini and Real News). In [40], sentiment analysis was again performed on Twitter data,
considering two milestones during the 2012 Greek elections, i.e., one week before and one week after.
The goal of this work was to study the alignment between web and actual political sentiment in a
bi-directional manner: the impact/reflection of the tweets’ sentiment on the elections, as well as the
impact of the elections’ results on web sentiment and its shift around such a major political event. The
authors examined the sentiment tagging in a supervised environment. Their hypothesis was focused
on the positive vs. negative distinction, using statistical techniques such as count and frequency
distributions. The alignment between actual political results and web sentiment in both directions was
investigated and confirmed.

Finally, in [41], a framework for the lexicon-grammar of verb and noun predicates denoting
emotion is presented, followed by its transformation into grammatical rules. The authors discuss
the lack of significant resources and NLP preprocessing tools and, towards this direction, propose
the enriching, re-purposing and re-using of already available Language Resources (LR) for the
identification of emotion expressions in texts.

2.3. Multilingual Sentiment Analysis

Sentiment analysis research has predominantly been applied on English. Approaches to improve
sentiment analysis in a resource-poor focus language in a multilingual manner include either: (a) the
translation of resources, such as sentiment labeled corpora and sentiment lexicons, from English into
the focus language, and use them as additional resources in the focus-language sentiment analysis
system; or (b) the translation of the focus language text into a resource-rich language, such as English,
and apply a powerful sentiment analysis system on the translation.

Initial study on multilingual sentiment analysis has primarily addressed mapping sentiment
resources from English into morphologically complex languages, i.e., the former direction (a).
Mihalcea et al. [42] used English resources to automatically generate a Romanian subjectivity lexicon
using an English-Romanian dictionary. The work of [43] investigated both (a) and (b) for Arabic. More
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specifically, they conducted several experiments by either using translated English polarity lexica into
Arabic texts or freely-available machine translation engines and manual translations for converting
Arabic to English in order to subsequently apply sentiment analysis.

The work of Politopoulou and Maragoudakis [27] was the first to introduce the idea of
machine-translated aid towards sentiment analysis of Greek texts. In their approach, they translated
the whole document, which led to significant deterioration of the original meaning, probably due to
the noisy content (the instances were collected by a social media platform) and the early versions of the
Greek-to-English machine translation engines. Balahur and Turchi [44] investigated the performance
of statistical sentiment analysis on machine-translated texts. Opinion-bearing English phrases from
the New York Times dataset were fed into an English sentiment analysis system that portrayed a
prediction accuracy of approximately 68%. Following, the dataset was automatically translated into
German, Spanish and French using publicly available machine-translation APIs, such as Google,
Bing and Moses. The translated test sets were subsequently manually corrected for errors. Upon
corrections for German, Spanish and French, a sentiment analysis system was trained on the translated
training set for that language and tested on the translated-and-corrected test set. The authors observed
that these German, Spanish and French sentiment analysis systems performed similar to the initial
English sentiment classifier. There also exists research on using sentiment analysis to improve machine
translation, such as the work by Chen and Zhu [45], but that is beyond the scope of the proposed work.

3. Gradient Boosting Machines

3.1. Boosting Methods Overview

The main characteristic of “boosting” is the conversion of a set of weak learners to a strong and
robust classifier. A weak learner is practically any prediction model with a relatively poor performance
(e.g., in terms of accuracy) that leads to unsafe conclusions, thus making it unusable due to the high
rate of misclassification error. To convert a weak learner to a strong one, the predictions of a number
of independent weak learners have to be combined. This combination is accomplished by taking the
majority vote of every prediction of all weak learners as the final prediction. Another way to produce
a strong learner from weak ones is to use the weighted average. A weak learner is added iteratively to
the ensemble until the ensemble provides the correct classification. The most common representatives
of the boosting family are Adaptive Boosting (AdaBoost), Gradient Boosting (GBM) and XGBoost
(eXtreme Gradient Boost). These types serve as the base for a large number of boosting variations.

3.2. How the Gradient Boosting Algorithm Works

The common boosting techniques, like AdaBoost, rely on simple averaging of models in the
ensemble. The main idea of boosting is to add new models to the ensemble sequentially. At each
iteration, a new weak, base learner model is trained with respect to the error of the whole ensemble
learnt so far. In the case of gradient boosting, the learning method successively fits new models to
deliver a more accurate estimate of the class variable. Every new model is correlated with the negative
gradient of the loss function of the system and tends to minimize it. This materializes by using the
gradient descent method.

3.3. Gradient Descent Method

The gradient descent is an optimization algorithm that finds the local minimum of a function
using steps proportional to the negative gradient of the function. Suppose there is a multi-variable
function F(x), defined and differentiable in a neighborhood of point a. F(x) decreases fastest if one
goes from a in the direction of the negative gradient of F at a, i.e., ∇F(a). For any point b where
b = a− γ∇F(a), if γ is small enough, it turns out that F(a) ≥ F(b). Therefore, if we consider a random
starting point x0 for a local minimum of F and apply the previous formula to a sequence of points,
x0, x1, . . . , xn, such that xn+1 = xn − γn∇F(xn) n ≥ 0, we obtain F(x0) ≥ F(x1) ≥ F(x1) ≥ ..., and
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the sequence converges to the desired local minimum. This method is applicable to both linear and
non-linear systems.

3.4. Application of the Gradient Descent Process to the Error Function

Before applying the gradient descent process to an error function, one should express the
estimating function of a system F for an expected loss function g. For a given dataset in the form of
Xi, Yi (i = 1, ... n), Xi is a variable with k-dimensions and Yi is a response with continuous or discrete
values (in the case of continuous values, the problem is characterized as regression, in the case of
discrete values as classification). Let us assume for reasons of simplicity that Y is univariate. From the
function: F: Rκ→ R and expected loss g, the aim is to minimize the expected loss E[g(Y,F(X))], g(., .) :
R X R+.

F̂(x) = arg
min
F(x)

g(y, F(x))

As mentioned earlier, F and g are the estimation and the loss function, respectively. The function
F expresses the correlation of X, Y. To make sure that the method will work correctly, the loss function
g should be smooth and convex in the second argument. The loss function depends on the domain
with which we have to cope. The features of the system (e.g., if the system has outliers or it is high
dimensional) pose a significant impact on the decision of how the machine learning task should be
considered. In most of the cases, the loss function belongs to one of the following [9]:

(a) Gaussian L2
(b) Laplace L1
(c) Huber with δ specified
(d) Quantile with α specified
(e) Binominal
(f) AdaBoost
(g) Loss function for survival models
(h) Loss function counts data
(i) Custom loss function

In case the response of the system is continuous, we try (a) to (d) from the above list; in case
the response is categorical, we try € or (f). To the extent of our knowledge, the three remaining loss
functions are currently not supported by any open-source implementation of GBM.

The following figure (Figure 1) illustrates two continuous loss functions:

(a) L2 squared loss function with generic format: Ψ(y, f )L2
= 1

2 (y− f )2 and

(b) Huber loss function with generic format:

Ψ(y, f )Huber,δ =

{ 1
2 (y− f )2 , |y− f | ≤ δ

1
δ

(
|y− f | − δ

2

)
, |y− f | > δ

(1)

for the case (I) δ = 1, (II) δ = 0.5 and (III) δ = 0.25.
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3.5. Regularization for Base Learners

One of the most powerful characteristics that GBM has is the ability to use different types of base
learners, like linear models, smooth models, decision trees, Markov models, etc. A list that categorizes
the base learners is presented below:

1. Linear models: ordinary linear regression, ridge penalized linear regression and random effects.
2. Smooth models: P-splines, radial basis functions.
3. Decision trees: decision tree stumps, decision trees with arbitrary interaction depth.
4. Other cases of models: Markov random fields, custom base learner functions, wavelets.

This feature provides the ability of one GBM to encompass more than one base learners. In practice,
this means that at the same time for the system we work on, we can have one function that includes
a combination of base learners, e.g., decision trees and linear models. Therefore, it is feasible that
complex models are created. At this point, we should mention that regardless of what base learners
will be used in order to produce a satisfactory model, the regularization part is critical. There are
explicit techniques that can be applied, which depend on the particular case. These techniques include,
but are not limited to, subsampling, shrinkage and early stopping. Especially in early stopping, it
prevents the model from overfitting. The fine-tuning process should definitely be a part of the model
creation process. Additionally, GBM can cope with high-dimensional data because of the ability to
create sparse models. This advantage is very useful in the case of sentiment analysis. Nevertheless, the
flexibility of the algorithm has some objective disadvantages. GBM creates models by doing a great
number of iterations, thus requiring plentiful resources in processing power and memory consumption,
because every model is stored in memory.

3.6. Variable Importance

Previously, we had categorized the GBM algorithm as an ensemble algorithm. Like every ensemble
algorithm, GBM is also capable of calculating the importance of each variable. An internal mechanism
provides the rate at every single feature. From this rate is produced a list with all of the features with
their relative importance. The order of variable importance can be used as a tool for exploratory data
analysis and domain knowledge extraction, especially in cases for which the system is very complex.

4. Translation as a Feature Generation Method

In text mining, the traditional Bag Of Words (BOW) approach is inherently restricted to model
pieces of textual information that are explicitly mentioned in the documents, provided that the same
vocabulary is consistently used. Specifically, this approach has no access to domain knowledge
possessed by humans and is not capable of dealing with facts and terms not mentioned in the
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training set in a robust manner. We will borrow an example mentioned in [46], in order to exemplify
the disadvantages of BOW. Consider Document #15264 in Reuters-21578, which is one of the most
commonly-used datasets in research about text categorization. This document describes a joint
mining venture by a consortium of companies, belonging to the category “copper”. By examining the
document, one can clearly observe that it mainly mentions the mutual share holdings of the companies
involved (Teck Corporation, Cominco and Lornex Mining) and only briefly reports that the aim of the
venture is mining copper. As a result, three popular classifiers, such as SVM, k-NN and decision trees,
failed to classify the document correctly.

A possible solution to the aforementioned problem could involve the consideration of additional
features, with the anticipation that these will be more informative than the existing ones. This strategy
is not uncommon in machine learning and is referred as feature generation [47]. The motivation in
feature generation is to search for or produce new features that describe the target concept better
than the ones supplied with the training instances. Works by [48,49] described feature generation
algorithms that led to substantial improvements in classification. In text mining, feature generation has
been applied in terms of finding concepts of words either from WordNet [50] or from Open Directory
and Wikipedia [51].

Our approach is also based on feature generation, but instead of finding synonyms or hypernyms
through WordNet, we apply machine translation over Greek tokens. Certainly, this approach
augments the total number of features, which will likely intensify the “curse of dimensionality”
issue. Nevertheless, there exist feature selection algorithms, either inherent in classifiers, such as GBM
or SVM, or individual, such as Pearson correlation. As already mentioned, we apply GBM, which can
measure the influence of features by measuring the effect of each split on a variable in a decision tree
to the log likelihood of the whole ensemble across all trees.

A research question emerged from our decision to utilize the translation of the Greek texts into
English, i.e., whether to translate at the sentence or at the word level. By experimenting with both
approaches over a small sample of the dataset and also by inspecting various instances, we observed
that the noisy nature of such documents set insurmountable obstacles to the translation, resulting in
very poor outcomes. An illustrative example, demonstrating the fact that using the Google translation
API at the sentence level does not always give better results than translating at the word level, especially
for content that is populated in Web 2.0 platforms, such as in our case, is provided below. Table 1
presents an initial negative comment about the former prime minister of Greece, as posted on the web.
Furthermore, we provide its meaning in English and, finally, the outcome of the translation engine.
One can clearly evaluate the translation performance at the sentence level over the general meaning;
therefore, it is evident that in noisy environments, such as social media content, considering the full
translation would not significantly aid the feature generation process compared to taking each token
separately into account.

Table 1. Dealing with machine translation at the sentence level on a real example from our database.

Original
Greek Text

Meaning
(in English)

English Translation as Extracted
from Google Translate®

στην περιπτωση τoυ σαµαρα, ισχυει η
ρηση, τo µη χειρoν, βελτιστoν!..oµωσ
δεν ηταν oυτε αυτoσ αξιoσ µιασ
ελλαδασ...µoνo και µoνo απo τo υϕακι
τoυ εχασε, τo στυλακι, εγω, εγω, εγω
εκανα, αµετρητεσ ϕoρεσ ελεγε εγω,
εγωπαθησ και εγωισταρoσ ..συν τo oτι
κυνηγησε τoσo αντισυνταγµατικα ενα
κoµµα oλoκληρo, κατα τη γνωµη µoυ
πoλυσ κoσµoσ ειδικα δεξιoι τoν
µισησαν απo αυτo

In the case of Samaras (note: former PM
of Greece) the famous saying “choose the
lesser of two evils” applies! But he was
also unworthy of Greece, he lost
popularity only by his attitude and his
style, countless times he was saying “I”,
he is an egomaniac and a great selfish
person, plus that he prosecuted in an
un-constitutional manner a political party,
according to my opinion, a lot of people,
particularly those that belong to the right
political party hated him for this.

In the case of samarium apply the
dictum, the non-chiral, Best! .. But
was not he nor worthy of a ... Of
Greece just from the yfaki missed
the stylaki, he, I, I I did, it said
countless times ego, egomaniac
and egoistaros ..syn in that hunt
both unconstitutional a party
whole, kata my opinion, a lot of
people especially hated him right
from this
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5. Experimental Setup

5.1. Data Collection

In the present study, the corpus was retrieved from user opinions posted in online Greek
newspaper articles. These articles were posted at the online portal of the “Proto Thema” newspaper,
which is the top selling Sunday paper in Greece, exceeding 100,000 prints each Sunday. The thematic
areas of the articles varied from politics, society, finance and sports. Seven hundred forty instances
were collected and annotated by two individuals, reaching a 98% inter-annotation agreement level.
The only restriction was that each selected comment could be clearly classified as negative or positive.
The initial format of the corpus was about 35% to 65% with regards to the analogy of positive and
negative. It was very difficult to retain the balance since there were topics that most comments were
biased mostly to the negative class (e.g., in Greek articles about migration and the economic crisis).
However, our aim was to study the behavior of GBM to sentiment analysis in normal circumstances
and in extreme ones, such as the imbalanced sets. Therefore, apart from the original corpus A, four
additional datasets were derived from it, namely:

B. A mixed dataset, which consisted of the original Greek comments plus the English
token augmentation.

C. A translated dataset, i.e., the original set upon translation in English and removal of Greek
tokens. The reason for incorporating this set is to prove that the main approach of adding English
translations performs better than the traditional approach of just translating the text into English.

D. An imbalanced to “positives” dataset, derived from the original Greek comments plus the English
translation, but with removing most of the “negative” instances. The proportion was kept at
about 95% positives and 5% negatives.

E. An imbalanced to “negatives” dataset, which consisted of the original Greek comments plus the
English translation, having removed most of the “positive” cases. The proportion was also about
95% negatives and 5% positives.

5.2. Data Preprocessing

In text mining, the initial step is usually the transformation of free text into a structured vector
representation, able to be analyzed by most of the machine learning algorithms. Since the collected
data were not in the vector form we need them to be, a certain number of preprocessing steps needed
to be carried out. The articles contained URL addresses that had been removed using an HTML tag
identifier. The following steps describe the whole process.

(a) Tokenization: All stop-words have been removed, and all letters have been lowercased.
(b) Stemming: for the Greek set (denoted as A), an implementation of the [52] stemmer was applied.
(c) Translation: Each Greek token was translated by using the Google® Translator API.
(d) Creation of the document-term matrix: The number of rows of the matrix was equal to the number

of the instances, and the number of columns was equal to the distinct number of Greek tokens
plus the number of English tokens, as translated in Step c including the translation in the case
of balanced data, more specifically 740 articles with translation, 260 positive and 480 negative.
As previously explained, for the cases of Datasets D and E, i.e., the “positive” imbalanced and
“negative” imbalanced sets, 5% of each class was kept within the document collection. On each
cell of the document-term matrix, the value of the tf-idf weight of each single term was provided
from the following formula:

t f − id f (term) = f requency(term) · log
(

m
N(term)

+ 1
)
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where:

• m: is the total number of terms
• N(term): is a function that returns the number of documents in which the term appears.

(e) Reduce the dimensionality via Principal Component Analysis (PCA). PCA is a technique that
reduces dimensionality by performing the transformation of possibly correlated variables to
a fully new dataset with linearly uncorrelated variables, called principal components. Each
principal component encodes variance starting from the first one, which is guaranteed to have
the largest variance, meaning that it holds the biggest impact within data, compared to the
other principal components, which also contain variance information in descending order of
appearance. All of the principal components are actually the eigenvectors of the covariance
matrix, which means that they are orthogonal. This was an optional step that aimed at alleviating
the data sparsity problem and assisting traditional classifiers, such as SVM, decision trees, and
naive Bayes. This step was not applied in the case of experimenting with GBM, since it is
mathematically proven that GBM can cope with the large number of attributes.

(f) In order to assist classifiers, such as decision trees and naive Bayes, which are significantly
influenced by high-dimensional vectors, another Feature Selection (FS) technique was applied
apart from PCA, i.e., weighting each feature using the information gain criterion [53] and retaining
the top-k of them. In the Experimental Results section, we describe the process of finding the
optimal parameters for our classifiers, as well as the optimal number of principal components
and the number k for the feature selection step.

The dimensionality (in terms of columns, i.e., features) for Datasets A and C, the original Greek
set of opinions and their English translations upon the application of tokenization and stemming
reached 7765 (it was about 11% more when stemming was not applied), while the number of features
for Datasets B, D and E was 13,671.

5.3. Dealing with the Class Imbalance Problem

A common phenomenon in real-world applications, such as the one at hand, class imbalance
problems often deteriorate the performance of traditional classifiers. By studying the current state
of the art in the field, we have followed a hybrid approach that performs oversampling of the
minority class based on the SMOTE (Synthetic Minority Oversampling TEchnique) [10] algorithm
and under-sampling of the majority class using the Tomek links score to identify noisy and borderline
examples. SMOTE is based on the idea that each example of the minority class is synthetically
re-generated using its k-NN graph instead of a randomized sampling with replacement. The Tomek
link [51] method can be viewed as the means for guided under-sampling, where the observations from
the majority class are removed.

5.4. Evaluation Criteria and Performance

The performance of each method has been measured by using accuracy, precision and recall.
Accuracy: Tp+Tn

Tp+Tn+Fp+Fn
; precision: Tp

Tp+Fp
; recall: Tp

Tp+Fn
; where Tp, Tn. are true positive and true

negative; these are the correct positive and correct negative predictions, respectively. Fp, Fn are
false positive and false negative and are the wrongly positive and wrongly negative predictions,
respectively. A 10-fold cross-validation approach has been used in order to evaluate the performance
for every classifier.

The above flowchart (Figure 2) depicts the formation process of each dataset and the experimental
evaluation procedure. As shown in the image, the original corpus is treated at the beginning with
some basic preprocessing steps, while the idea of applying the English translation to the original set
is depicted in the second row of the chart. Based on this augmentation, the mixed dataset is created.
Furthermore, since we need to evaluate the proposed methodology in real-world scenarios, where it
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is very common that one class dominates the other in distribution ratios, we have proceeded to the
generation of two, highly imbalanced sets per each class label. Finally, for all described datasets, the
PCA dimensionality reduction and the FS technique were optionally applied, to assist the traditional
classifiers in recovering from data sparsity.Algorithms 2017, 10, 34  12 of 21 
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5.5. Classification Benchmark

In order to investigate the performance of the proposed GBM method and evaluate it against other,
well-known classifiers that have been previously applied in sentiment analysis tasks with success,
as explained in the Related Work section, the following classifiers have been incorporated: decision
trees, naive Bayes, support vector machines and deep neural network learning (using recurrent
neural networks). In the case of decision trees, naive Bayes and SVM, we have experimented using
two different data representation techniques, namely the original tf-idf vector representation of the
document-term matrix and the reduced dataset of the PCA transformation or the feature selection stage.

6. Experimental Results

The datasets we used as shown in Figure 2 were:

(a) The original dataset, which contains only the Greek tokens.
(b) The mixed dataset, which contains Greek tokens and their translation.
(c) The translated dataset (no Greek tokens).
(d) The negative imbalanced dataset, which was derived from the mixed dataset removing 95% of

the positives.
(e) The positive imbalanced dataset, which was derived from the mixed dataset removing 95% of

the negatives.

The underlying idea in these datasets is to approximate realistic conditions in opinion mining and
sentiment analysis systems. The imbalanced datasets have been dealt with using the under-sampling
and over-sampling technique mentioned above. Each of the aforementioned datasets also underwent
the PCA data dimensionality technique and the feature weighting step using information gain. PCA
and FS were applied to all used classifiers (decision trees, naive Bayes and support vector machines),
except GBM.

The experiments were carried out on a rack server, with 2 Intel Xeon E5-2650/2 GHz 8-core
processors, with 64 GB of RAM, running under Linux (CentOS). The RapidMiner® framework was
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used throughout the experimental evaluations. In the cases of GBM and deep learning, the H2O Open
Source Fast Scalable Machine Learning API was called within RapidMiner. Since these algorithms
are highly dependent on their parameters, optimization of GBM, deep learning, SVM, as well as the
optimal number of principal components and, finally, the top-k features in the FS step was carried
out using a grid search over numerous different parameter settings, upon evaluation on a held-out
set and having the harmonic mean of precision and recall, named the F-measure, as the performance
criterion during the optimization search. In order to reduce the training time, for the cases of PCA
and FS, we experimented with five different parameter settings. We asked the PCA algorithm to
retain five thresholds of variance, starting from 20% and climaxing at 60% using 10% incremental
steps. Furthermore, if the FS weighting process, we set five different top-k values of features to be
retained, i.e., 100, 250, 500, 750 and 1000. For the technical details of the optimization operators, please
refer to the RapidMiner documentation (http://docs.rapidminer.com/studio/operators/modeling/
optimization/parameters/optimize_parameters_grid.html), namely the “Optimize Parameters/Grid”
operator. Since the following paragraphs describe experiments on a different dataset each time, the
optimal parameters found at each set will be tabulated.

6.1. Experiment A

The initial experiment considered the original dataset with GBM against the other algorithms used
in the benchmark, with and without the PCA and FS reduction. Table 2 tabulates the best outcomes
for Dataset A, i.e., the original set of the Greek tokens only. These scores correspond to the PCA
transformation, keeping 30% of the original variance, i.e., approximately 250 principal components.
The best numbers per performance metric are shown in boldface.

Table 2. Performance of GBM and other benchmarking methods for Dataset A: original. GBM, Gradient
Boosting Machine.

Dataset A: Original Accuracy Precision (+) Recall (+) Precision (−) Recall (−)

Decision Trees 68.42% 59.12% 62.86% 75.76% 79.54%
SVM 77.82% 80.10% 67.60% 79.20% 87.40%

Naive Bayes 69.12% 58.40% 64.30% 76.30% 72.50%
Deep Learning 72.00% 67.50% 74.80% 82.40% 78.00%

GBM 84.20% 82.40% 77.90% 86.30% 88.30%

As observed, the original set displays quite satisfactory results using almost any algorithm. GBM
is the most powerful method, outperforming all other methods in precision and recall of both classes,
followed by SVM. GBM was found to outperform all others in all metrics by a significant difference
that reached almost 12% when compared to deep learning. For reasons of space, we have not included
the correspondent table when utilizing feature selection; however, we must note that FS was quite close
to PCA and, thus, not proficient at significantly improving the performance of the classifiers. When
incorporating FS, the results were slightly worse than the ones found in Table 2 by a varying factor of
1.5% to 6%, for various top-k settings. Table 3 presents the optimal parameters of the classification
algorithms for the aforementioned results of Table 2.

Table 3. Parameter values, upon the completion of the parameter tuning process for Experiment A.

Algorithm Parameters

Decision Trees Criterion: Gini Index; Maximal Depth: 60; Confidence: 0.3; Minimal Leaf Size: 12
SVM Kernel Type: polynomial; Degree: 3; C: 1.35; Epsilon: 10−4

Naive Bayes No parameters to optimize
Deep Learning Activation: Tanh; Hidden Layers: 3; Loss Function: Quadratic; Epochs: 30;

GBM Loss Function: Ada-boost; Number of Trees: 120; Max-depth: 4; Learning rate: 0.05

http://docs.rapidminer.com/studio/operators/modeling/optimization/parameters/optimize_parameters_grid.html
http://docs.rapidminer.com/studio/operators/modeling/optimization/parameters/optimize_parameters_grid.html
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6.2. Experiment B

The second experiment dealt with the incorporation of Dataset B, i.e., the mixed dataset, using
the translation technique. Table 4 tabulates the performance metrics per each algorithm. These figures
were found to be the greatest when utilizing PCA transformation, retaining 30% of the variance of the
mixed set.

Table 4. Performance of GBM against other benchmarking methods for Dataset B: Mixed.

Dataset B: Mixed Accuracy Precision (+) Recall (+) Precision (−) Recall (−)

Decision Trees 70.50% 63.23% 66.60% 77.15% 86.50%
SVM 81.35% 83.50% 68.50% 83.00% 91.80%

Naive Bayes 71.80% 62.35% 67.27% 79.34% 75.06%
Deep Learning 75.70% 67.90% 81.30% 86.60% 78.50%

GBM 87.85% 84.66% 83.30% 91.30% 91.75%

An examination of the fourth table reveals that the methodology of including additional features
improves the classification outcome for every algorithm. However, the improvement is clearly bigger
when one uses methods for performing some sort of feature selection, such as GBM and deep learning.
For the former, we also observe that it has reached almost 88% in accuracy, and simultaneously, it
retains high precision and recall values for both classes, while in other methods, usually the recall of
the positive or negative class often varies from the other metrics. For example, in deep learning, the
positive precision is 67.9%, while the recall reaches 81.3%. In other words, the algorithm attempted to
fit almost all positive examples, but in this process, it was not able to generalize, thus labeling some
negative examples as positives. Results were slightly worse when utilizing the FS process, with the
case of keeping the top-750 features being approximately 2% to 3% lower than PCA.

Figure 3 contains a graph depicting the improvement of the inclusion of the proposed technique
with the translation of Greek tokens. As explained before, GBM and deep learning present the
best improvement, reaching almost 7% better outcomes than when considering the original dataset.
An interesting observation is that the mixed dataset aids all other methodologies. This might sound
peculiar since doubling the initial feature set means additional load for any classifier; however, note
that the translation is not a simple doubling of the size of vectors, since it encodes semantic relations
between each token and the corresponding class distribution, making the decision boundaries easier
to recognize.
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In analogy with the previous experimental scenario, we tabulate the optimal hyper-parameters
for the involved algorithms in the following Table 5.

Table 5. Parameter values, upon completion of the parameter tuning process for Experiment B.

Algorithm Parameters

Decision Trees Criterion: Gini Index; Maximal Depth: 40; Confidence: 0.25; Minimal Leaf Size: 20
SVM Kernel Type: polynomial; Degree: 2; C: 3.9; Epsilon: 2 × 10−4

Naive Bayes No parameters to optimize
Deep Learning Activation: Rectifier; Hidden Layers: 2; Loss Function: Quadratic; Epochs: 20;

GBM Loss Function: Ada-boost; Number of Trees: 100; Max-depth: 6; Learning rate: 0.35

6.3. Experiment C

The third experiment dealt with the inclusion of Dataset C, i.e., the translated dataset, without
any Greek tokens. Table 6 tabulates the performance outcomes per classifier. The best setting was
found to be achieved when considering the PCA transformation, retaining 40% of the variance of the
initial Dataset C.

Table 6. Performance of GBM against other benchmarking methods for Dataset B: mixed.

Dataset B: Mixed Accuracy Precision (+) Recall (+) Precision (−) Recall (−)

Decision Trees 69.20% 59.68% 62.90% 75.88% 78.22%
SVM 76.58% 79.40% 68.30% 78.74% 86.90%

Naive Bayes 69.65% 58.58% 65.25% 76.75% 73.00%
Deep Learning 72.10% 68.12% 75.30% 82.60% 77.90%

GBM 83.90% 82.10% 78.15% 86.47% 88.20%

A closer look at the results reveals that the translated dataset is slightly better than the original
one (i.e., the Greek texts only), but with a minor improvement of about 0.5% to 0.9%. Furthermore,
a comparison of the table above with the outcomes of the mixed Dataset B shows that the proposed
methodology of augmenting the initial set with the English translations is the most beneficial in terms
of precision and recall metrics. Therefore, one could claim that a simple translation of Greek into
English without considering both languages results in lower classification performance. Additionally,
even in this case, GBM performs noticeably better that any other classifier. Results were slightly worse
when utilizing the FS process, with the case of keeping the top-500 features being approximately 1.5%
to 2.7% lower than PCA.

As with the previous cases, we tabulate the optimal hyper-parameters for the involved algorithms
in the following Table 7.

Table 7. Parameter values, upon completion of the parameter tuning process for Experiment C.

Algorithm Parameters

Decision Trees Criterion: Gini Index; Maximal Depth: 50; Confidence: 0.3; Minimal Leaf Size: 30
SVM Kernel Type: polynomial; Degree: 2; C: 2.4; Epsilon: 2 × 10−4

Naive Bayes No parameters to optimize
Deep Learning Activation: Tanh; Hidden Layers: 2; Loss Function: Quadratic; Epochs: 40;

GBM Loss Function: Ada-boost; Number of Trees: 120; Max-depth: 5; Learning rate: 0.3

6.4. Experiment D

The fourth experiment was about assessing the influence of class imbalance on GBM, as well as on
the other set of classifiers. For that reason, we considered both imbalanced sets, namely the C positive
imbalanced and the D negative imbalanced set. In order to demonstrate that the proposed strategy
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of oversampling the minority class and under-sampling the majority is actually beneficial, we first
tabulate the performance metric without using it and subsequently when including it. Table 8 arranges
the outcomes of the experimental run on Dataset C positive imbalanced, without any handling of the
class imbalance issue. Again, these outcomes were obtained when utilizing the PCA method, for 20%
of the initial variance.

Table 8. Performance of GBM against other benchmarking methods for Dataset C positive imbalanced
without any measures for the class imbalance problem.

Dataset C: Imbalanced + Accuracy Precision (+) Recall (+) Precision (−) Recall (−)

Decision Trees 96.21% 2.50% 16.97% 98.02% 98.22%
SVM 61.5% 5.2% 74.1% 98.3% 63.8%

Naive Bayes 77.75% 9.1% 65.7% 98.8% 74.3%
Deep Learning 75.15% 8.50% 69.20% 99.5% 76.53%

GBM 88.20% 21.5% 75.1% 99.6% 97.9%

An initial observation is that in this case, accuracy is actually not informative since it may appear
high, but notice that the minority class label displays very poor results, meaning that almost all positive
instances were incorrectly classified. Even though GBM again outperforms all other approaches, the
20% precision in the positive class is certainly not desirable. Thus, the following Figure 4 illustrates the
results when considering the measures explained earlier, for dealing with class imbalance.

Algorithms 2017, 10, 34  16 of 21 

any handling of the class imbalance issue. Again, these outcomes were obtained when utilizing the 
PCA method, for 20% of the initial variance.  

Table 8. Performance of GBM against other benchmarking methods for Dataset C positive imbalanced 
without any measures for the class imbalance problem. 

Dataset C: Imbalanced + Accuracy Precision (+) Recall (+) Precision (−) Recall (−)
Decision Trees 96.21% 2.50% 16.97% 98.02% 98.22% 

SVM 61.5% 5.2% 74.1% 98.3% 63.8% 
Naive Bayes 77.75% 9.1% 65.7% 98.8% 74.3% 

Deep Learning 75.15% 8.50% 69.20% 99.5% 76.53% 
GBM 88.20% 21.5% 75.1% 99.6% 97.9%

An initial observation is that in this case, accuracy is actually not informative since it may appear 
high, but notice that the minority class label displays very poor results, meaning that almost all 
positive instances were incorrectly classified. Even though GBM again outperforms all other 
approaches, the 20% precision in the positive class is certainly not desirable. Thus, the following 
Figure 4 illustrates the results when considering the measures explained earlier, for dealing with  
class imbalance. 

 
Figure 4. Evaluation scores of all classifiers against the positive imbalanced set upon taking measures 
for the class imbalance problem. 

The improvement of the positive class precision and recall is evident. From the initial range of 
2% to 20% for the precision metric, upon applying the measures we discussed earlier, we can observe 
that GBM has reached almost 67.5% precision and 65% recall. The same behavior is also apparent for 
other classifiers, meaning that the measures paid off, since the minority class is not confronted  
with success.  

Table 9 tabulates the outcomes of the experimental run on Dataset D negative imbalanced, 
without any handling of the class imbalance issue. 
  

30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00

Accuracy Precision (+) Recall (+) Precision (-) Recall (-)

Performance on dataset C with measures for 
imbalance issue

Decision Trees SVM Naïve Bayes Deep Learning GBM

Figure 4. Evaluation scores of all classifiers against the positive imbalanced set upon taking measures
for the class imbalance problem.

The improvement of the positive class precision and recall is evident. From the initial range of 2%
to 20% for the precision metric, upon applying the measures we discussed earlier, we can observe that
GBM has reached almost 67.5% precision and 65% recall. The same behavior is also apparent for other
classifiers, meaning that the measures paid off, since the minority class is not confronted with success.

Table 9 tabulates the outcomes of the experimental run on Dataset D negative imbalanced, without
any handling of the class imbalance issue.

As seen from the above table, the minority class (which is now the negative sentiment) also
suffers from deteriorated metrics, both in precision and recall. It is therefore evident that in real-world
sentiment analysis tasks, where class imbalance is a common phenomenon, even the most sophisticated
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classifier and even considering advanced feature selection techniques cannot guarantee the creation
of a robust prediction model. As with the previous dataset, Figure 5 represents the outcome of the
evaluation, this time by considering the sub-sampling measures for class imbalance.

Table 9. Performance of GBM against other benchmarking methods for Dataset D negative imbalanced
without any measures for the class imbalance problem.

Dataset D: Imbalanced − Accuracy Precision (+) Recall (+) Precision (−) Recall (−)

Decision Trees 77.23% 95.20% 79.9% 16.9% 43.30%
SVM 62.25% 95.94% 56.43% 11.8% 65.20%

Naive Bayes 56.33% 90.79% 58.13% 6.46% 33.10%
Deep Learning 71.80% 98.00% 73.45% 17.33% 79.50%

GBM 72.15% 98.7% 74.15% 19.9% 83.00%
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Figure 5. Evaluation scores of all classifiers against the negative imbalanced set upon taking measures
for the class imbalance problem.

The improvement in the negative class (both precision and recall) is apparent when compared
to the previous table. Notice that precision was initially varying from 6.5% to 19.9%, and now, it
has reached almost 58.5%. Finally, we should mention that GBM was constantly found to be the
most robust classification method, in all forms of datasets, with and without measures for the class
imbalance problem. The parameters for the third experiment, either for the positive or the negative
imbalanced sets, are tabulated below, on Table 10.

Table 10. Parameter values, upon completion of the parameter tuning process for Experiment D.

Algorithm Parameters

Decision Trees Criterion: Gain Ratio; Maximal Depth: 30; Confidence: 0.2; Minimal Leaf Size: 4
SVM Kernel Type: radial; kernel gamma: 1.8; C:0.5; Epsilon: 4 × 10−4

Naive Bayes No parameters to optimize
Deep Learning Activation: Rectifier; Hidden Layers: 2; Loss Function: Huber; Epochs: 50

GBM Loss Function: Ada-boost; Number of Trees: 60; Max-depth: 4; Learning rate: 0.25
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7. Conclusions

The presented research, which is an extension of [54], studied the use of machine learning in
sentiment analysis tasks, particularly in situations where the text is given in a language with a relatively
minimal set of linguistic analysis gazetteers and modules, such as the POS tagger, syntactic shallow
parsers, etc. Modern Greek has its place to this category of under-resourced languages, and the
present work collected real-world sentiment data, obtained from Web 2.0 platforms, and followed
an idea of using machine translation of Greek tokens as a feature generation step. More specifically,
instead of utilizing a hand-crafted polarity lexicon for Greek, which would have insufficient impact
on the accuracy of the predictions due to the noisy social media linguistic style, we proposed a
method that considers the translation of each Greek token as an additional input feature. Even though
this process may appear to bring additional effort and complexity to the majority of classification
algorithms, the use of gradient boosting machines, a robust ensemble method that can handle sparsity
in high-dimensional data, appeared to be valuable for the task at hand, outperforming a family
of well-known methods for sentiment analysis. Even when confronted with other state of the art
classifiers, such as deep neural networks (from the family of recurrent neural networks), the proposed
method demonstrated superior performance. Moreover, since sentiment data in real cases present a
high level of class imbalance between the positive and the negative label, we applied sophisticated
sampling methods for not allowing the bias of the classifiers towards the majority class. Yet again,
GBM was found to be the superior solution in terms of precision and recall per each class label. In the
future, we are oriented towards using semantic features, such as topic models, to further improve the
sentiment analysis models.
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