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Abstract:



Compressive principal component pursuit (CPCP) recovers a target matrix that is a superposition of low-complexity structures from a small set of linear measurements. Pervious works mainly focus on the analysis of the existence and uniqueness. In this paper, we address its stability. We prove that the solution to the related convex programming of CPCP gives an estimate that is stable to small entry-wise noise. We also provide numerical simulation results to support our result. Numerical results show that the solution to the related convex program is stable to small entry-wise noise under board condition.
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1. Introduction


Recently, there has been a rapidly increasing interest in recovering a target matrix that is a superposition of low-rank and sparse components from a small set of linear measurements. In many cases, this problem is shorted for matrix completion [1,2,3], which arises in a number of fields, such as medical imaging [4,5], seismology [6], and computer vision [7,8] and Kalman filter [9]. Mathematically, there exists a large-scale data matrix [image: there is no content], where [image: there is no content] is a low-rank matrix, and [image: there is no content] is a sparse matrix. One of the important problems here is how to extract the intrinsic low-dimensional structure from a small set of linear measurements. In a recent paper [10], E. J. Candès et al. proved that most low-rank matrices and the sparse components can be recovered, provided that the rank of the low-rank component is not too large, and that the sparse component is reasonably sparse. It is more important that they proved that these two components can be recovered by solving a simple convex optimization problem. In [11], John Wright et al. generalized this problem to decompose a matrix into multiple incoherent components:


minimize∑iτλi∥Xi∥(i)subject to∑iτXi=M,



(1)




where [image: there is no content] are norms that encourage various types of low-complexity structure. The authors also provide a sufficient condition that can promise the existence and uniqueness theorem of compressive principle component pursuit (CPCP). The result in [11] requires that the components are low-complexity structures.



However, in many applications, the observed measurements are always corrupted by different kinds of noise which may affect every entry of the data matrix. In order to further complete the theory developed in [11], it is necessary to research the stability of CPCP which can guarantee stable and accurate recovery in the presence of entry-wise noise. In this paper, we make a commendable attempt in this respect. We denote M as the observing matrix which can decompose into multiple incoherent components, and assume that


M=∑iτXi,0+Z0,








where [image: there is no content] are corresponding incoherent components and [image: there is no content] is an independent and identically distributed (i.i.d.) noise. We assume that [image: there is no content] is only limited by [image: there is no content] for some [image: there is no content]. In order to recover the unknown low-complexity structures, we suggest solving the following relaxed optimization problem.


minimize∑iτλi∥Xi∥(i)subject to∥∑iτXi−M∥F≤δ



(2)







In this paper, we prove the solution of (2) is stable to small entry-wise noise. The rest of paper is organized as follows. In Section 2, we show some notations and the main result, which will be proven in Section 3 and Section 4. In Section 3, we give two important lemmas which are an important parts of our main result. In Section 4, The proof of Theorem 1 will be given. We further provide numerical results in Section 5 and conclude the paper in Section 6.




2. Notations and Main Results


In this section, we first give some important notions which will be used throughout this paper, and then provide the main result.



2.1. Notations


We denote the operator norm of matrix by [image: there is no content], the Frobenius norm by [image: there is no content], and the nuclear norm by [image: there is no content], and denote the dual norm of [image: there is no content] by [image: there is no content]. The Euclidean inner product between two matrices is defined by the formula [image: there is no content]. Note that [image: there is no content]. The Cauchy–Schwarz inequality gives [image: there is no content], and it is well known that we also have [image: there is no content] (e.g., [1,12]). [image: there is no content] majorized the Frobenius norm means [image: there is no content] for all X. Linear transformations which act on the space of matrices are denoted by [image: there is no content]. It is easy to see that the operator of [image: there is no content] is a high dimension matrix. The operator norm of the operator is denoted by [image: there is no content]. It should be noted that [image: there is no content].



For any matrix vector [image: there is no content], where [image: there is no content] is i-th matrix. We will consider two norms of this matrix pair, which can define as [image: there is no content] and [image: there is no content]. In order to simplify the stability analysis of CPCP, we also define the subspaces (the common component) γ:=[Γi],Γi=(∑lτXl)/τi=1,2,⋯,τ, and (the different component) γ⊥:=[Γi⊥],Γi⊥=Xi−Γi[image: there is no content]. In order to analyze the behavior of special projection operator, we define the projection operator [image: there is no content].



we assume that ∥Xi∥(i)i=1,2,⋯,τ are decomposable norms. The definition of decomposable norms is below.



Definition 1 (Decomposable Norms).

if there exists a subspace T and a matrix Z satisfying


∂∥·∥(X)={Λ|PTΛ=Z,∥PT⊥Λ∥*≤1},



(3)




where [image: there is no content] denotes the dual norm of [image: there is no content] and [image: there is no content] is nonexpansive with respect to [image: there is no content]. Then, we say that the norm [image: there is no content] is decomposable at X.





Definition 2 (Inexact Certificate).

We say Λ is an [image: there is no content]-inexact certificate for a putative solution [image: there is no content] to (1.1) with parameters [image: there is no content] if for each i, [image: there is no content], and [image: there is no content].






2.2. Main Results


Pertaining to Problem (1), we have the result as follows.



Lemma 1

([11]). Assume there exists a feasible solution [image: there is no content] to the optimization Problem (1). Suppose that each of the norms [image: there is no content] is decomposable at [image: there is no content], and that each of the [image: there is no content] majorizes the Frobenius norm. Then, x is the unique optimal solution if [image: there is no content] are independent subspaces with


∥PTiPTj∥<1τ−1∀i≠j,








and there exists an [image: there is no content]-inexact certificate [image: there is no content], with


β+ατ1−(τ−1)maxij∥PTiPTj∥×1minlλl≤1.











The main contribution of this paper is the stability analysis of the solution of CPCP; the main Theorem of [13] can be regarded as a special case of our result (although the main idea of proof is similar to the paper [13], there are some important differences here). Next, we will provide the proposed related convex programming (2) is stable from small entry-wise noise under board condition. The main result of this paper is provided below.





Theorem 1.

Assume [image: there is no content], [image: there is no content] are the solutions of the optimization Problems (1) and (2), respectively. Suppose that each of the norms [image: there is no content] is decomposable at [image: there is no content], and each of the [image: there is no content] majorizes the Frobenius norm. Then, if [image: there is no content] are independent subspaces with


∥PTiPTj∥<1τ−1∀i≠j








and there exists an [image: there is no content]-inexact certificate [image: there is no content], with


β+ατ1−(τ−1)maxij∥PTiPTj∥×1minlλl≤1,



(4)




then for any [image: there is no content] which is limited by [image: there is no content], the solution [image: there is no content] to the convex programming (2) obeys


∑i∥x^i−xi,⋄∥22≤C(n,τ,α,β)δ2,



(5)




where [image: there is no content] is a numerical constant only depending upon [image: there is no content].







3. Main Lemmas


In this section, we present two main lemmas which are used to obtain Theorem 1. The paper [11] states that:



Lemma 2

([11]). Suppose [image: there is no content] are independent subspaces of [image: there is no content] and [image: there is no content], under the other conditions of Lemma 1. Then, the below equations


PTiΔ=λiZi−PTiΛ,i=1,⋯,τ








have a solution [image: there is no content] obeying


∥Δ∥F≤α2τ1−(τ−1)maxi≠j∥PTiPTi∥.











In order to bound the behavior of the norm of [image: there is no content], we have the first main lemma that is used to obtain Theorem 1.





Lemma 3.

Assume ∥PTiPTj∥<1τ−1∀i≠j. Suppose there exists an [image: there is no content]-inexact certificate [image: there is no content] satisfying Lemma 1. Then, for any perturbation [image: there is no content] obeying [image: there is no content]


∥x0+h∥⋄≥∥x0∥⋄+∑i=1τ(λi−Cα−λiβ)∥PTi⊥Hi∥(i),








wherein, let [image: there is no content]. It is easy to see that under the hypothesis of Lemma 1, the coefficients of [image: there is no content] satisfy [image: there is no content].





Proof. 

According to the property of convex function, for any subgradients [image: there is no content], we can obtain


∥x0+h∥⋄≥∥x∥⋄+∑i=1τλi<Zi,Hi>.











Now, because the norm of the subgradients is decomposable at [image: there is no content], there exists Λ, [image: there is no content], α, and β obeying [image: there is no content], and [image: there is no content]. Let [image: there is no content] (see Lemma 2). Note that


Λ+Δi+PTi⊥(λiZi−Λ)=Λ+λiZi−PTiΛ+PTi⊥λiZi−PTi⊥Λ=λiZi+PTi⊥λiZi=λiZi,








where the second equation obeys [image: there is no content]. According to the above equation, we will continue bounding [image: there is no content].


∑i=1τλi<Zi,Hi>=∑i=1τ<Λ+Δi+PTi⊥(λiZi−Λ),Hi>=∑i=1τ<Λ,Hi>+∑i=1τ<PTiΔ,Hi>+∑i=1τ<PTi⊥(λiZi−Λ),Hi>=<Λ,i=1τHi>+∑i=1τ<Δ,PTiHi>+∑i=1τ<λiZi−Λ,PTi⊥Hi>=∑i=1τ<Δ,Hi>−∑i=1τ<Δ,PTi⊥Hi>+∑i=1τ<λiZi−Λ,PTi⊥Hi>≥∑i=1τ<λiZi−Λ,PTi⊥Hi>−∑i=1τ∥Δ∥F∥PTi⊥Hi∥F≥∑i=1τ<λiZi−Λ,PTi⊥Hi>−∑i=1τ∥Δ∥F∥PTi⊥Hi∥(i)











With the definition of duality, there exists [image: there is no content] with [image: there is no content] such that [image: there is no content]. Moreover, with the Cauchy–Schwarz inequality, we have


|<Λ,PTi⊥Hi>|=|<PTi⊥Λ,PTi⊥Hi>|≤∥PTi⊥Λ∥(i)*∥PTi⊥Hi∥(i).











Let [image: there is no content]. Then, we can obtain:


<λiZi−Λ,PTi⊥Hi>≥(λi−∥PTi⊥Λ∥(i)*)∥PTi⊥Hi∥(i).











Combining with the inequalities above, we can obtain


∥x0+h∥⋄≥∥x0∥⋄+∑i=1τ(λi−∥Δ∥F−∥PTi⊥Λ∥(i)*)∥PTi⊥Hi∥(i)≥∥x0∥⋄+∑i=1τ(λi−Cα−λiβ)∥PTi⊥Hi∥(i).











The Lemma 3 is established. ☐





For bounding the behavior of [image: there is no content], we have to bound the projection operator [image: there is no content]. Therefore, we have the second main lemma that will be used to obtain Theorem 1.



Lemma 4.

Assume that ∥PTiPTj∥<1τ−1∀i≠j. For any matrix vector [image: there is no content], we have


∥Pγ(PT1×⋯×PTτ)(x)∥F2≥1−maxi12∑j≠i(∥PTiPTj∥+∥PTjPTi∥)τ∥PT1×⋯×PTτ(x)∥F2.











It is easy to see that under the hypothesis of ∥PTiPTj∥<1τ−1∀i≠j, the constant [image: there is no content] is strictly greater than zero.





Proof. 

With respect to any matrix [image: there is no content], we have [image: there is no content], where [image: there is no content]. It is easy to see that [image: there is no content]. Then, we have


∥Pγ(PT1×⋯×PTτ)(x)∥F2=1τ∥∑i=1τPTiXi∥F2=1τ(∑i=1τ(∥PTiXi∥F2+∑j≠i<PTiXi,PTjXj>)).











Note that


<PTiXi,PTjXj>=<PTiXi,PTiPTjXj>≥−∥PTiPTj∥∥PTiXi∥F∥PTjXj∥F.











Together with ∥PTiPTj∥<1τ−1∀i≠j, we have


∥Pγ(PT1×⋯×PTτ)(x)∥F2≥1τ(∑i=1τ∥PTiXi∥F2−∑j≠i∥PTiPTj∥∥PTiXi∥F∥PTjXj∥F))≥1τ(∑i=1τ(∥PTiXi∥F2−∑j≠i∥PTiPTj∥2(∥PTiXi∥F2+∥PTjXj∥F2))=1τ∑i=1τ(1−12∑j≠i(∥PTiPTj∥+∥PTjPTi∥))∥PTiXi∥F2≥1−maxi12∑j≠i(∥PTiPTj∥+∥PTjPTi∥)τ(∑i∥PTiXi∥F2)≥1−maxi12∑j≠i(∥PTiPTj∥+∥PTjPTi∥)τ∥PT1×⋯×PTτ(x)∥F2,








where in the second inequality, we have used the inequity that for any [image: there is no content], [image: there is no content]. Therefore, Lemma 4 is established. ☐






4. Proof of Theorem 1


In this section, we will provide the proof of Theorem 1. Our main proof is based on two elementary and important properties of [image: there is no content], which is the solution of Problem (2). First, note that [image: there is no content] is also a feasible solution to Problem (2) and [image: there is no content] is the optimum solution; therefore, we can obtain [image: there is no content]. Second, according to triangle inequality, we can obtain


∥x^−x0∥2=∥x^−M−(x0−M)∥2≤∥x^−M∥2+∥x0−M∥2≤2δ.



(6)







Let [image: there is no content], where [image: there is no content]. According to the definition of subspace of γ, we denote [image: there is no content], [image: there is no content] for short. Our main aim is to bound [image: there is no content], which can be rewritten as


∥h∥22=∥hγ∥22+∥hγ⊥∥22=∥hγ∥22+∥PT1×⋯×PTτhγ⊥∥22+∥PT1⊥×⋯×PTτ⊥hγ⊥∥22.



(7)







Combining with (4), we have


[image: there is no content]











Therefore, it is necessary to bound the other two terms on the right-hand-side of (5). We will bound the second and third terms, respectively.



Norm equivalence theorem tells us that every two norms on a finite dimensional normed space are equivalent, which implies that there exists two constants [image: there is no content] satisfying


c(n,τ)∥x∥2≤∥x∥⋄≤C(n,τ)∥x∥2.



(8)







A. Estimate the third term of (5) Let Λ be a dual certificate obeying Lemma 1. Then, using triangle inequality, we have


∥x0+h∥2≥∥x0+hγ⊥∥2−∥hγ∥2.



(9)







Combining with Lemma 3, we can obtain


∥x0+hγ⊥∥2≥∥x0∥d+∑i=1τ(λi−Cα−λiβ)∥PTi⊥Hi∥(i)≥∥x0∥d+(1−Cα1miniλi−β)∑i=1τλi∥PTi⊥HiΓ⊥∥(i)≥∥x0+h∥d+(1−Cα1miniλi−β)∑i=1τλi∥PTi⊥HiΓ⊥∥(i),








wherein, to get the third inequality, we used the fact [image: there is no content]. For simplification, let


C1(α,β)≜1−Cα1miniλi−β>0.











Therefore, we have


∥x0+hγ⊥∥2≥∥x0+h∥d+C1(α,β)∑i=1τλi∥PTi⊥HiΓ⊥∥(i).











Combining with (7), we can obtain


C1(α,β)∑i=1τλi∥PTi⊥HiΓ⊥∥(i)≤∥hγ∥2.











Then


∑i=1τλi∥PTi⊥HiΓ⊥∥(i)≤C2(α,β)∥hγ∥2,



(10)




where [image: there is no content]. We will estimate the third term of (5). Using triangle inequality, we have


∥PT1⊥×⋯×PTτ⊥hΓ⊥∥2≤∑i∥PTi⊥HiΓ⊥∥F≤1c(n,τ)∑i=1τλi∥PTi⊥HiΓ⊥∥(i)≤C2(α,β)c(n,τ)∥hγ∥2≤C(n,τ,α,β)δ,








where [image: there is no content]. The second inequality is set up by (6); the fourth inequality is obtained by (8); the last one is obtained by the fact [image: there is no content]. Therefore, we can obtain


∥PT1⊥×⋯×PTτ⊥(hΓ⊥)∥22≤C2(n,τ,α,β)δ2,



(11)




which implies that the third term of (5) can bound by [image: there is no content].



B. Estimate the second term of (5) According to Lemma 4, we can obtain


∥Pγ(PT1×⋯×PTτ)(hγ⊥)∥22≥1−maxi12∑j≠i(∥PTiPTj∥+∥PTjPTi∥)τ∥PT1×⋯×PTτ(hγ⊥)∥22=C^(τ,α,β)∥PT1×⋯×PTτ(hγ⊥)∥22,








where [image: there is no content]. Note that


0=Pγ(hγ⊥)=PγPT1×⋯×PTτhγ⊥+PγPT1⊥×⋯×PTτ⊥hγ⊥.











Therefore,


∥PγPT1×⋯×PTτhγ⊥∥2=∥PγPT1⊥×⋯×PTτ⊥hγ⊥∥2≤∥PT1⊥×⋯×PTτ⊥hγ⊥∥2.











Taking the previous two inequalities, we have


∥PT1×⋯×PTτhγ⊥∥2≤∥PγPT1⊥×⋯×PTτ⊥hγ⊥∥2C^(τ,α,β)≤∥PT1⊥×⋯×PTτ⊥hγ⊥∥2C^(τ,α,β)≤C(n,τ,α,β)δ,



(12)




where [image: there is no content] is an appropriate constant. Combining with (9), we can obtain


∥h∥22=∥hΓ∥22+∥PT1×⋯×PTτhΓ⊥∥22+∥PT1⊥×⋯×PTτ⊥hΓ⊥∥22≤C^(n,τ,α,β)δ2.











Therefore, Theorem 1 is established.



Remark 1.

if [image: there is no content], then Theorem 1 will degrade to the main result of [13].






5. Numerical Results


In this section, numerical experiments with varieties of the value of parameter σ, parameter [image: there is no content], and rank r are given. For each setting of parameters, we show the average errors over 10 trials. Our implementation was realized with MATLAB. All the computational results were obtained on a desktop computer with a 2.27-GHz CPU (Intel(R) Core(TM) i3) and 2 GB of memory. Without loss of generality, we assume that [image: there is no content]. In [13], the authors certified this result with Accelerated Proximal Gradient (APG) by numerical experiments. In our numerical experiments, we will provide that this result is also proper with Principal Component Pursuit by Alternating Direction Method (PCP-ADM). In our simulations, our matrix is generated by the formulation as: [image: there is no content], and a rank-r matrix [image: there is no content] is a product [image: there is no content], where X and Y are [image: there is no content] and [image: there is no content] matrices in which entries are independently sampled from a [image: there is no content] distribution. According to PCP-ADM, we can generate [image: there is no content] by choosing a support set of size [image: there is no content] uniformly at random, and set [image: there is no content]. Noise component [image: there is no content] is generated with entries independently sampled from a [image: there is no content] distribution. Without loss of generality, we set [image: there is no content] and [image: there is no content], and other parameters which PCP-ADM requires are the same as parameters of PCP-ADM [10]. Here we briefly interpret PCP-ADM. In [10], in order to stably recover [image: there is no content], the ADM method operates on the augmented Lagrangian


l(L,S,Y)=∥L∥*+λ∥S∥1+<Y,M−L−S>+μ2∥M−L−S∥F2.











The details of the PCP-ADM can be found in [14,15].



In our simulations, the stopping criterion of the PCP-ADM algorithm can be


[image: there is no content]








or the maximum iteration number ([image: there is no content]). In order to estimate the errors, we use the root-mean-squared (RMS) error as [image: there is no content], [image: there is no content] for the low-rank component and the sparse component, respectively. Figure 1 shows the RMS errors’ variation with different values of [image: there is no content]. It is noted that the RMS error grows approximately linearly with the noise level in Figure 1. This phenomenon verifies Theorem 1 by numerical experiments with PCP-ADM (this phenomenon also exists in [13] with APG, which is very different from PCP-ADM in principle).


Figure 1. Root-mean-squared (RMS) errors as a function of [image: there is no content] with r=10;ρs=0.01;n=200. PCP-ADM: Principal Component Pursuit by Alternating Direction Method.



[image: Algorithms 10 00029 g001]







6. Conclusions


In this paper, we have investigated the the stability of CPCP. Our main contribution is the proof of Theorem 1, which implies the solution to the related convex programming (1.2) is stable to small entrywise noise under board condition. It is an extension of the result in [13], which only allows [image: there is no content]. Moreover, in the numerical experiments, we have investigated the performance of the PCP-ADM algorithm. Numerical results showed that it is stable to small entrywise noise.
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