
algorithms

Article

Problems on Finite Automata and the Exponential
Time Hypothesis

Henning Fernau 1,* and Andreas Krebs 2

1 FB 4, Informatikwissenschaften, University of Trier, Universitätsring, 54286 Trier, Germany
2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13, 72076 Tübingen, Germany;

krebs@informatik.uni-tuebingen.de
* Correspondence: fernau@uni-trier.de; Tel.: +49-651-201-2827 or +49-651-201-3958

Academic Editor: Florin Manea
Received: 20 September 2016; Accepted: 25 January 2017; Published: 5 February 2017

Abstract: We study several classical decision problems on finite automata under the (Strong)
Exponential Time Hypothesis. We focus on three types of problems: universality, equivalence, and
emptiness of intersection. All these problems are known to be CoNP-hard for nondeterministic
finite automata, even when restricted to unary input alphabets. A different type of problems on
finite automata relates to aperiodicity and to synchronizing words. We also consider finite automata
that work on commutative alphabets and those working on two-dimensional words.

Keywords: finite automata; Exponential Time Hypothesis; universality problem; equivalence
problem; emptiness of intersection

1. Introduction

Many computer science students will get the impression, at least when taught the basics on
the Chomsky hierarchy in their course on Formal Languages, that finite automata are fairly simple
devices, and hence it is expected that typical decidability questions on finite automata are easy ones.
In fact, for instance, the non-emptiness problem for finite automata is solvable in polynomial time,
as well as the uniform word problem. (Even tighter descriptions of the complexities can be given
within classical complexity theory, but this is not so important for our presentation here, as we mostly
focus on polynomial versus exponential time.) This contrasts to the respective statements for higher
levels of the Chomsky hierarchy.

However, this impression is somewhat misled. Finite automata can be also viewed as
edge-labeled directed graphs, and as many combinatorial problems are harder on directed graphs
compared to undirected ones, it should not come as such a surprise that many interesting questions
are actually NP-hard for finite automata.

We will study hard problems for finite automata under the perspective of the Exponential
Time Hypothesis (ETH) and variants thereof, as surveyed in [1]. In particular, using the famous
sparsification lemma [2], ETH implies that there is no Op2opn`mqq algorithm for SATISFIABILITY (SAT)
of m-clause 3CNF formulae with n variables, or 3SAT for short. Notice that for these reductions to
work, we have to start out with 3SAT (i.e., with Boolean formulae in conjunctive normal form where
each clause contains (at most) three literals), as it seems unlikely that sparsification also works for
general formulae in conjunctive normal form; see [3]. Occasionally, we will also use SETH (Strong
ETH); this hypothesis implies that there is no Opp2 ´ εqnq algorithm for solving the satisfiability
problem (CNF-)SAT for general Boolean formulae in conjunctive normal form with n variables for
any ε ą 0.

Recall that the O˚ notation suppresses polynomial factors, measured in the overall input
length. This notation is common in exact exponential-time algorithms, as well as in parameterized

Algorithms 2017, 10, 24; doi:10.3390/a10010024 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 24 2 of 25

algorithms, as it allows to focus on the decisive exponential part of the running time. We refer the
reader to textbooks like [4–6].

Let us now briefly yet more thoroughly discuss the objects and questions that we are going to
study in the following. Mostly, we consider finite-state automata that read input words over the input
alphabet Σ one-way, from left to right, and they accept when entering a final state upon reading the
last letter of the word. We only consider deterministic finite automata (DFAs) and nondeterministic
finite automata (NFAs). The language (set of words) accepted by a given automaton A is denoted by
LpAq. For these classical devices, both variants of the membership problem are solvable in polynomial
time and they are therefore irrelevant to the complexity studies we are going to undertake.

Rather, we are going to study the following three problems. In each case, we clarify the natural
parameters that come with the input, as we will show algorithms whose running times depend on
these parameters, and, more importantly, we will prove lower bounds for such algorithms based
on (S)ETH.

Problem 1 (Universality). Given an automaton A with input alphabet Σ, is LpAq “ Σ˚?
Parameters are the number q of states of A and the size of Σ.

Problem 2 (Equivalence). Given two automata A1, A2 with input alphabet Σ, is LpA1q “ LpA2q?
Parameters are an upper bound q on the number of states of A1, A2 and the size of Σ.

Clearly, UNIVERSALITY reduces to EQUIVALENCE by choosing the automaton A2 such that
LpA2q “ Σ˚. Also, all these problems can be solved by computing the equivalent (minimal)
deterministic automata, which requires time O˚p2qq. In particular, notice that minimizing a DFA
with s states takes time Ops log sq with Hopcroft’s algorithm, so that the running time of first
converting a q-state NFA into an equivalent DFA (O˚p2qq) and then minimizing a 2q-state DFA
(in time Op2q2log qq “ O˚p2qq). Our results on these problems for NFAs are summarized in Table 1.
The functions refer to the exponents, so, e.g., according to the first row, we will show in this paper
that there is no 2op 3?qq algorithm for UNIVERSALITY for q-state NFAs with unary input alphabets.

Table 1. Universality/Equivalence; functions refer to exponents of bounding functions.

Σ
Universality/Equivalence

Lower Bound Upper Bound

unary op 3
?qq Op

a

q log qq Theorem 2

binary opqq q Theorem 4

unbounded opqq q Theorem 4

Problem 3 (Intersection). Given k automata A1, . . . , Ak, each with input alphabet Σ, is
Şk

i“1 LpAiq “ H?
Parameters are the number of automata k, an upper bound q on the number of states of the automata Ai,
and the size of Σ.

For (EMPTINESS OF) INTERSECTION, our results are summarized in Table 2, whose entries are to
be read similar to those of Table 1.

All these problems are already computationally hard for tally NFAs, i.e., NFAs on unary inputs.
Hence, we will study these first, before turning towards larger input alphabets. The classical
complexity status of these and many more related problems is nicely surveyed in [7]. The classical
complexity status of the mentioned problems is summarized in Table 3. Notice that (only) the last
problem is also hard on deterministic finite automata.

Algorithms 2017, 10, 24 3 of 25

Table 2. Intersection; functions refer to exponents of bounding functions.

of States Σ
Intersection

Lower Bound Upper Bound

2 O(1), i.e., in P

3 unary O(1), i.e., in P

3 binary O(1), i.e., in P

3 unbounded opkq k Proposition 2

q unary opminpk
a

log q,?qqq minpk log q, 1.5 ¨ qq Theorem 3 & Proposition 1

q binary opminpk, 2qqq minpk log q, 22q log qq Proposition 3 & Proposition 4

q unbounded opk log qq k log q Proposition 2

Table 3. The classical complexity status of three types of problems on nondeterministic finite automata.

NFA Unary Inputs Binary Inputs

NON-UNIVERSALITY NP-complete PSPACE-complete

INEQUIVALENCE NP-complete PSPACE-complete

INTERSECTION NON-EMPTINESS NP-complete PSPACE-complete

In the second part of the paper, we are extending our research in two directions: we consider
further hard problems on finite automata, more specifically, the question of whether a given DFA
accepts an aperiodic language, and questions related to synchronizing words, and we also look at
finite automata that work on objects different from strings.

In all the problems we study, we sometimes manage to show that the known or newly presented
algorithms are in some sense tight, assuming (S)ETH, while there are also always cases where we can
observe some gaps between lower and upper bounds. Without making this explicit in each case, such
situations obviously pose interesting question for future research. Also, the mentioned second part
of the paper can only be seen as a teaser to look more carefully into computationally hard complexity
questions related to automata, expressions, grammars etc. Most of the results have been presented in
a preliminary form at the conference CIAA in Seoul, 2016; see [8].

2. Universality, Equivalence, Intersection: Unary Inputs

The simplest interesting question on tally finite automata is the following one. Given an NFA A
with input alphabet tau, is LpAq “ tau˚? In [9], the corresponding problem for regular expressions
was examined and shown to be CoNP-complete. This problem is also known as NEC (NON-EMPTY

COMPLEMENT). As the reduction given in [9] starts off from 3SAT, we can easily analyze the proof to
obtain the following result. In fact, it is often a good strategy to first start off with known NP-hardness
results to see how these can be interpreted in terms of ETH-based lower bounds. However, as we can
also see with this example, this recipe does not always yield results that match known upper bounds.
However, the analysis often points to weak spots of the hardness construction, and the natural idea
is to attack these weak spots afterwards. This is exactly the strategy that we will follow in this first
problem that we consider in this paper.

We are sketching the construction for NP-hardness (as a reduction from 3SAT as in the paper of
Stockmeyer and Meyer) in the following for tally NFAs.

Let F be a given CNF formula with variables x1, . . . , xn. F consists of the clauses c1, . . . , cm.
After a little bit of cleanup, we can assume that each variable occurs at most once in each clause.
Let p1, . . . , pn be the first n prime numbers. It is known that pn ď pn lnpn ln nqqq. To simplify the

Algorithms 2017, 10, 24 4 of 25

following argument, we will only use that pn „ n ln n, as shown in ([10], Satz, p. 214). If a natural
number z satisfies

@i : 1 ď i ď n ùñ pz ” 0 mod pi _ z ” 1 mod piq ,

then z represents an assignment α to x1, . . . , xn with αpxiq “ z mod pi. Then, we say that z satisfies F
if this assignment satisfies F. Clearly, if z P tajutapku˚ for some 2 ď j ă pk, then z cannot represent
any assignment, as z mod pk is neither 0 nor 1. (This case does not occur for p1 “ 2.) There is a DFA
for tajutapku˚ with pk ` 1 ď pn states. Moreover, there is even an NFA A0 for

L0 :“
n
ď

k“2

pk´1
ď

j“2

tajutapku˚

with at most npn „ n2 ln n many states.
To each clause cj with variables xijp1q, . . . , xijp|cj|q

occurring in cj, for a suitable injective index

function ij : t1, . . . , |cj|u Ñ t1, . . . , nu, there is a unique assignment α P t0, 1u|cj| to these variables that
falsifies cj. This assignment can be represented by the language

Lj :“ ta
zkj u ¨ ta

pijp1q
¨¨¨pijp|cj|qu˚

with 0 ď zkj
ă pijp1q ¨ ¨ ¨ pijp|cj|q

being uniquely determined by zkj
” αprq mod pijprq for r “ 1, . . . , |cpjq|.

As pijp1q ¨ ¨ ¨ pijp|cj|q
ď p3

n (3SAT), Lj can be accepted by a DFA with at most p3
n states. Hence,

Ťm
j“1 Lj

can be accepted by an NFA with at most mp3
n „ mn3pln nq3 many states. In conclusion, there is an NFA

A for
Ťm

j“0 Lj with at most mp3
n „ mn3pln nq3 many states with LpAq ‰ tau˚ iff F is satisfiable. For the

correctness, it is crucial to observe that if a` R LpAq for some ` ě p1 ¨ ¨ ¨ pn, then also a` mod pp1¨¨¨pnq R

LpAq. Hence, if LpAq ‰ tau˚, then a` R LpAq for some ` ă p1 ¨ ¨ ¨ pn. As L0 Ă LpAq, ` represents an
assignment α that does not falsify each clause (by construction of the sets Lj), so that α satisfies the
given formula. Conversely, if α satisfies F, then α can be represented by an integer z, 0 ď z ă p1 ¨ ¨ ¨ pn.
Now, az R L0 as it represents an assignment, but neither az P Lj for any j ą 0, as αpcjq “ 1. Observe
that in the more classical setting, this proves that NON-UNIVERSALITY is NP-hard.

We like to emphasize a possible method to ETH-based results, namely, analyzing known
NP-hardness reductions first and then refining them to get improved ETH-based results.

Unless ETH fails, for any ε P
´

0, 1
4

¯

, there is no O˚
´

2opq1{4´εq
¯

-time algorithm for deciding,
given a tally NFA A on q states, whether LpAq “ tau˚.

Assume that, for any ε ą 0, there was an O˚
´

2opq1{4´εq
¯

-time algorithm Aε for deciding,
given a tally NFA A on q states, whether LpAq “ tau˚. Consider some 3SAT formula with n variables
and m clauses. We can assume (by the Sparsification Lemma) that this 3SAT instance is sparse.
We already described the construction of [9] above. So, we can obtain in polynomial time an NFA
with q « mn3pln nq3 many states as an instance of UNIVERSALITY. This instance can be solved in time
O˚p2opq1{4´εqq by Aε. Hence, Aε can be used to solve the given 3SAT instance in time

O˚
´

2opq1{4´εq
¯

“ O˚
´

2oppmpn¨ln nq3q1{4´εq
¯

Ď O˚
´

2opppm`nq¨lnpm`nq4q1{4´εq
¯

Ď O˚
´

2opn`mq
¯

,

in the interesting range of ε P

´

0, 1
4

¯

, which contradicts ETH. To formally do the necessary
computations in the previous theorem (and similar results below), dealing with logarithmic terms
in the exponent, we need to understand the correctness of some computations in the op¨q notation.
We exemplify such a computation in the following.

Lemma 1. @ε P p0, 1q: oppn log nqεq Ď opnq.

Algorithms 2017, 10, 24 5 of 25

Proof. This statement can be seen by the following line, using the rule of l’Hospital.

lim
nÑ8

pn ln nqε

n
“ lim

nÑ8

εp1` ln nqε´1

1
“ lim

nÑ8

ε

p1` ln nq1´ε
“ 0

Notice that 1´ ε P p0, 1q by our assumption.

We are now trying to strengthen the assertion of the previous theorem. There are actually
two weak spots in the mentioned reduction: (a) The ε-term in the statement of the theorem is due to
logarithmic factors introduced by encodings with prime numbers; however, the encodings suggested
in [9] leave rather big gaps of numbers that are not coding any useful information. (b) The 4

?
¨-term

is due to writing down all possible reasons for not satisfying any clause, which needs about Õpmn3q

many states (ignoring logarithmic terms) on its own; so, we are looking for a problem that allows
for cheaper encodings of conflicts. To achieve our goals, we need the following theorem, see [5],
Theorem 14.6.

Theorem 1. Unless ETH fails, there is no O˚
´

2opm`nq
¯

-time algorithm for deciding if a given m-edge
n-vertex graph has a (proper) 3-coloring.

As it seems to be hard to find proof details anywhere in the literature, we provide them in
the following.

Proof. Namely, in some standard NP-hardness reduction (from 3SAT via 3-NOT-ALL-EQUAL-SAT),
we could first sparsify the given 3SAT instance, obtaining an instance with N variables and M clauses.
Also, we can assume that N P OpMq. The 3-NAE-SAT instance would replace each clause c “ `1 _

`2 _ `3 of the 3SAT instance by c1 “ `1 _ `2 _ xc and c1 “ `3 _ xc, where xc is a special new variable.
Hence, this instance has N1 “ N ` M variables and M1 “ 2M clauses. The 3-COLORING instance
G “ pV, Eq that we then obtain has 2N1 ` 3 vertices and 3N1 ` 3 edges in the variable gadgets, as
well as 6M1 vertices and 9M1 edges in the clause gadgets, plus 3M1 edges to connect the clause with
the variable gadgets. Hence, in particular |E| P OpMq. This rules out O˚

´

2opmq
¯

-time algorithms for
solving 3-COLORING on m-edge graphs.

The previous result can be used, together with the sketched ideas, to prove the following theorem.

Theorem 2. Unless ETH fails, there is no O˚
´

2opq1{3q
¯

-time algorithm for deciding, given a tally NFA A on
q states, whether LpAq “ tau˚.

Proof. We are now explaining a reduction from 3-COLORING to TALLY NFA UNIVERSALITY.
Let G “ pV, Eq be a given graph with vertices v1, . . . , vn. E consists of the edges e1, . . . , em.
Let P “ tp | p is a prime and 2n ď p ă 4nu. To simplify the following argument, we will only
use that the expected number of primes below n is at least n{ ln n, as shown in [10], Satz, p. 214.
Hence we can assume P contains at least n{ log n primes p1, . . . , pl for l “ rn{ log ns. (For the sake of
clarity of presentation, we ignore some small multiplicative constants here and in the following.)

We group the vertices of V into blocks of size log n. A coloring within such a block can be
encoded by a number between 0 and 3log n ď 2n. Hence, a coloring is described by an l-tuple z1, . . . , zl
of numbers.

If a natural number z satisfies

@i : 1 ď i ď n{ log n ùñ z ” zi mod pi,

where zi is representing the encoding of a block, then z is an encoding of a coloring of some vertex
from V.

Algorithms 2017, 10, 24 6 of 25

There is a DFA for tajutapku˚ with at most 4n states, where j is number that does not represent
a valid coloring of the k-th block. Similarly, there is also a DFA for

Ť

j is not validta
jutapku˚ with this

number of states (only the set of final states changes). Moreover, there is even an NFA A0 for

L0 :“
l
ď

k“1

ď

j is not valid

tajutapku˚

with at most lpn`1 „ n2 states.
To formally describe invalid colorings, we also need a function blk that associates the block

number to a given vertex index (where the coloring information can be found), and partial functions
colj : t0, . . . , pblkpjq ´ 1u Ñ t0, 1, 2u for each vertex index j, yielding the coloring of vertex vj. We can
cyclically extend colj by setting coljpnq :“ coljpn mod pblkpjqqwhenever colj is defined.

For each edge ej with end vertices vαpjq, vωpjq with 1 ď αpjq ă ωpjq ď n there are three colorings
of tvαpjq, vωpjqu that violate the properness condition. We can capture such a violation in the language
Lj :“ taz : colαpjqpzq “ colωpjqpzqu. Lj is regular, as

Lj “ Mj ¨ ta
pblkpαpjqq¨pblkpωpjqqu˚ ,

with
Mj :“ taz : 0 ď z ă pblkpαpjqq ¨ pblkpωpjqq ^ colαpjqpzq “ colωpjqpzqu

being finite, as pblkpαpjqqpblkpωpjqq ď 16n2. So, Lj can be accepted by a DFA with at most n2 states,
ignoring constant factors. Hence,

Ťm
j“1 Lj can be accepted by an NFA with at most mn2 many states.

In conclusion, there is an NFA A for
Ťm

j“0 Lj with at most mn2 many states with LpAq ‰ tau˚ iff G
is 3-colorable.

For the correctness, it is crucial to observe that if ar R LpAq for some r ě p1 ¨ ¨ ¨ pl , then also
ar mod pp1¨¨¨plq R LpAq. Hence, if LpAq ‰ tau˚, then ar R LpAq for some r ă p1 ¨ ¨ ¨ pl . As L0 Ă LpAq,
r represents a coloring c that does not color any edge improperly (by construction of the sets Lj).
Conversely, if c properly colors G, then c can be represented by an integer z, 0 ď z ă p1 ¨ ¨ ¨ pl .
Now, az R L0 as it represents a coloring, but neither az P Lj for any j ą 0, as cpvαpjqq ‰ cpvωpjqq.

Observe that in the more classical setting, this proves that UNIVERSALITY is CoNP-hard.
As ETH rules out O˚

´

2opn`mq
¯

-algorithms for solving 3-COLORING on m-edge graphs with n

vertices, we can assume that we have pm` nq3 as an upper bound on the number q of states of the
NFA instance constructed as described above. If there would be an O˚

´

2opq1{3q
¯

-time algorithm for
UNIVERSALITY of q-state tally NFAs, then we would find an algorithm for solving 3-COLORING that
runs in time O˚

´

2opppn`mq3q1{3q
¯

. This would contradict ETH.

How good is this improved bound? There is a pretty easy algorithm to solve the universality
problem. First, transform the given tally NFA into an equivalent tally DFA, then turn it into a DFA
accepting the complement and check if this is empty. The last two steps are clearly doable in linear
time, measured in the size of the DFA obtained in the first step. For the conversion of a q-state
tally NFA into an equivalent q1-state DFA, it is known that q1 “ 2Θp

?
q log qq is possible but also

necessary [11]. The precise estimate on q1 is

Fpqq “ maxtlcmpx1, . . . , xrq | x1, . . . , xr ě 1^ x1 ` ¨ ¨ ¨ ` xr “ qu ,

also known as Landau’s function. It is tightly related to the prime number estimate for pn we have
already seen. So, in a sense, the ETH bound poses the question if there are other algorithms to decide
universality for tally NFAs, radically different from the proposed one, not using DFA conversion first.
Let us mention that there have been indeed proposal for different algorithms to test universality for
NFAs; we only refer to [12], but we are not aware of any accompanying complexity analysis that

Algorithms 2017, 10, 24 7 of 25

shows the superiority of that approach over the classical one. Conversely, it might be possible to
tighten the upper bound.

Notice that this problem is trivial for tally DFAs by state complementation and hence reduction
to the polynomial-time solvable emptiness problem.

We now turn to the equivalence problem for tally NFAs. As an easy corollary from Theorem 2,
we obtain the next result.

Corollary 1. Unless ETH fails, there is no O˚
´

2opq1{3q
¯

-time algorithm for deciding equivalence of two NFAs
A1 and A2 on at most q states and input alphabet tau.

We are finally turning towards TALLY-DFA-INTERSECTION and also towards
TALLY-NFA-INTERSECTION. CoNP-completeness of this problem, both for DFAs and for NFAs, was
indicated in [13], referring to [9,14]. We make this more explicit in the following, in order to also
obtain some ETH-based results.

Theorem 3. Let k tally DFAs A1, . . . , Ak with input alphabet tau be given, each with at most q states. If ETH
holds, then there is no algorithm with that decides if

Şk
i“1 LpAiq “ H in time O˚

´

2opminpk
?

log q,
?

qqq
¯

.

Proof. We revisit our previous reduction (from an instance G “ pV, Eq of 3-COLORING with |V| “ n
and |E| “ m to some NFA instance for UNIVERSALITY), which delivered the union of many simple
sets Li, each of which can be accepted by a DFA Ai whose automaton graph is a simple cycle. These
DFAs Ai have Opn2q states each. The complements Li of these languages can be also accepted by DFAs
Ai of the same size. Ignoring constants, originally the union of Opn`mqmany such sets was formed.
Considering now the intersection of the complements of the mentioned simple sets, we obtain a lower
bound if k ě n`m and q ě n2 or, a bit weaker, if q ě pn`mq2.

Finally, we can always merge two automata into one using the product construction. This allows
us to halve the number of automata while squaring the size of the automata. This trade-off allows to
optimize the values for k and q.

Assume we have an algorithm with running time 2opk
?

log qq, then we get can reduce 3-COLORING

with m edges to intersection of pn ` mq{ logpn ` mq automata each of size bounded by ppn `

mq2qlogpn`mq “ 22 log2pn`mq, and hence solving it in time 2oppn`mq{ logpn`mq¨
b

2 log2pn`mqq
“ 2opn`mq,

a contradiction. Similarly, there can be no algorithm with running time 2op
?

qq.

Proposition 1. Let k tally DFAs A1, . . . , Ak with input alphabet tau be given, each with at most q states.
There is an algorithm that decides if

Şk
i“1 LpAiq “ H in time O˚

´

2minpk log q,1.5¨qq
¯

.

Proof. For the upper bound there are basically two algorithms; the natural approach to solve this
intersection problem would be to first build the product automaton, which is of size qk, and then
solve the emptiness problem in linear time on this device. This gives an overall running time of
O˚

´

qk
¯

“ O˚
´

2k log q
¯

; also see Theorem 8.3 in [15]. On the other hand, we can test all words up to

length q` 21.5q. As each DFA has at most q states in each DFA, processing a word enters a cycle in at
most q steps. Also the size of the cycle in each DFA is bounded by q. The least common multiple of
all integers bounded by q, i.e., eψpqq, where ψ is the second Chebyshev function, is bounded by 21.5q;
see Propositions 3.2 and 5.1. in [16]. This yields an upper bound O˚

`

21.5q˘ of the running time.

Hence in the case where the exponent is dominated by k, the upper and lower bound differ by a
factor of

a

log q, and in the other case by a factor of
?q.

Algorithms 2017, 10, 24 8 of 25

Remark 1. From the perspective of parameterized complexity, we could also (alternatively) only look at the
parameter q, as in the case of DFAs k ď qp2qqq (after some cleaning; as there are no more than qq many
functions Q Ñ Q available as state transition functions, multiplied by 2q choices of final state sets, as well
as by the q choices of initial states); the corresponding bound for NFAs is worse. However, the corresponding
O˚

´

qqp2qqq
¯

algorithm for solving TALLY-DFA-INTERSECTION for q-state DFAs is far from practical for any
q ą 2. We can slightly improve our bound on k by observing that from the 2q potential choices of final state
sets for each of the qq`1 choices of transition functions and initial states, at most one is relevant for the question
at hand, as the intersection of languages accepted by DFAs with identical transition functions and initial states
is accepted by one DFA with the same transition function and initial state whose set of final states is just the
intersection of the sets of final states of the previously mentioned DFAs; if this intersection turns out to be empty,
then also the intersection of the languages in question is empty. Hence, we can assume that k ď qq`1. A further
improvement is due to the following modified algorithm: First, we construct DFAs Ā1, . . . , Āk that accept the
complements of the languages accepted by A1, . . . , Ak. Then, we build an NFA Ā that accepts

Ťk
i“1 LpĀiq.

Notice that Ā has about at most qk` 1 ď qq`2 states by using some standard construction. If we check the
corresponding DFA for UNIVERSALITY, this would take, altogether, time O˚

´

2
?

qq`2pq`2q log q
¯

for unary
input alphabets.

3. The Non-Tally Case

In the classical setting, the automata problems that we study are harder for binary (and larger)
input alphabet sizes (PSPACE-complete; for instance, see [17]). Also, notice that the best-known
algorithms are also slower in this case. This should be reflected in the lower bounds that we can
obtain for them (under ETH), too.

Let us describe a modification (and in a sense a simplification) of our reduction from
3-COLORING. Let G “ pV, Eq be an undirected graph. We construct an NFA A (on a ternary alphabet
Σ “ ta, b, cu for simplicity) as follows. Σ corresponds to the set of colors with which we like to label
the vertices of the graph. The state set is tsu Y pEˆV ˆ Σq. W.l.o.g., V “ tv1, . . . , vnu. For e “ uv and
x, y P Σ, we add the following transitions.

• s x
ÝÑ pe, v1, yq if v1 R tu, vu or if pu “ v1 _ v “ v1q ^ y “ x;

• pe, vi, yq x
ÝÑ pe, vi`1, yq (for i “ 1, . . . , n´ 1) if vi`1 R tu, vu or if pu “ vi`1 _ v “ vi`1q ^ y “ x;

• pe, vn, yq x
ÝÑ s.

Moreover, s is the only initial and all states are final states. If z “ z1z2 ¨ ¨ ¨ zn`1 P LpAq, then
this corresponds to a coloring c : V Ñ Σ via cpvkq “ zk, k “ 1, . . . , n, that is not proper. Namely, z
drives the A through the states s, pe, v1, yq, pe, v2, yq, . . . , pe, vn, yq, s for some e “ vivj P E and some
y P Σ. By construction, this is only possible if cpviq “ cpvjq “ zi “ zj “ y, establishing the claim.
Conversely, if c : V Ñ Σ is a coloring that is improper, then there is an edge, say, e “ vivj, such that
cpviq “ cpvjq “ y for some y P Σ. Then, z :“ z1z2 ¨ ¨ ¨ zna P LpAq, where zk “ cpvkq, k “ 1, . . . , n.
Namely, this z will drive A through the states s, pe, v1, yq, pe, v2, yq, . . . , pe, vn, yq, s.

Hence, for the constructed automaton A, LpAq ‰ Σ˚ if and only if there is some proper coloring
c : V Ñ Σ of G. For such a proper coloring c, z :“ z1z2 ¨ ¨ ¨ zna R LpAq, where zk “ cpvkq, k “ 1, . . . , n.

As m ě n, the number of states of A is Opm2q. So, we can conclude a lower bound of the form
O˚

´

2op
?

qq
¯

. We are now further modifying this construction idea to obtain the following tight bound.

Theorem 4. Assuming ETH, there is no algorithm for solving UNIVERSALITY for q-state NFAs with binary
input alphabets that runs in time O˚

´

2opqq
¯

.

Proof. As we can encode the union of all the NFAs above more succinct we get a better bound. Let
G “ pV, Eq be an undirected graph, and V “ tv1, . . . , vnu as above. Let Σ “ ta, b, cu represent three
colors. Then there is a natural correspondence of a word in Σn to a coloring of the graph, where the
i-th letter in the words corresponds to the color of vi. We construct an automaton with 3pn´ 1q ` 1

Algorithms 2017, 10, 24 9 of 25

states, as sketched in Figure 1. Notice that this figure only shows the backbone of the construction.
Additionally, for each edge pvi, vjq with i ă j in the graph, we add three types of transitions to the

automaton: qi
a
ÝÑ aj´i, qi

b
ÝÑ bj´i, qi

c
ÝÑ cj´i. These three transitions are meant to reflect the three

possibilities to improperly color the given graph due to assigning vi and vj the same color. Inputs of
length n encode a coloring of the vertices. First notice that the automaton will accept every word of
length not equal to n. Namely, words shorter than n can drive the automaton into one of the states q1

through qn´1. Also, as argued below, the automaton can accept all words longer than n, starting with
an improper coloring coding of the word, as this can drive the automaton into state f . Further, our
construction enables the check of an improper coloring. A coloring is improper if to vertices that are
connected have the same color, so we should accept a word w “ w1 . . . wn iff i ă j and pi, jq P E and
wi “ wj. Pick such a word and assume, without a loss of generality, that wi “ a. Then the automaton
will accept w, since the additional edge qi

a
ÝÑ aj´i allows for an accepting run terminating in the

state f . Note that the automaton accepts all words of length at most n´ 1. Also, it accepts a word of
length at least n iff the prefix of length n corresponds to a bad coloring. Hence the automaton accepts
all words iff all colorings are bad.

The converse direction is also easily seen. Assume there is a valid coloring represented by a
word w1 . . . wn. Assume by contradiction that this word is accepted by the automaton. As the word
has length n an accepting run has to terminate in f , and so one of the edges added to the automaton
backbone as shown in Figure 1 has to be part of this run. Assume, without a loss of generality, that
this is the edge qi

a
ÝÑ aj´i. Then wi “ a, as the edge was chosen and since this run leads to f , also the

letter at position i` pj´ iq has to equal a. However, as pi, jq P E this is not valid coloring, hence the
assumption that the word is accepted by the automaton was false. Hence, if there is a valid coloring
the automaton does not accept all words.

It is simple to change the construction given above to get away with binary input alphabets
(instead of ternary ones), for instance, by encoding a as 00, b as 01 and c as 10.

q1start q2 q3 qn´1

an´1 an´2 an´3 a1

bn´1 bn´2 bn´3 b1 f

cn´1 cn´2 cn´3 c1

a, b, c a, b, c a, b, c

a, b, c a, b, c a, b, c

a

a, b, c a, b, c a, b, c b

a, b, c a, b, c a, b, c

c

a, b, c

Figure 1. A sketch of the NFA construction of Theorem 4.

We are now turning towards DFA-INTERSECTION and also to NFA-INTERSECTION. In the
classical perspective, both are PSPACE-complete problems. An adaptation of our preceding reduction
from 3-COLORING, considering |E| DFAs each with 3|V| ` 1 states obtained from a graph instance
pV, Eq, yields the next result, where upper and lower bounds perfectly match.

In the following proposition we have parameters k the number of automata, q the maximum size
of these automata, and n the input length. The parameters k, q are both upper bounded by n. Recall
that the notation O˚p2 f pk,qqq drops polynomial factors in n even though n is not explicitly mentioned
in the expression.

Algorithms 2017, 10, 24 10 of 25

Proposition 2. There is no algorithm that, given k DFAs (or NFAs) A1, . . . , Ak with arbitrary input alphabet,
each with at most q states, decides if

Şk
i“1 LpAiq “ H in time O˚

´

2logpqq¨opkq
¯

unless ETH fails. Conversely,
there is an algorithm that, given k DFAs (or NFAs) A1, . . . , Ak with arbitrary input alphabet, each with at most
q states, decides if

Şk
i“1 LpAiq ‰ H in time O˚

´

2logpqq¨k
¯

.

Proof. The hardness is by adaptation of the the 3-COLORING reduction we gave for UNIVERSALITY.
For parameters k and q, we take a graph with |V| ` |E| “ k log3 q “ Θpk log qq. In this proof, we
neglect the use of some ceiling functions for the sake of readability. For the DFAs, choose the alphabet
Σ “ V ˆ C, C “ t1, 2, 3u. The states are s, t, O. For each vertex v, we define the DFA Av, and for each
edge uv and each color a, we define the DFA Auv,a, as described in Figure 2. Clearly, we have |V| ` |E|
many of these DFAs Ai.

We can compute the intersection for each block of log3 q automata into a single DFA in
polynomial time (with respect to q). This can be most easily seen by performing a multi-product
construction. Hence, given a block of log3 q automata Ai with transition function δi, we output
the new block automaton AB whose set of states QB corresponds to all (q many) ternary numbers,
interpreted as plog3 qq-tuples in ts, t, Oulog3 q. We output a transition in the table of δB in the
following situation:

δBppp1, . . . , plog3 qq, pv, aqq “ pδ1pp1, pv, aqq, . . . , δlog3 qpplog3 q, pv, aqqq .

So, we have to look up 3q|Σ| times the tables of the Ai’s, where each of the log3 q look-ups takes
roughly 3|Σ| time.

This way, we obtain an automaton with q states and we reduce the number of DFAs to
k “ p|V| ` |E|q{ log3 q. Hence, we got k DFAs each with q states. If there was an algorithm

solving DFA-INTERSECTION in time O˚
´

2logpqqopkq
¯

, then this would result in an algorithm solving

3-COLORING in time O˚
´

2op|V|`|E|q
¯

, contradicting ETH.
Conversely, given k DFAs A1, . . . , Ak with arbitrary input alphabet, each with at most q states

(q is fixed), we can turn these into one DFA with O˚pqkq states by the well-known product
construction, which allows us to solve the DFA-INTERSECTION question in time O˚p2Opk log qqq.

Av:
sstart t O

tvu ˆ C

tvu ˆ C

tvu ˆ C

tvu ˆ C

Σ

Each vertex receives exactly one
color.

Auv,a:
sstart t O

tpu, aqu

pu, aq

tpv, aqu

pv, aq

Σ

Endpoints of edges receive
different colors.

Figure 2. The DFAs necessary to express a proper coloring.

Remark 2. The proof of the previous theorem also implies that no such algorithm even if restricted to any
infinite subset of tuples pq, kq Ď t3, 4, . . . u ˆ t1, 2, 3, . . . u in time O˚p2logpqqopkqq can exist, unless ETH fails.
Especially, if q is fixed to a constant greater than 2, no algorithm in time O˚

´

2opkq
¯

can exist, unless ETH fails.

We can encode the large alphabet of the previous construction into the binary one, but we get a
weaker result. In particular, the DFAs Av and Auv,a in this revised construction have Oplog nq states,
and not constantly many as before. This means that we have to spell out the paths between the states
s and t, but this is not necessary with the trash state O.

Algorithms 2017, 10, 24 11 of 25

Proposition 3. There is no algorithm that, given k DFAs A1, . . . , Ak with binary input alphabet, each with at
most q states, decides if

Şk
i“1 LpAiq “ H in time O˚

´

2opkq
¯

or O˚
´

2op2qq
¯

, unless ETH fails.

Proof. We reduce this case to the case of unbounded alphabet size. Assume we are given k DFAs
A1, . . . , Ak over the alphabet Σ, where |Σ| “ l. We encode each letter of Σ by a word of length rlog ls
(block code) over the alphabet t0, 1u.

In general, when converting an automaton from an alphabet Σ to an alphabet t0, 1u, the size of
the automaton might increase by a factor of |Σ|, as one might need to build a tree distinguishing all
words of length log l.

But we already know that, for the unbounded alphabet size, the lower bound is achieved by
using only the automata from that proof (see Figure 2). These automata are special, as there are at
most |C| “ 3 many edges leaving each state, while all other edges loop.

Hence, we only increase the number of states (and also edges) by a factor or 4 log l.

The following proposition gives a matching upper bound:

Proposition 4. There is an algorithm that, given k DFAs A1, . . . , Ak with binary input alphabet, each with at
most q states, decides if

Şk
i“1 LpAiq “ H in time O˚

´

2logpqq¨minpk,22qq
¯

.

Proof. We will actually give two algorithms that solve this problem. One has a running time of
O˚

´

2k log q
¯

and one a running time of O˚
´

22q¨log q
¯

. The result then follows.
(a) We can first construct the product automaton of the DFAs A1, . . . , Ak, which is a DFA with at

most qk “ 2k log q many states. In this automaton, one can test emptiness in time linear in the number
of states.

(b) For the other algorithm, notice that for a fixed number q, a large number k of automata seems
not to increase the complexity of the intersection problem, as there are only finitely many different
DFAs with at most q many states. Intersection is easy to compute for DFAs with the same underlying
labeled graph. On binary alphabets, each state has exactly two outgoing edges. Thus, there are q2

possible choices for the outgoing edges of each state. Hence in total there are pq2qq “ q2q different
such DFAs. By merging first all DFAs with the same graph structure we can assume that k ď q2q.
We can now proceed as in (a).

Let us conclude this section with a kind of historical remark, linking three papers from the
literature that can also be used as a starting point for ETH-based results on DFA-INTERSECTION.
Wareham presented several reductions when discussing parameterized complexity issues for
DFA-INTERSECTION in [15]. In particular, Lemma 6 describes a reduction from DOMINATING SET

that produces from a given n-vertex graph (and parameter ` ě n) a set of n ` 1 DFAs, each of
at most ` ` 1 states and with an n-letter input alphabet, so that we can rule out O˚p2opminpq,kqqq

algorithms for DFA-INTERSECTION in this way. In the long version of [18], it is shown that SUBSET

SUM, parameterized by the number n of numbers, does not allow for an algorithm running in time
O˚

´

2opnq
¯

, unless ETH fails. Looking at the proof, it becomes clear that (under ETH) there is also

no algorithm O˚
´

2opNq
¯

-algorithm for SUBSET SUM, parameterized by the maximum number N
of bits per number. Karakostas, Lipton and Viglas, apparently unaware of the ETH framework
at that time, showed in [19] that an O˚

´

qopkq
¯

-algorithm for DFA-INTERSECTION would entail a

O˚
`

2ε¨N˘-algorithms for SUBSET SUM, for any ε ą 0. Although the latter condition looks rather
like SETH, it is at least an indication that we could also make use of other reductions in the
literature to obtain the kinds of bounds we are looking for. Also, Wehar showed in [20] that
there is no O˚

´

qopkq
¯

-algorithm for DFA-INTERSECTION, unless NL equals P. This indicates another
way of showing lower bounds, connecting to questions of classical Complexity Theory rather than
using (S)ETH.

Algorithms 2017, 10, 24 12 of 25

4. Related Problems

Our studies so far only touched the tip of the iceberg. Let us mention and briefly discuss at least
some related problems for finite automata in this section.

4.1. The Aperiodicity Problem

Recall that a regular language is called star-free (or aperiodic) if it can be expressed, starting from
finite sets, with the Boolean operations and with concatenation. (So, Kleene star is disallowed in the
set constructions, in contrast to the ‘usual’ form of regular expressions.) We denote the subclass of the
regular languages consisting of the star-free languages by SF.

It is known that a language is star-free if and only it its syntactic monoid is aperiodic [21], that is,
it does not contain any nontrivial group. Here we will use a purely automata-theoric characterization:
A language accepted by some minimum-state DFA A is star-free iff for every input word w, for every
integer r ě 1 and for every state q, δ˚pq, wrq “ q implies δ˚pq, wq “ q.

This allows a minimal automaton of a star-free language to contain a cycle, but if the non-empty
word w along a cycle starting at q is a power of another non-empty word u, i.e., w “ ur for some r ě 2,
then u also forms a cycle starting at q. For example, the language taaau˚ is not aperiodic as a3 forms a
cycle starting at any state of the minimal automaton, but a does not. However, tabcu˚ is aperiodic, as
abc, bca, cab are the only cycles in the minimal automaton (except for cycles starting at the sink state).

For this class SF (and in fact for any other subregular language class), one can ask the following
decision problem. Given a DFA A, is LpAq P SF? This problem (called APERIODICITY in the
following) was shown to be PSPACE-complete by Cho and Huynh in [22]. It relies on the following
characterization of aperiodicity: Cho and Huynh present a reduction that first (again) proves that
the DFA-INTERSECTION-NONEMPTINESS is PSPACE-complete (by giving a direct simulation of the
computations of a polynomial-space bounded TM) and then show how to alter this reduction in
order to obtain the desired result. Unfortunately, this type of reductions is not very useful for
ETH-based lower-bound proofs. However, in an earlier paper, Stern [23] proved that APERIODICITY

is CoNP-hard. His reduction is from 3SAT (on n variables and m clauses), and it produces a
minimum-state DFA with Opnmq many states. Hence, we can immediately conclude a lower bound
of O

´

2op
?

qq
¯

for APERIODICITY on q-state DFAs. This can be improved as follows.
The basic idea of the proof of the next proposition is to reduce the intersection problem

(in a restricted version) to aperiodicity. Given language L1, L2, . . . , Lk, consider the language
L “ pL1$L2$. . . Lkq˚, and let A be its minimal automaton. One direction is easy: if the intersection
of the languages L1, . . . , Lk contains a word u, then pu$qk forms a cycle in A starting at the initial state,
but u$ does not. This gives the idea to show that if there is a word w in the intersection, then the
language L is not aperiodic. The other direction is more involved and requires that the languages
L1, . . . , Lk are themselves aperiodic, and that k is a prime.

Theorem 5. Assuming ETH, there is no algorithm for solving APERIODICITY for q-state DFAs on arbitrary
input alphabets that runs in time O

´

2opqq
¯

.

Proof. We will show this by reducing a restricted version of the intersection problem to
APERIODICITY. Proposition 2 is stated only for general automata, but as the hardness part of the
proof only uses automata which are aperiodic, the following claim holds:

Claim 1. Let q ě 3 be fixed. Let L1, . . . , Lk be star-free languages given by their minimal automata A1, . . . , Ak
over some alphabet Σ, where the number of states of each Ai is bounded by q. Then there is no algorithm deciding
if
Şk

i“1 Li “ H in time O
´

2logpqq¨opkq
¯

unless ETH fails.

We will use the claim only for q “ 3.

Algorithms 2017, 10, 24 13 of 25

Let L1, . . . , Lk be star-free languages given by their minimal automata A1, . . . , Ak, where
A1 “ pΣ, Q1, q11, F1, δ1q and for i P t2, . . . , ku we let Ai “ pΣ, Qi, qi, Fi, δiq. (For technical reasons
explained later, the initial state of A1 is q11 whereas the initial states of the other Ai are called qi.)
Without a loss of generality, we can assume that k is a prime. If not, one can simply add Lk multiple
times to the list of automata, until the length of the list is a prime. Moreover, we can assume that
the state alphabets satisfy, for all 1 ď i, j ď k, Qi X Qj ‰ H ùñ i “ j, i.e., the state alphabets are
pairwise disjoint.

We let
L “ pL1$L2$. . . Lkq˚

and our main goal will be to show that L is star-free if and only if
Şk

i“1 Li “ H. This will complete
the proof, as the number of states for an automata recognizing A can be bounded by k maxi |Qi| ` 2 “ Opkq
by the construction given below, and as by the reduction no algorithm deciding APERIODICITY in
time O

´

2opkq
¯

can exist unless ETH fails.
If one of the Li is empty, a property that can be tested in linear time, then the intersection is empty

and L “ H˚ hence is also star-free. So from now on, we assume that for all i P t1, . . . , ku, we have
Li ‰ H.

In the following, we will first give an explicit construction of the minimal automaton A of L.
We use the characterization from above that A is star-free iff for every input w and every integer r ě 1
and every state q, δ˚pq, wrq “ q implies δ˚pq, wq “ q.

First we show the “easy direction”: given a word w̃ in the intersection, w “ w̃$, q being the
initial state of A, and r “ k, the condition for being aperiodic fails. Then we proceed with the “hard
direction” given a word w and an integer r ě 1 and a state q of A such that δ˚pq, wrq “ q and
δ˚pq, wq ‰ q implies that the maximal prefix of w in Σ˚ is in the intersection

Şk
i“1 Li, and hence the

intersection is non-empty.

Step 1: Construction of the minimal automaton of L

The idea is to construct an automaton over the alphabet ΣY t$u, $ R Σ, which is basically a large
cycle consisting of the automata Ai. For i P t1, . . . , k´ 1u, we connect the accepting state(s) of Ai to
the initial state qi`1 of Ai`1 via an edge labeled $, and finally we connect the accepting state(s) of Ak
to the initial state q11 of A1 via an edge labeled $.

The details of this construction are a bit more involved. By minimality, each of the Qi might
contain at most one sink state, i.e., a state that has no path leading to an accepting state. Let Q1i be
the set of states of Ai that contain a path to a state from Fi. As all languages LpAiq are non-empty, the
initial state of Ai is in Q1i. In particular, each Q1i is non-empty. Let A “ pΣY t$u, Q, q1, tq1u, δq, where
Q “

Ťk
i“1 Q1i Y tq1, Ou, and δ Ď Qˆ pΣY t$uq ˆQ consists of the following sets:

• δi for i P t1, . . . , ku (recall that the state sets are pairwise disjoint),
• tpq, $, qi`1q | i P t1, . . . , k´ 1u, q P Fiu,
• tpq, $, q1q | q P Fku,
• tpq1, σ, qq | pq11, σ, qq P δ1u,
• tpq1, $, q2qu if q11 P F1,
• tpO, σ, Oq | σ P Σu,
• tpq, σ, Oq | for all q, σ where there is no q1 such that pq, σ, q1q is in one of the sets aboveu.

Since the initial state of A1 was called q11, we could add a new state q1 and make sure there are
no edges from Q1 connecting to q1. This is needed as otherwise we might recognize additional words
looping within Q1 from q1 to q1. Also we merge all sink states of the Ai into a single sink state O.

We need to show that the automaton is minimal. For this we need to show that no pair of states
can be merged, i.e., there exists a word that leads to the final state for exactly one of them. First note
that no word leads from O to the final state q1, and there is a path from every other state. Hence O

cannot be merged with any other state. Also note that q1 cannot be merged with any other state as it
is the only final state.

Algorithms 2017, 10, 24 14 of 25

Hence we need to show that q1, q2 P
Ťk

i“1 Q1i, q1 ‰ q2, cannot be merged. If q1 and q2 are both in
some Q1i, then these state corresponds to states in Ai and by minimality of Ai they cannot be merged.
Assume that q1 P Qi and q2 P Qj for i ă j, then there is a path from q2 to the final state q1 using exactly
k´ i` 1 many $-transitions, and such a path cannot exist for q1.

So A is the minimal automaton for L.

Step 2: “Easy direction”

Assume the intersection of the Ai is nonempty and w is a word in the intersection. Then
δ˚pq1, pw$qkq “ q1 and δ˚pq1, pw$qq “ q2 and since A is the minimal automaton for L, this implies
that L is not star-free.

Step 3: “Hard direction”

Assume there is a common word w that forms a nontrivial cycle wr in A for r ą 1, i.e., there
exists a state q such that δ˚pq, wrq “ q and δ˚pq, wq ‰ q. First we can rule out that q “ O, as all cycles
through O are trivial.

Assume that w P Σ˚, i.e., w does not contain a $ symbol. Then the cycle is contained completely
within one of the Q1i and hence there is a corresponding cycle in Ai which cannot be nontrivial as the
Ai are aperiodic.

Recall that the states corresponding to the initial states of A1, . . . , Ak are called q1, . . . , qk in A
(strictly speaking for q1 this is not correct, but q1 behaves similar enough in the following). First note
that if w “ uv forms a cycle starting at the state q, then vu forms a cycle starting at the state δ˚pq, uq.
We will use this idea to find a cycle starting at one of the states qi for i P t1, . . . , ku corresponding to an
initial state of Ai. So w is of the form w “ u1vu2, where u1, u2 P Σ˚ and v P pΣY t$uq˚. Since u1$v$
is a word ending with a $ symbol, we have that δ˚pq, u1vq “ qi is one of the states corresponding to
an initial states of an Ai. By rotating wr one easily sees that δ˚pqi, pu2u1vqrq “ qi. Also assume by
contradiction that δ˚pqi, u2u1vq “ qi. We get δ˚pq, pu1vu2q

cq “ δ˚pq, pu1vu2q
c´1q by removing

one loop through qi. However, this implies by induction on c that δ˚pq, pu1vu2qq “ q, contradicting
the assumption that w forms a nontrivial cycle. Hence u2u1v also forms a nontrivial cycle starting
at qi. We let u “ u2u1.

Also since uv ends with a $ symbol we have δ˚pqi, uvq “ qi1 where i1 “ i` c pmod kq (for
c ‰ 0 as qi1 ‰ qi), and since the number of $ in puvqt is proportional to t, we get δ˚pqi, puvqtq “ qj,
where j “ i` c ¨ t pmod kq (this also uses the fact that δ˚pqi, puvqrq “ qi, hence no prefix can lead to
the state O). Also since k is a prime, for each j, there exists a t such that δ˚pqi, puvqtq “ qj. However,
then this implies that δ˚pqj, u$q “ qj1 where j1 “ j` 1 pmod kq for all j P t1, . . . , ku. Hence u P Lj for
all j P t1, . . . , ku (note this is also true for j “ 1 as the out-going transitions from q1 are the same as the
ones from q11), and so the intersection is not empty.

If we use the automaton over the binary alphabet from Proposition 3 in the proof of the
previous theorem, we require automata of logarithmic size instead of constant size for the hardness
of the intersection problem. Hence, the number of states decreases by a factor of log q. This will give
us the following result.

Corollary 2. Assuming ETH, there is no algorithm for solving APERIODICITY for q-state DFAs on binary
input alphabets running in time Op2opq{ log qqq.

We are not aware of any published exponential-time algorithm for solving APERIODICITY.
However, as some NP-hard problems involving cycles in directed graphs admit subexponential-time
algorithms, see [24,25], our lower bound could be even matched. Nonetheless, this stays an
open question.

Algorithms 2017, 10, 24 15 of 25

Proposition 5. There is an algorithm for solving APERIODICITY that runs in time O˚ pqqq “ O˚
´

2q log q
¯

on a given q-state DFA with arbitrary input alphabet.

Proof. Namely, first (as a preparatory step) create a table of size qq, classifying those mappings f :
Q Ñ Q as good that have the property that for some state p of the given DFA A, f ppq ‰ p but f ippq “ p
for some i “ 2, . . . , q. The table creation needs time O˚ pqqq.

In a second column of our table, write down if a certain mapping f is realizable, i.e., does there
exist a word w P Σ˚ such that µw “ f ? In order to be able to reconstruct the word realizing f ,
either notify that f is the identity (and hence f is realized as µε), or write down a realizable map g,
i.e., g “ µu for some u P Σ˚, and a letter a P Σ, such that f “ µua. We build this second column
by dynamic programming, starting with only one realizable entry, the identity, and then we keep
looping through the whole alphabet (for all a P Σ) and all realizable mappings g “ µu and mark
f “ µua as realizable until no further changes happen to the table. Hence, this part of the algorithm
will perform at most qq loops. Finally, we have to check in our table if there are any mappings that are
both realizable and good. If so, we can construct a star witness, proving that LpAq is not aperiodic.
If not, we know that the language LpAq is aperiodic. The overall running time of the algorithm is
O˚ pqqq “ O˚

´

2q log q
¯

.

Another related problem asks whether, given a DFA A, the language LpAq belongs to AC0, which
means testing if LpAq is quasi-aperiodic.Let us make this more precise. Let L Ď Σ˚ be a language,
M be its syntactic monoid. and η : Σ˚ Ñ L its syntactic morphism. A regular language is in AC0 iff
the syntactic morphism is quasi-aperiodic, i.e., for all n P N the subset ηpΣnq of M does not contain a
non-trivial subgroup of M. Analyzing the PSPACE-hardness proof of Beaudry, McKenzie and Thérien
given in [26], we see that the same lower bound result as stated for APERIODICITY holds for this
question, as well. We can reduce testing if the syntactic monoid of a language is aperiodic to the
question whether the syntactic morphism is quasi-aperiodic by adding a neutral letter. This will give
us the same lower bound as deciding aperiodicity. For the upper bound, note that we only need to
test if ηpΣnq contains a group up to n ď 2|M|.

Corollary 3. Assuming ETH, there is no algorithm that runs in time O
´

2opqq
¯

and decides, given a q-state
DFA A on arbitrary input alphabets, whether or not the syntactic morphism of LpAq is quasi-aperiodic.
Conversely, we can decide if a q-state automaton recognizes a language with a quasi-aperiodic syntactic
morphism in time O˚p2q log qq.

It would be also interesting to study other “hard subfamily problems” for regular languages,
as exemplified with [27], within the ETH framework. In addition, it would be also interesting to
systematically study the complexity of the problems under scrutiny in the previous section, restricted
to subclasses of regular languages, as we did in Claim 1 of the proof of Theorem 5.

4.2. Synchronizing Words

A deterministic finite semi-automaton (DFSA) A can be specified as A “ pQ, Σ, tµa | a P Σuq,
where, for each a P Σ, there is a mappting µa : Q Ñ Q. Given some DFSA A, a synchronizing word
w P Σ˚ enjoys

@p, p1 P Q : µwppq “ µwpp1q .

The SYNCHRONIZING WORD (SW) problem is the question, given a DFSA A and an integer `,
whether there exists a synchronizing word w of length at most ` for A. This decision problem is
related to the arguably most famous combinatorial conjecture in Formal Languages, which is Černý’s
conjecture [28], stating (in a relaxed form) that there is always a synchronizing word of size at most
Op|Q|2q for any DFSA, should there be a synchronizing word at all.

Algorithms 2017, 10, 24 16 of 25

We have undertaken a multi-parameter analysis of this problem in [29]. The most
straightforward parameters are |Σ|, q “ |Q|, and an upper bound ` on the length of the synchronizing
word we are looking for. In [29], algorithms with running times of O˚p2qq and of O˚p|Σ|`qwere given,
complemented by proofs that show that there is neither an O˚p2opqqq-time (with unbounded input
alphabet size) nor an O˚pp|Σ| ´ εq`q-time algorithm (for any ε ą 0) under ETH or SETH, respectively.

From the reduction presented in ([29] Theorem 12), we cannot get any lower bounds for bounded
input alphabets; the dependency on Σ for the mentioned O˚p2qq-time algorithm is only linear.

We were not able to answer this question completely for SW, but (only) for a more general version
of this problem. Given a DFSA A “ pQ, Σ, tµa | a P Σuq and a state set Qsync, a Qsync-synchronizing
word w P Σ˚ satisfies

@p, p1 P Qsync : µwppq “ µwpp1q .

The Qsync-SYNCHRONIZING WORD (Qsync-SW) problem is the question, given a DFSA A, a set
of states Qsync and an integer `, whether there exists a Qsync-synchronizing word w of length at most `
for A. Correspondingly, the Qsync-SYNCHRONIZING WORD problem can be stated. Notice that while
SW is NP-complete, Qsync-SW is even PSPACE-complete; see [30].

Theorem 6. There is an algorithm for solving Qsync-SW on bounded input alphabets that runs in time

O˚ p2qq for q-state deterministic finite semi-automata. Conversely, assuming ETH, there is no O˚
´

2opqq
¯

-time
algorithm for this task.

Proof. It was already observed in [29] that the algorithm given there for SW transfers to Qsync-SW,
as this is only a breadth-first search algorithm on an auxiliary graph (of exponential size, with vertex
set 2Q). The PSPACE-hardness proof contained in ([30] Theorem 1.22), based on [31], reduces from
DFA-INTERSECTION. Given k automata each with at most s states, with input alphabet Σ, one
deterministic finite semi-automaton A “ pQ, tµa | a P Σuq is constructed such that |Q| ď sk ` 2.
Hence, an O˚

´

2op|Q|q
¯

-time algorithm for Qsync-SW would result in an O˚
´

2opskq
¯

-time algorithm
for DFA-INTERSECTION, contradicting Proposition 3.

5. SETH-Based Bounds: Length-Bounded Problem Variants

Cho and Huynh studied in [32] the complexity of a so-called bounded version of UNIVERSALITY,
where in addition to the automaton A with input alphabet Σ, a number k (encoded in unary) is input,
and the question is if Σďk Ď LpAq. This problem is again CoNP-complete for general alphabets.
The proof given in [32] is by reduction from the n-STEP HALTING PROBLEM FOR NTMS, somehow
modifying earlier constructions of [33]. Our reduction from 3-COLORING given above also shows the
mentioned CoNP-completeness result in a more standard way. Our ETH-based result also transfers
into this setting; possibly, there are now better algorithms for solving BOUNDED UNIVERSALITY,
as this problem might be a bit easier compared to UNIVERSALITY. We will discuss this a bit
further below.

Notice that in [29], another SETH-based result relating to synchronizing words was derived.
Namely, it was shown that (under SETH) there is no algorithm that determines, given a deterministic
finite semi-automaton A “ pQ, Σ, tµa | a P Σuq and an integer `, whether or not there is a
synchronizing word for A, and that runs in time O˚

´

p|Σ| ´ εq`
¯

for any ε ą 0. Here, Σ is part of
the input; the statement is also true for fixed binary input alphabets. We will use this result now to
show some lower bounds for the bounded versions of more classical problems we considered above.

Theorem 7. There is an algorithm with running time O˚
´

|Σ|`
¯

that, given k DFAs over the input alphabet

Σ and an integer `, decides whether or not there is a word w P Σď` accepted by all these DFAs. Conversely,
there is no algorithm that solves this problem in time O˚

´

p|Σ| ´ εq`
¯

for any ε ą 0, unless SETH fails.

Algorithms 2017, 10, 24 17 of 25

Proof. The mentioned algorithm simply tests all words of length up to `. We show how to find a
synchronizing word of length at most ` for a given DFSA A “ pQ, Σ, tµa | a P Σuq and an integer
` that runs in time Opp|Σ| ´ εq`q, assuming for the sake of contradiction that there is an algorithm
with such a running time for BOUNDED DFA-INTERSECTION. From A, we build |Q|2 many DFAs
As, f (namely, with start state s and with unique final state f , while the transition function of all As, f
is identical, corresponding to tµa | a P Σu). Furthermore, let A` be the automaton that accepts any
word of length at most `. Now, we create |Q|many instances of I f of BOUNDED DFA-INTERSECTION.
Namely, I f is given by tAs, f | s P Qu Y tA`u. Now, A has a synchronizing word of length at most ` if
and only if for some f P Q, I f is a YES-instance.

Clearly, the above reasoning implies that there is no O˚
´

p|Σ| ´ εq`
¯

-time algorithm for
BOUNDED NFA-INTERSECTION, unless SETH fails. More interestingly, we can use state
complementation and a variant of the NFA union construction to show the following result.

Corollary 4. There is an algorithm with running time O˚
´

|Σ|`
¯

that, given some NFA over the input alphabet

Σ and an integer `, decides whether or not there is a word w P Σď` not accepted by this NFA. Conversely, there
is no algorithm that solves this problem in time O˚

´

p|Σ| ´ εq`
¯

for any ε ą 0, unless SETH fails.

Clearly, this implies a similar result for BOUNDED NFA-EQUIVALENCE.

Corollary 5. There is an algorithm with running time O˚
´

|Σ|`
¯

that, given two NFAs A1, A2 over the input

alphabet Σ and an integer `, decides whether or not there is a word w P Σď` not accepted by exactly one
NFA. Conversely, there is no algorithm that solves this problem in time O˚

´

p|Σ| ´ εq`
¯

for any ε ą 0, unless
SETH fails.

From these reductions, we can borrow quite a lot of other results from [29], dealing with
inapproximability and parameterized intractability.

• [29], Theorem 3, yields: BOUNDED NFA UNIVERSALITY is hard for W[2], when parameterized
by `. Similar results hold also for the intersection and equivalence problems that we usually
consider.

• Using (in addition) recent results due to Dinur and Steurer [34], we can conclude that there is
no polynomial-time algorithm that computes an approximate synchronizing word of length at
most a factor of p1´ εq lnp|Σ|q off from the optimum, unless P equals NP. (This sharpens [29],
Corollary 4. Neither is it possible to approximate the shortest word accepted by some NFA up to
a factor of p1´ εq lnp|Σ|q.

It would be interesting to obtain more inapproximability results in this way.

6. Two Further Ways to Interpret Finite Automata

Finite automata cannot be only used to process (contiguous) strings, but they might also jump
from one position of the input to another position, or they can process two-dimensional words.
We picked these two processing modes for the subsequent analysis, as they were introduced quite
recently [35,36].

6.1. Jumping Finite Automata

A jumping finite automaton (JFA) formally looks like a usual string-processing NFA. However, the
application of a rule to a word is different: If p a

ÝÑ p1 is a transition rule, then it can transform the
input string u into u1 provided that u, u1 decompose as u “ u1au2 and u1 “ u1u2. In other words, a
JFA may first jump to an arbitrary position of the input and then apply the rule there. This model was

Algorithms 2017, 10, 24 18 of 25

introduced in [36] and further studied in [37]. It is relatively easy to see that the languages accepted
by JFAs are just the inverses of the Parikh images of the regular languages, or, in other words, the
commutative (or permutation) closure of the regular languages, or, yet in different terminology, the
inverses of the Parikh images of semilinear sets. In particular, the emptiness problem for JFAs is
as simple as for NFAs. Also, for the case of unary input alphabets, JFAs and NFAs just work the
same. Hence, UNIVERSALITY is hard for JFAs, as well. Classical complexity considerations on these
formalisms are contained in [37–41]; observe that mostly the input is given in the form of Parikh
vectors of numbers encoded in binary, while we will consider the input given in unary-encoded
Parikh vectors below (namely, as words, i.e., as elements of the free monoid), since JFAs were
introduced this way in [36]. Yet another way to formally look at how JFAs operate incorporates
the use of the shuffle operation. Recall that w1� w2 denotes the shuffle of w1 and w2, which can be
seen as observing a concurrent left-to-right read of w1 and w2, listing all possible concurrent reads.
For instance, ab� ba “ tabba, abab, baba, baabu.

Notice however that even if a JFA might formally look like a DFA, there is a certain
nondeterminism inherent to this mechanism, which is the position at which the next symbol is read
(in the case of non-unary input alphabets). It can be therefore shown that the uniform word problem
for JFAs is NP-hard. Analyzing the proof given in [37], Theorem 54, we can conclude:

Theorem 8. Under ETH, there is no algorithm that, given a JFA A on q states and a word w P Σ˚, decides if

w P LpAq in time O˚
´

2opqq
¯

, O˚
ˆ

2
o
´

|w|
logp|w|q

¯

˙

nor O˚
´

2op|Σ|q
¯

.

Notice that this problem can be solved in time O˚pn!q on arbitrary input alphabets, feeding all
permutations of an input word of length n into the given automaton, interpreted as an NFA. There
is also a dynamic programming algorithm solving UNIVERSAL MEMBERSHIP for q-state JFAs (that is
not improvable by Theorem 8, assuming ETH). This algorithm is based on the following idea. A word
w allows the transition from state p to state p1 iff for some decomposition w P w1�w2, p can transfer
to p̂ by reading w1 and from p̂ one can go into p1 when reading w2. For the correct implementation
of the shuffle possibilities, we need to store possible translations for all subsets of indices within the
input word, yielding a table (and time) complexity of O˚p2|w|q. We have no other upper bound.

This also means (assuming P is not equal to NP) that there is no polynomial-time algorithm
that computes, given a JFA A, another JFA A1 that describes the Parikh mapping inverses of the
complement of the Parikh images that A describes (otherwise, we would have a polynomial-time
algorithm to solve UNIVERSALITY), nor is there a polynomial-time algorithm that computes, given
two JFAs A1 and A2, a third JFA A3 such that the intersection of the (commutative / JFA) languages
associated to A1 and A2 is just the language accepted by the JFA A3 (namely, otherwise we could
solve the UNIVERSAL MEMBERSHIP PROBLEM in polynomial time; given a JFA A and a word w, first
construct a JFA Aw that accepts the permutation closure of twu and then check if the intersection of
the JFA languages of A and of Aw is empty). Recall that, by way of contrast, intersection is an easy
operation even on NFAs. (This also indicates that the simple constructions for the corresponding
closure properties of JFA languages as given in [36] are flawed.) However, the closure properties
themselves hold true, as this was already known for the Parikh images of regular sets, also known as
semi-linear sets, also see [42] and the references quoted therein.

What about the three decidability questions that are central to this paper for these devices?
As the behavior of JFA is the same as that of NFA on unary alphabets, we can borrow all results
from Section 2.

Theorem 9. Let k “ |Σ| be fixed. Unless ETH fails, there is no algorithm that solves UNIVERSALITY for

q-state JFAs in time O˚

¨

˝2
o
ˆ

q
k

k`2

˙˛

‚.

Algorithms 2017, 10, 24 19 of 25

Proof. We only sketch the idea in the case of binary alphabets, i.e., when k “ 2. We revisit our
reduction from 3-COLORING for the case k “ 1 detailed above. The main bottleneck was the coding
of badly colored edges. This is taken care of in the following way. We encode the vertices v1, . . . , vn

no longer by n prime numbers, but by pairs of r
?

ns many prime numbers, which are then expressed
as powers of the input letters a and b, resp. Hence, to describe the 3m bad colorings of the m edges,
we need no longer Opmn2qmany states, but only Opmnqmany. We can extend this method such that,
for arbitrary k, we would need Opmn

k
2 qmany states for all bad edge colorings.

Notice that the expression that we claim somehow interpolates between the third root of q (in
the exponent of 2), namely, when k “ 1, and then it also coincides with our earlier findings, and q
itself (if k tends to infinity). We could make the construction for arbitrary alphabets more explicit by
re-interpreting the proof of Proposition 2 as one dealing with UNIVERSALITY for JFAs.

Proposition 6. Unless ETH fails, there is no algorithm that solves UNIVERSALITY for q-state JFAs in time
O˚

´

2op
?

qq
¯

.

Proof. First observe that the DFAs Av and Auv,a that we constructed in the proof of Proposition 2
can be as well interpreted as JFAs, and also the automata Av and Auv,a that can be constructed by
complementing the sets of final states can read the input in arbitrary sequence. It is easy to construct
a JFA that accepts the union of all languages accepted by any JFA Av or Auv,a. This union equals Σ˚

(with Σ as in the referred proof) if and only if the given graph was not 3-colorable.

We can obtain very similar results for EQUIVALENCE for JFAs.
Let us now briefly discuss INTERSECTION. Interestingly enough, also the problem of detecting

emptiness of the intersection of only two JFA languages is NP-hard. This and a related study on
ETH-based complexity can be found in [37]. For the intersection of k JFAs, the proof of Proposition 2
actually shows the analogous result also in that case. For bounded alphabets, we can re-analyze the
proof of Theorem 9 to obtain:

Corollary 6. Let Σ be fixed. Unless ETH fails, there is no algorithm for solving JFA INTERSECTION in time
O˚

´

2opkq`opq|Σ|{2q
¯

for k JFAs with at most q states.

Namely, we can construct to a given 3-COLORING instance with n vertices and m edges a
collection of k “ 3m` 1 many JFAs, each with n|Σ|{2 many states.

6.2. Boustrophedon Finite Automata

In the last four decades, several attempts have been made to transfer automata theory into the
area of image processing. Unfortunately, most (natural) attempts failed insofar, as even the most
simple algorithmic questions (like the emptiness problem for the corresponding devices) turn out
to be undecidable; see [43,44]. In order to avoid these negative results, simpler devices have been
discussed in the literature; see [45] or [35] for more recent works.

Boustrophedon finite automata (BFAs) have been introduced to describe a simple processing of
rectangular-shaped pictures with finite automata that scan these pictures as depicted in Figure 3.

Without going into formal details, let us mention that it has been shown in [35] that the
non-emptiness problem for this type of finite automata is NP-complete. This might read like a
very negative result, but as mentioned above, for picture-processing automata, mostly undecidability
results can be expected for the non-emptiness problem; see [46] for 4-way DFAs. Even for the class
of 3-way automata obviously related to BFAs, the known decidability result for non-emptiness does
not give an NP algorithm; see [47]. This NP-hardness reduction is from TALLY-DFA-INTERSECTION.
From this (direct) construction, we can immediately deduce:

Algorithms 2017, 10, 24 20 of 25

a b a b a
Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ó

b c a c b # Ó

Ó Ð Ð Ð Ð Ð Ð Ð Ð

Ó # a b b b b #
Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ó

a b c b b # Ó

Ó Ð Ð Ð Ð Ð Ð Ð Ð

Ó # c b b a a #
Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ

Figure 3. How a BFA processes a picture.

Proposition 7. There is no algorithm that, given some BFA A with at most q states, decides if LpAq “ H in
time O˚

´

2opq1{3q
¯

, unless ETH fails.

How good is this bound?
To give a more formal treatment, we need some more definitions. A two-dimensional word (also

called a picture, a matrix or an array in the literature) over Σ is a tuple

W :“ ppa1,1, a1,2, . . . , a1,nq, pa2,1, a2,2, . . . , a2,nq, . . . , pam,1, am,2, . . . , am,nqq ,

where m, n P N and, for every i, 1 ď i ď m, and j, 1 ď j ď n, ai,j P Σ. We define the number of columns
(or width) and number of rows (or height) of W by |W|c :“ n and |W|r :“ m, respectively. For the sake of
convenience, we also denote W by rai,jsm,n or by a matrix in a more pictorial form. If we want to refer
to the jth symbol in row i of the picture W, then we use Wri, js “ ai,j. By Σ``, we denote the set of all
(non-empty) pictures over Σ. Every subset L Ď Σ`` is a picture language.

Let W :“ rai,jsm,n and W1 :“ rbi,jsm1,n1 be two non-empty pictures over Σ. The column concatenation
of W and W1, denoted by W �W1, is undefined if m ‰ m1 and is the picture

a1,1 a1,2 ... a1,n b1,1 b1,2 ... b1,n1

a2,1 a2,2 ... a2,n b2,1 b2,2 ... b2,n1

...
...

. . .
...

...
...

. . .
...

am,1 am,2 ... am,n bm1 ,1 bm1 ,2 ... bm1 ,n1

otherwise. The row concatenation of W and W1, denoted by W � W1, is undefined if n ‰ n1 and is
the picture

a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n

...
...

. . .
...

am,1 am,2 ... am,n
b1,1 b1,2 ... b1,n1

b2,1 b2,2 ... b2,n1

...
...

. . .
...

bm1 ,1 bm1 ,2 ... bm1 ,n1

otherwise. Column and row catenation naturally extend to picture languages. Accordingly, we can
define powers of languages, as well as a closure operation. L1 “ L, Li`1 “ Li � L for i ě 1;

then L` “
8
Ť

i“1
Li.

L1 “ L, Li`1 “ Li � L for i ě 1; then L` “
8
Ť

i“1
Li. Hence, pΣ`q` “ pΣ`q` “ Σ``.

Definition 1. A boustrophedon finite automaton, or BFA for short, can be specified as a 7-tuple
M “ pQ, Σ, R, s, F, #,�q, where Q is a finite set of states, Σ is an input alphabet, R Ď Qˆ pΣY t#uq ˆQ is
a finite set of rules. A rule pq, a, pq P R is usually written as qa Ñ p. The special symbol # R Σ indicates the
border of the rectangular picture that is processed, s P Q is the initial state, F is the set of final states. Let � be

Algorithms 2017, 10, 24 21 of 25

a new symbol indicating an erased position and let Σ` :“ ΣY t#,�u. Then CM :“ Qˆ Σ``` ˆN is the set
of configurations of M.

A configuration pp, A, µq P CM is valid if 1 ď µ ď |A|r and, for every i, 1 ď i ď µ´ 1, the ith row
equals # �|A|c´2 #, for every j, µ ` 1 ď j ď |A|r, the jth row equals #w#, w P Σ|A|c´2, and, for some ν,
0 ď ν ď |A|c ´ 2, w P Σ|A|c´ν´2, the µth row equals #�ν w#, if µ is odd and #w �ν #, if µ is even. Notice
that valid configurations model the idea of observable snapshots of the work of the BFA.

• If pp, A, µq and pq, A1, µq are two valid configurations such that A and A1 are identical but for one position
pi, jq, where A1ri, js “ � while Ari, js P Σ, then pp, A, µq $M pq, A1, µq if pAri, js Ñ q P R.

• If pp, A, µq and pq, A, µ` 1q are two valid configurations, then pp, A, µq $M pq, A, µ` 1q if the µth row
contains only # and � symbols, and if p# Ñ q P R.

The reflexive transitive closure of the relation $M is denoted by $˚M.
The language LpMq accepted by M is then the set of all mˆ n pictures A over Σ such that

ps, #m : A: #m, 1q $˚M p f , #m :�n
m : #m, mq

for some f P F.

First observe that although the emptiness problem is similar to the intersection problem, the
only “communication” between the rows is via the state that is communicated and via the length
information that is implicitly checked. In particular, we can first convert a given BFA into one, say, A,
that only deals with one input letter, by replacing any input letter in any transition by, say, a. Let A
have state set Q, with |Q| “ q and let s0 be the initial state of A.

Now, LpAq ‰ H if and only if there is some array in LpAq that can be linearized as ar#ar# . . . ar.
Here, from the start state s0, first ar# would lead into s1, then ar# would lead into s2 etc., until ar

would lead into sn and then ar leads into some final state f . By a simple pumping argument, we can
assume that n ď q. So, we could try all permutations of at most q different states s1, . . . , sn, and then
construct the product automaton Aˆ from A0, . . . , An`1, where A0 is as A, but starts with s0 and has
s1 as its only accepting state, A1 is like A, but starts with s1 and has s2 as its only accepting state, . . . ,
An´1 is like A, but starts with sn´1 and has s2 as its only accepting state, An is like A, but starts with
sn and from f there is another arc labeled # that leads into the only final state f 1, and finally An`1 is
the 2-state NFA accepting tau˚t#u. Now, the string-processing NFA Aˆ does not accept the empty
language if and only if there is some r such that ar# is accepted by each of the constructed automata
LpAiq, if and only if ar#ar# . . . ar (with n rows) is accepted by A. The whole procedure can be carried
out in time O˚pq!qqqq “ O˚pq2qq, which is obviously far off from our lower bound.

A slightly better bound can be obtained by a graph-algorithm based procedure that results in the
following statement.

Proposition 8. EMPTINESS for q-state BFAs can be decided in time O˚pqqq (and polynomial space).

Proof. Namely, consider the following algorithm. For each r “ 1, . . . , qq, we successively build a
directed graph Gr with vertices pp, iq, 1 ď p, i ď q and s, f . Construct an arc ps, pp, 1qq if A on input
ar# could enter state p. More generally, we have an arc ppp1, iq, pp, i` 1qq for i “ 1, . . . , q´ 1 if A, when
started in state p1, would be driven in state p by the input ar#. Finally, for each i “ 1, . . . , q, we have an
arc ppp, iq, f q if A, starting in p, would enter a final state upon reading ar. Now, A accepts ar#ar# . . . ar

(with at most q rows) if and only if the constructed graph Gr has a path from s to f . Notice that with
a little bit of bookkeeping, Gr can be computed from Gr´1 in polynomial time. Also, observe that we
can stop the loop after at most qq iterations, as we can view (in the case of deterministic BFAs) each
word ar as defining a mapping µar : Q Ñ Q (from the state that we started out to some well-defined
state we ended in), and there are no more than |QQ| “ qq many such mappings. From this perspective,
our algorithm can be viewed as looking for some r such that µarpµi

ar#ps0qq is a final state of A, for some

Algorithms 2017, 10, 24 22 of 25

i “ 0, . . . , q´ 1. Now, nondeterministic BFAs can be viewed as providing some additional shortcuts
in the transition graph, i.e., again at most qq iterations suffice. (In [35], a “column pumping lemma”
was suggested that also shows that qq iterations suffice.) So, our algorithm performs O˚pqqq steps.
Also, it only uses polynomial space, while the previous algorithm used space O˚pqqq already for the
product automaton construction.

7. Conclusions

So far, there has been no systematic study of hard problems for finite automata under ETH.
Frankly speaking, we are only aware of the papers [29,37] on these topics. Returning to the survey
of Holzer and Kutrib [7], it becomes clear that there are quite a many hard problems related to
finite automata and regular expressions that have not yet been examined with respect to exact
algorithms and ETH. This hence gives ample room for future research. Also, there are quite a many
modifications of finite automata with hard decision problems. One (relatively recent) such example
are finite-memory automata [48,49].

It might be also interesting to study these problems under different yet related hypotheses,
Pătraşcu and Williams list some of such hypotheses in [50]. Notice that even the Strong ETH was
barely used in this paper.

It should be also interesting to rule out certain types of XP algorithms for parameterized
automata problems, as this was started out in [51] (relating to assumptions from Parameterized
Complexity) and also mentioned in [1,5] (with assumptions like (S)ETH). In this connection, we
would also like to point to the fact that if the two basic Parameterized Complexity classes FPT and
W[1] coincide, then ETH would fail, which provides another link to the considerations of this paper.

More generally speaking, we believe that it is now high time to interconnect the classical Formal
Language area with the modern areas of Parameterized Complexity and Exact Exponential-Time
Algorithms, including several lower bound techniques. Both communities can profit from such an
interconnection. For the Parameterized Complexity community, it might be interesting to learn about
results as in [52], where the authors show that INTERSECTION EMPTINESS for k tree automata can be
solved in time Opnc1kq, but not (and this is an unconditional not, independent of the belief in some
complexity assumptions) in time Opnc2kq, for some suitable constants c1 ą c2. Maybe, we can obtain
similar results also in other areas of combinatorics. It should be noted that INTERSECTION EMPTINESS

is EXPTIME-complete even for deterministic top-down tree automata.
In relation to the idea of approximating automata, Holzer and Jacobi [53] recently introduced

and discussed the following problem(s). Given an NFA A, decide if one of the six variants of an
a-boundary of LpAq is finite. By reduction from DFA-INTERSECTION, they proved all variants to
be PSPACE-hard. Membership of the problems can be easily seen by reducing the problems to a
reachability problem of some DFA closely related to the NFA A. Although the hardness reductions
in Lemma 15 slightly differ in each case i, all in all the number of states of the resulting NFA
Ai is just the total number of states of all DFAs used as input in the reduction, plus a constant.
In particular, if the number of states per input DFA is bounded, say, by 3, and if we use unbounded
input alphabets, then our previous results immediately entail that, unless ETH fails, none of the six
variants of the a-boundary problems admit an algorithm with running time O˚p2opqqq, where q is
now the number of states of the given NFA A. This bound is matched by the sketched reduction to
prove PSPACE-membership, as the subset construction to obtain the desired equivalent DFA gives a
single-exponential blow-up.

In short, this area offers quite a rich ground for further studies.

Acknowledgments: We are grateful for discussions on aspects of this paper with several colleagues.
In particular, we thank Martin Kutrib. We also like to thank for the opportunity to present this work at the Simons
Institute workshop on Satisfiability Lower Bounds and Tight Results for Parameterized and Exponential-Time
Algorithms at Berkeley in November, 2015. Feedback (in particular from Thore Husfeldt) has led us to think
about SETH results not contained in that presentation. We are also thankful for the referee comments on the
submitted version of this paper.

Algorithms 2017, 10, 24 23 of 25

Author Contributions: Both authors wrote the paper together. In particular, H. Fernau initiated this study and
first results were obtained when A. Krebs visited Trier in September, 2015. Without the algebraic background
knowledge of A. Krebs, especially the section on aperiodicity would not be there. Both authors have read and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lokshtanov, D.; Marx, D.; Saurabh, S. Lower bounds based on the Exponential Time Hypothesis. EATCS
Bull. 2011, 105, 41–72.

2. Impagliazzo, R.; Paturi, R.; Zane, F. Which Problems Have Strongly Exponential Complexity? J. Comput.
Syst. Sci. 2001, 63, 512–530.

3. Calabro, C.; Impagliazzo, R.; Paturi, R. A Duality between Clause Width and Clause Density for SAT.
In Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC), Prague, Czech
Republic, 16–20 July 2006; pp. 252–260.

4. Fomin, F.V.; Kratsch, D. Exact Exponential Algorithms; Texts in Theoretical Computer Science; Springer:
Berlin, Germany, 2010.

5. Cygan, M.; Fomin, F.; Kowalik, L.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S.
Parameterized Algorithms; Springer: Berlin, Germany, 2015.

6. Downey, R.G.; Fellows, M.R. Fundamentals of Parameterized Complexity; Texts in Computer Science;
Springer: Berlin, Germany, 2013.

7. Holzer, M.; Kutrib, M. Descriptional and computational complexity of finite automata—A survey. Inf.
Comput. 2011, 209, 456–470.

8. Fernau, H.; Krebs, A. Problems on Finite Automata and the Exponential Time Hypothesis.
Implementation and Application of Automata. In Proceedings of the 21st International Conference CIAA 2016,
Seoul, South Korea, 19–22 July 2016; Han, Y.S., Salomaa, K., Eds.; Springer: Berlin/Heidelberg, Germany,
2016; Volulme 9705, pp. 89–100.

9. Stockmeyer, L.J.; Meyer, A.R. Word Problems Requiring Exponential Time: Preliminary Report. In
Proceedings of the 5th Annual ACM Symposium on Theory of Computing, STOC, Austin, TX, USA,
30 April–2 May 1973; Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M.,
Strong, H.R., Eds.; pp. 1–9.

10. Landau, E. Handbuch der Lehre von der Verteilung der Primzahlen; Teubner: Leipzig/Berlin, Germany, 1909.
11. Chrobak, M. Finite automata and unary languages. Theor. Comput. Sci. 1986, 47, 149–158.
12. Wulf, M.D.; Doyen, L.; Henzinger, T.A.; Raskin, J. Antichains: A New Algorithm for Checking

Universality of Finite Automata. In Proceedings of the 18th International Conference CAV 2006, Seattle,
WA, USA, 17–20 August 2006; Ball, T., Jones, R.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2006;
Volume 4144, pp. 17–30.

13. Lange, K.J.; Rossmanith, P. The Emptiness Problem for Intersections of Regular Languages. In Proceedings
of the 17th International Symposium on Mathematical Foundations of Computer Science, MFCS’92, Prague, Czech
Republic, 24–28 August 1992; Havel, I.M., Koubek, V., Eds.; Springer: Berlin/Heidelberg, Germany, 1992;
Volume 629, pp. 346–354.

14. Galil, Z. Hierarchies of Complete Problems. Acta Inf. 1976, 6, 77–88.
15. Wareham, H.T. The parameterized complexity of intersection and composition operations on sets of

finite-state automata. In Proceedings of the 5th International Conference on Implementation and Application of
Automata, CIAA 2000, Ontario, Canada, 24–25 July 2000; Yu, S., Păun, A., Eds.; Springer: Berlin/Heidelberg,
Germany, 2001; Volume 2088, pp. 302–310.

16. Dusart, P. Estimates of Some Functions Over Primes without R.H. 2010, arXiv:1002.0442.
17. Kozen, D. Lower Bounds for Natural Proof Systems. In Proceedings of the 18th Annual Symposium

on Foundations of Computer Science, FOCS, Providence, RI, USA, 31 October–1 November 1977;
pp. 254–266.

18. Etscheid, M.; Kratsch, S.; Mnich, M.; Röglin, H. Polynomial Kernels for Weighted Problems. In Proceedings
of the 40th International Symposium on Mathematical Foundations of Computer Science, MFCS 2015, Milan, Italy,
24–28 August 2015; Italiano, G.F., Pighizzini, G., Sannella, D., Eds.; Springer: Berlin/Heidelberg, Germany,
2015; Volume 9235, pp. 287–298.

Algorithms 2017, 10, 24 24 of 25

19. Karakostas, G.; Lipton, R.J.; Viglas, A. On the complexity of intersecting finite state automata and
NLversus NP. Theor. Comput. Sci. 2003, 302, 257–274.

20. Wehar, M. Hardness Results for Intersection Non-Emptiness. In Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming—ICALP 2014, Copenhagen, Denmark, 8–11 July 2014;
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E., Eds.; Springer: Berlin/Heidelberg, Germany,
2014; Volume 8573, pp. 354–362.

21. Schützenberger, M.P. On finite monoids having only trivial subgroups. Inf. Control (Inf. Comput.) 1965,
8, 190–194.

22. Cho, S.; Huynh, D.T. Finite-Automaton Aperiodicity is PSPACE-Complete. Theor. Comput. Sci. 1991,
88, 99–116.

23. Stern, J. Complexity of Some Problems from the Theory of Automata. Inf. Control (Inf. Comput.) 1985,
66, 163–176.

24. Alon, N.; Lokshtanov, D.; Saurabh, S. Fast FAST. In Proceedings of the 36th International Colloquium
on Automata, Languages and Programming—ICALP 2009, Rhodes, Greece, 5–12 July 2009; Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; Volume 5555, pp. 49–58.

25. Fernau, H.; Fomin, F.V.; Lokshtanov, D.; Mnich, M.; Philip, G.; Saurabh, S. Social Choice Meets Graph
Drawing: How to Get Subexponential Time Algorithms for Ranking and Drawing Problems. Tsinghua
Sci. Technol. 2014, 19, 374–386.

26. Beaudry, M.; McKenzie, P.; Thérien, D. The Membership Problem in Aperiodic Transformation Monoids.
J. ACM 1992, 39, 599–616.

27. Brzozowski, J.A.; Shallit, J.; Xu, Z. Decision problems for convex languages. Inf. Comput. 2011,
209, 353–367.

28. Černý, J. Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis
1964, 14, 208–216.

29. Fernau, H.; Heggernes, P.; Villanger, Y. A multi-parameter analysis of hard problems on deterministic
finite automata. J. Comput. Syst. Sci. 2015, 81, 747–765.

30. Sandberg, S. Homing and Synchronizing Sequences. In Model-Based Testing of Reactive Systems; Broy, M.,
Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005;
Volume 3472, pp. 5–33.

31. Rystsov, I.K. Polynomial Complete Problems in Automata Theory. Inf. Process. Lett. 1983, 16, 147–151.
32. Cho, S.; Huynh, D.T. The Parallel Complexity of Finite-State Automata Problems. Inf. Comput. 1992,

97, 1–22.
33. Stockmeyer, L.J. The complexity of decision problems in automata theory and logic. Ph.D. Thesis,

Massachusetts Institute of Technology: Cambridge, MA, USA, 1974.
34. Dinur, I.; Steurer, D. Analytical approach to parallel repetition. In Proceedings of the 46th Annual

ACM Symposium on Theory of Computing—STOC 2014, New York, NY, USA, 31 May–3 June 2014;
Shmoys, D.B., Ed.; pp. 624–633.

35. Fernau, H.; Paramasivan, M.; Schmid, M.L.; Thomas, D.G. Scanning Pictures the Boustrophedon Way.
In Proceedings of the International Workshop on Combinatorial Image Analysis—IWCIA 2015, Kolkata, India,
24–27 November 2015; Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E., Eds.; Springer: Berlin/Heidelberg,
Germany, 2015; Volume 9448, pp. 202–216.

36. Meduna, A.; Zemek, P. Jumping Finite Automata. Int. J. Found. Comput. Sci. 2012, 23, 1555–1578.
37. Fernau, H.; Paramasivan, M.; Schmid, M.L.; Vorel, V. Characterization and Complexity Results on

Jumping Finite Automata. 2015, arXiv:1512.00482.
38. Haase, C.; Hofman, P. Tightening the Complexity of Equivalence Problems for Commutative Grammars.

2015, arXiv:1506.07774.
39. Huynh, D.T. The complexity of semilinear sets. Elektronische Informationsverarbeitung und Kybernetik (jetzt

J. Inf. Process. Cybern. EIK) 1982, 18, 291–338.
40. Huynh, D.T. Commutative grammars: The complexity of uniform word problems. Inf. Control 1983,

57, 21–39.
41. Kopczyński, E. Complexity of Problems of Commutative Grammars. Log. Methods Comput. Sci. 2015, 11,

1–26.

Algorithms 2017, 10, 24 25 of 25

42. Kudlek, M.; Mitrana, V. Closure Properties of Multiset Language Families. Fundam. Inf. 2002, 49, 191–203.
43. Giammarresi, D.; Restivo, A. Two-dimensional languages. In Handbook of Formal Languages;

Rozenberg, G., Salomaa, A., Eds.; Springer: Berlin, Germany, 1997; Volume III, pp. 215–267.
44. Kari, J.; Salo, V. A Survey on Picture-Walking Automata. In Algebraic Foundations in Computer Science,

Essays Dedicated to Symeon Bozapalidis on the Occasion of His Retirement; Kuich, W., Rahonis, G., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 7020, pp. 183–213.

45. Matz, O. Recognizable vs. Regular Picture Languages. In Proceedings of the Second International Conference
on Algebraic Informatics—CAI 2007, Thessaloniki, Greece, 21–25 May 2007; Bozapalidis, S., Rahonis, G., Eds.;
Springer: Berlin/Heidelberg, Germany, 2007; Volume 4728, pp. 112–121.

46. Kari, J.; Moore, C. Rectangles and Squares Recognized by Two-Dimensional Automata. In Theory Is
Forever, Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday; Karhumäki, J., Maurer, H.A.,
Paun, G., Rozenberg, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3113, pp. 134–144.

47. Petersen, H. Some Results Concerning Two-Dimensional Turing Machines and Finite Automata. In
Proceedings of the 10th International Symposium on Fundamentals of Computation Theory—FCT ’95, Dresden,
Germany, 22–25 August 1995; Reichel, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 965,
pp. 374–382.

48. Libkin, L.; Tan, T.; Vrgoc, D. Regular expressions for data words. J. Comput. Syst. Sci. 2015, 81, 1278–1297.
49. Sakamoto, H.; Ikeda, D. Intractability of decision problems for finite-memory automata. Theor. Comput.

Sci. 2000, 231, 297–308.
50. Pătraşcu, M.; Williams, R. On the Possibility of Faster SAT Algorithms. In Proceedings of the

Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010;
Charikar, M., Ed.; pp. 1065–1075.

51. Chen, J.; Huang, X.; Kanj, I.A.; Xia, G. Linear FPT reductions and computational lower bounds. In
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, 13–16
June 2004; pp. 212–221.

52. Swernofsky, J.; Wehar, M. On the Complexity of Intersecting Regular, Context-Free, and Tree
Languages. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming, ICALP 2015, Kyoto, Japan, 6–10 July 2015; Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9135, pp. 414–426.

53. Holzer, M.; Jakobi, S. Boundary sets of regular and context-free languages. Theor. Comput. Sci. 2016,
610, 59–77.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Universality, Equivalence, Intersection: Unary Inputs
	The Non-Tally Case
	Related Problems
	The Aperiodicity Problem
	Synchronizing Words

	SETH-Based Bounds: Length-Bounded Problem Variants
	Two Further Ways to Interpret Finite Automata
	Jumping Finite Automata
	Boustrophedon Finite Automata

	Conclusions

