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Abstract: This article is focused on the detection of errors using an approach that is signal based.
The proposed algorithm considers several criteria: soft, hard and very hard recognition error.
After the recognition of the error, the error is replaced. In this sense, different strategies for data
reconciliation are associated with the proposed criteria error detection. Algorithms in several
industrial software platforms are used for detecting errors of sensors. Computer simulations confirm
the validation of the presented applications. Results with actual sensor measurements in industrial
processes are presented.
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1. Introduction

The gross error detection and replacement (GEDR) for many methods based on models or
statistics is an important issue in the control field. For instance, a parameter estimation (PE) and data
reconciliation (DR) can be taken into consideration very often. At the present time, only a priori noise
knowledge based techniques in GEDR are used in industrial applications to detect the outliers that
are based on statistical methods. It should be noted that many techniques on the basis of statistical
methods could be applied in this context. It becomes more and more essential to clean the data coming
from a distributed control system (DCS) because applications in the field of production rely on a
great quantity of raw data. Soft sensoring, data reconciliation and parameter estimation need “clean
data” [1]. A denoising method based on techniques described in [2] is shown in [3]. This method
presented in [4] is based on other methods considered in [2]. The above-mentioned method compares
the information theory criterion. A robust version of the Hampel Filter has been developed in [5-7].
A new method of de-noising, which is based on methods already introduced in [2], is presented in [3].
It is based on the comparison of an information theory criterion that is the “description length” of the
data. In [4,8], this theoretical approach is applied. The description length is calculated for different
subspaces of the basis and the method suggests choosing the noise variance and the subspace for
which the description length of the data is at a minimum. In the work, based on [4], it is shown
that the de-noising process can be done simultaneously. The approach presented in [4,8] is based on
“minimum description length” and that’s why it seems to be unsuitable for online detection because
it needs a relatively large amount of data. Simultaneous approaches often suffer from the fact that
they are based on iterations, which, in turn, impose heavy CPU load requirements on the applications.
As a consequence, these approaches often become infeasible for real-time applications, and, therefore,
have not been widely used in industry. Real-time approaches dealing with outlier detection and/or
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de-noising, and featuring easy means of implementation, have also been developed as in [9]. In general,
for removing the noise, a lower threshold should be set. This article intends to create an approach
treating the outlier detection with denoising in real time without using an a priori noise knowledge
technique. Reference [10] demonstrates a procedure that is median function-based, and it is applied in
a wavelet-based algorithm. The wavelet-based algorithm proposed in this work is of particular quality
due to the adopted a priori noise knowledge free technique. Nevertheless, some misclassifications
that may occur are briefly shown at the end of this contribution. The advantage of the presented
algorithm consists of its working independently, so no a priori knowledge of the noise level is necessary.
Noise level algorithms are considered to be complex and need a great data volume (see [2,3,8]). The
advantage of this technique shows that, using a limited stored data, a denoising and fault detection
is possible. Figure 1 presents a block diagram of a GEDR package (PCK) interacting with gEST. This
paper proposes an algorithm to differentiate discrete signals from their outlier observations using a
library of Haar wavelet basis. The algorithm is totally general and can be used in many industrial
applications. The effectiveness of the proposed method consists of applying the concept of Lipschitz
for using as few samples as possible of the measured signal, and, in the meantime, highlighting the
difference between the outliers and the desired signal. The goal is to extract coherent features from
the measured signal that will be saved in terms of variance of the Lipschitz constant of the desired
signal and outlier signals (or incoherent signal) of which the variance of the Lipschitz constant lies
outside this confidential interval. In this sense, the proposed method represents a statistical method
that calculates the variance of the Lipschitz constant of the observed signal. The algorithm that has
been developed is utilized as a filter to extract features for training neural networks, and it is currently
integrated in the inferential modelling platform of the unit for Advanced Control and Simulation
Solutions within ABB’s industry division. Industrial applications in fault detection, in which coherent
and incoherent signals are univocally visible, are shown.
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Figure 1. Overview of modules relevant to gross error detection and replacement (GEDR) and quality
module (QM).

1.1. Modules

The research of this work is aimed at the gross error detection and replacement (GEDR) and
quality module (QM). Nevertheless, the QM is conceptually considered.
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e  Process and Instrumentation: The process values can be influenced by sensor aging or incorrect
calibration. Biases model effects them, and they are supposed to be smaller in comparison with
Gross Errors (GEs).

e DCS/RTDB (Distributed control system/Real-time database systems): The data logged by
DCS/RTDB includes the values from the process and instrumentation block such as noise, outliers
and the interference from the measurement; possible effects to the anti-aliasing, analogous digital
(AD) conversion, and quantization noise; and possibly LP filtering.

e  Quality Module (QM): DC includes some functions of the QM. In the case of measuring the same
physical property by three independent sensors, the value with a “bad” stamp is automatically
discarded, and the values of other two sensors will be applied. Other scenarios, including soft
sensors, are possible and they depend on the DCS system and configurations. In our case, the
QM can bring more performance by means of information from GEDR. Therefore, on input, QM
incorporates two streams of information. One of the streams is derived from the DCS/RTDB and
the other stream is derived from the GEDR. Properties being referred to the data points combined
and gave additional information to other devices: DR, PE, and Data Verification. Series of
properties developed by DCS/RTDB can be good /bad, while series of properties developed by
GEDR can be replaced /not replaced.

° GEDR: The data based on the DCS/RTDB block must be elaborated by Gross Error Detection
and replacement. The data will be cleared by means of GEDR before proceeding with data (DR)
reconciliation (DR) and parameter estimation (PE). The GEs, after being found and deleted, are
to be put under analysis made after the DR and PE. It should be done to estimate if they are
really GEs and consecutively to configure the filter parameters newly. GE is substituted by GEDR,
whose value corresponds to the local behavior of the discovered variable. For this purpose, the
average of the last couple of valid data points can be applied. This module is an important part of
our research.

1.2. Gross Error Types and Examples
Two types of GEs are taken into account:

e Type 1 GEs, which are produced by sensor failures and lead to a stable measurement error.
Preparation for the detection of type 1 GEs is made. In this case, some user interaction is
needed—for example, identifying the number of continuous measurements in type 1 GE. It can
succeed for variables such as analyzers, for which clogging may cause such a reaction. In the
future, both the number of regular measurements and the dead band must be treated by an expert
in this process.

e  Type 2 GEs are caused, for example, by sensor faults, which can have brief, spike-like errors in
the measurements as a result.

Figure 2 presents the data from a measured temperature, which was contaminated with outliers,
and it also presents vague limits min and max temperature, indicated by thick horizontal lines. Some
outliers may be easily deleted by the limits. Figure 2 shows data from a temperature measurement
contaminated with outliers and hypothetical limits of the min and max values (horizontal thick lines)
of the temperature. The limits can be used to perform an easy check to remove some of the outliers.
Obviously, not all of the outliers would be removed using the min/max GE check. Another possible
easy check could be implemented with a rate limitation. However, this would involve detailed process
knowledge of the time constants and noise levels of the measured variables. The GEDR is to remove
and replace all of the shown spikes. After detection and replacement, the clean data is shown in the
lower part of the figure using a median absolute deviation (MAD) based filter (see [5]), combined
together with the wavelet based peak noise level estimation algorithm. Figure 3 shows a graphical
representation of the MAD approach with the construction of the MAD flow pipe. This was determined
to be the optimal setting, such that the flow pipe is wide enough to accommodate the presence of the
noise. However, it is narrow enough to remove a high percentage of outliers. In addition, it can be
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seen that the “radius” of the flow pipe is invariant under outliers and noise, which, in turn, makes it

very robust.
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Figure 2. Example of contaminated temperature measurements. With outliers (top) and minimum,
maximum limits. The clean temperature data is obtained with help of GEDR.

Figure 3. Application of the wavelet based algorithm applied to the mining data.
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It is clear that not every outlier will be deleted by means of the min/max GE check. There is
another possibility of a check which could be applied with a rate limitation. In any case, it requires
a deep knowledge on the time constants and noise levels of the variables to be measured. The work
presented in [11] is extended by the authors in this contribution. Moreover, some experiments, applying
the proposed fault detection method, are considered. This contribution is organized in the following
way. Section 2 deals with the problem formulation. Section 4 is devoted to the wavelet based algorithm
and some basic definitions of the outliers and evaluation tests. Section 5 considers structured validation
evaluation tests of the algorithm. Here, the comparison of the obtained results with another existing
algorithm is shown. Finally, industrial application is presented. Finally, conclusions are presented.
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2. Problem Formulation

2.1. Mathematical Preliminary

Mathematical Preliminary Measurement errors present a difference between the measured
variable and the true value of it:

Wk = () + () + D)k + (w)k, 1

where (y) is measured, (x) the true value, (e); = (0 + b + w)i is the error due to the measurement
and k denotes the k — th value of the time series. In particular, oy is the outlier, wy is the noise and
by represents any other kind of fault such as, for instance, a sustained error in the measurements, or
systematic errors due to the instrumentation. An additive error model similar to an extension of the
outlier model presented in [5,12] is also shown in (1). A multiplicative error model in which the errors
have been multiplied instead of added is another example of an error model described in the scientific
literature. Additive errors are often applied to model errors that occur at the inputs or outputs, while
multiplicative errors are applied to model parameter errors (see [5,12]). Consequently, an additive
error model is chosen very often. The purpose of the proposed algorithms is associated with the
detection of sensor fault related outliers. This leads to a quick GE, characterized by a non-continuous,
dynamic response like an impulse or a similar impulse response. Outliers can be differentiated from
noise by means of the amplitude of the peaks.

2.2. Outlier Detection Problem (ODP) and Algorithm (ODA)

Consequently, the definition of the outlier index has been made as follows:

Definition 1. For a set of data (y)x = (x)x + (0)x + (b)x + (w)i for k = 1, ..., n, where (y)i is measured.
The number of data points n is given. The outlier detection problem (ODP) is to find L = (11, ...1,) for which
(0)x # O, that is:

@

(D =0 elsewhere.

L:{a)k:l (o) 0,

The index set L itself does not specify what will happen in case of an outlier being actually detected. It is supposed
to be a mere specification of the detection problem. [

This contribution is not aimed towards proving some of the intrinsic characteristics of a data
cleaning filter for solving ODP. It has already been accomplished in [5]. In any case, more definitions
are required for assessing the performance of the filter, which is used with the noise detection. Carrying
out of the outlier detection algorithm (ODA) will label the data points within the time series (y)
that are thought to be outliers. This may be represented by the following definition of a mapping F.
The map F becomes a value equal to one, if the considered data point satisfies the criteria, as it was
implemented in the Hampel filter in [5].

Definition 2. For a set of data (y); = (x)x + (0)x + (0)x + (w)y for k = 1, ..., n where (y); is measured. The
number of data points, n, is given. For an implementation of a filter represented by the mapping F, the index
vector LT may be computed as follows:

T { (Me=1 (F(y)) =1,

(D=0 elsewhere.

®)
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This inquiry is principally directed towards the peak noise level evaluation. This is due to the fact
that the estimator of the peak noise level reconstructs the noise peaks of the signal and then calculates
the variance. In this case, talking about a peak noise level means that the result will be occasionally
close to the signal standard deviation, and occasionally closer to the present noise level peak. The
aim was to get a robust estimator for a great variety of S/N ratios in the presence of outliers, and
then a very accurate estimator for a small range of S/N ratio without outliers. The technique that is
considered is based on the wavelets. The local variance of the Lipschitz constant of the signal over a
sliding time horizon is evaluated by the implemented algorithm. In case of the local Lipschitz being
constant lying outside the computed limit, the outlier is identified. A flow pipe for the Lipschitz
constant is graphically produced and if the local Lipschitz constant is situated outside the flow pipe,
the data point is marked, and, after that, it is substituted.

3. Short Remarks on Haar Wavelets

Wavelets are mathematical functions that are based on time frequency. They analyze physical
situations with the signal containing discontinuities and sharp spikes better than traditional Fourier
Methods. Wavelets are very often applied in mathematics, quantum physics and electrical engineering.
Intersection between these subjects in the last decade caused increasing wavelet applications such
as image compression, turbulence, human vision and radar. Currently, Digital Signal Processors
implement sampled signals. Only approximated values of the signal projection coefficients can be
often calculated by selecting a particular signal approximation. A great number of wavelet functions
that have different features exist, and, a short time ago, polynomial structures started to be applied
for creating wavelets. In [13], a wavelet having a form of a cubic spline is presented in pre-filtering
applications. Haar wavelets have a wide application field in industry. Representation of discrete
signals using Haar wavelets is very compact due to the use of microprocessors (see [14]). A brief
overview on the Haar wavelets function 4 ; ) (t) = 1/J]-(2dt — n) is considered with a support of size
274 of the Nyquist frequency. Furthermore, d is a scale parameter, j is a phase parameter and 7 is a
time translation parameter. Here, the pyramidal packet is represented by the indices (d, j, n), d is the
level of the tree (scaling parameter), j is the frequency cell (oscillation parameter) and 7 the time cell
(localization parameter). Basically, the Haar basis has the following two properties:

o the 1}) ( ) are orthonormal,
e any Ez (?R) function f(t) can be approximated, up to arbitrarily low precision, by a finite linear
combination of the 1/;? djn) (t).

In particular, to be more precise, coefficients w4, ,) (the weight coefficients) are calculated

(d,jm) /f lp(d,],n) ) ()

For j = 0, it is possible to define the following coefficients:

as follows:

S(d,0,n) /f dOn) (t)d(t),

where f(t) is the required signal, I is the considered time interval and l/JIZ 40.1) (t) is the well-known
mother function. To conclude:

t> = ;S(dr”)lp?d,o,n) + Zzw (d,jm) d] n)’

where s ,) = w0, It is shown that there are just two independent parameters and that parameter
d characterizes the level of the tree. The wavelet packets under consideration are derived from the Haar
mother wavelet.
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A set of Haar functions are presented in Figure 4. The localisation of the Haar functions through
the tree is accomplished by means of the parameter tuple, (d, j, 1), as shown in Figure 4. Moreover,
there is a relation of parameter j to the frequency shift, a relation of parameter n to the time shift, and
the supplementary parameter d is necessary to address the level of the tree directly depending on
the number of the examined samples. It means that if eight samples are to be considered, the level of
the tree will be three. Wavelet functions are constructed like a tree, so d = 1 is the highest degree of
improvement concerning the time. Figure 4 demonstrates four wavelet functions at d = 1 and the four
wavelet functions for d = 2. The appropriate coefficients, w(d, j, n) representing the wavelet functions,
for a tree consisting of d = 3 is shown in the right part of Figure 5. w(1, 0, 0..3) indicates the coefficients
of the first level on the extreme left with time shifts 0 through 3. One of the motivations to choose Haar
wavelets is that they are the most structurally simple wavelets to be applied. This means that, with
a window of four samples, we can already achieve very good results. This is not the same for other
wavelet families because of higher vanishing moments, and some wavelet families are available for
application starting with a window of 16 samples. This represents a drawback. In fact, using a long
window, the actuality of the information is lost. Another reason to use Haar wavelet family is that,
because of the application in micro-controllers, the discrete shape of the signals can be represented
basically as a combination of Haar functions. This represents an advantage because the compression
of the signal into the Haar basis is a very compact one and can be very useful in the case of localisation
of disturbances or identification of dominant or subdominant harmonics.

input signal y(k)

d=1 [0, 0.5f) ’ ‘ (0.5f, f]

d=2
: { ‘ 1
L] L1
[0, 0.25f) (0.25f, 0,5f) (0.5, 0.75f) (0,75f, 1

Figure 4. A set of Haar functions.

W(1,0,0..3) ‘ W(1,1,0..3)

W(2,0,0..1) W(2,1,0..1) W(2,2,0..1) W(2,3,0..1)
W(3,0,0) W(3,1,0) W(3,20) | W({330) W(34.0) W(3,50) W(3,60) | W(3,70)

Figure 5. Wavelet coefficients arranged in a tree.
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4. The Proposed Algorithm and Its Verification

Fault evaluation is an important problem both in theory and in practice. Works dedicated to this
topic are considered in [15,16]. Some various methods for choosing fitting threshold values have been
introduced. The presently applied algorithms used to evaluate the faults with the help of wavelets
could be summed up as follows:

e  Obtain the coefficients by applying the Haar wavelet transform to the signal affected by faults;
° Threshold those elements in the wavelet coefficients, which are considered to refer to faults;
e  Replace the fault in the considered sequence.

The most important point in this approach is represented by the threshold step, which is when
wavelet coefficients are supposed to refer to the fault. The fault (outlier) is determinate in case of
the local Lipschitz constant being external with respect to the calculated boundary. Two confidential
constants are denoted by parameters c; and c¢;. A short version of this algorithm is also published
in [17], but an analysis in terms of soft, hard and very hard thresholding is done in this paper.

Structure of the Algorithm

e  Step 1 The signal is located in a register and the standard ¢ of the local Lipschitz (L) constant
of its first seven samples is computed by means of the scalar product between two consecutive
samples and Haar functions having two samples. Subsequently, one calculates the local Lipschitz

constant considering the 7th and 8th sample correspondingly.
e  Step 2aIn case of the local Lipschitz constant being calculated considering the 7th and 8th sample

of signal which is less than constant c;0, the examined element of the sequence is not an outlier

and the local Lipschitz constant is summed up with ¢.

e  Step 2b In case of the local Lipschitz constant computed considering the 7th and 8th sample
being bigger than constant c;, then the examined element of the sequence is an outlier and its
local Lipschitz constant is not saved. The case of single outliers is reported in Figure 3.

e Step 3 The local Lipschitz constant is saved and the next step of the sequence is taken

under consideration.
e  Step 4 If the saved local Lipschitz constant value is bigger than c;c, then the sign of the last

two computed local Lipschitz constants is analyzed. In case of their not being opposite signs,
multi-outliers appear (see Figure 6a).

Assuming that they are opposite signs, the saved local Lipschitz constant value is checked. In the
case that this value is not less than c,0, it results in being a single inverse outlier, as it can seen in
Figure 6b.
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Figure 6. (a) multiple outliers; (b) inverse outliers.
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Remark 1. With help of this algorithm, it is possible to accomplish soft, hard and very hard fault detection
strategies simply by choosing parameters c1 and cy together with the replacing term, if an outlier (fault) appears.
For c; = 1 and cy = 2, together with

(Outlier — Element(k — 1))
2 7

Replaced = Element(k — 1) +

a soft detection is obtained. For ¢y = 0.5 and c; = 1, together with

(Outlier — Element(k — 1))

Replaced = Element(k — 1) + > ,

a hard detection is obtained. For c; = 0.5 and ¢ = 1, together with
Replaced = Element(k — 1),

a very hard detection is obtained.

5. Results

The evaluation of the procedure is made by means of artificial data in which the positions of the
outliers are given.

As already mentioned, the developed algorithm is currently integrated into the inferential
modelling platform of the unit responsible for Advanced Control and Simulation Solutions within
ABB’s (Asea Brown Boveri) industry division. Experimental results using sensor measurements of
temperature, and pressure in a Distillation Column are presented in this session. In particular, a
process is taken into consideration, and this is represented by a dryer section within a paper mill, and
it uses steam at different pressures for the drying. The measured quantities are, as already mentioned,
temperature, pressures, flow rates, moisture, and levels, and they include process variables, set point
variables, manipulated variables, and disturbances. Figure 7 shows the result obtained from the offline
mode to validate the presented algorithm. Figure 7a shows data with artificial outliers. In Figure 7b,
all of the outliers are correctly detected, and no misclassifications occur using the proposed algorithm
with no priori knowledge of the noise. It is possible to notice that almost 100% of outliers are detected
in the data in the right way. The rate of the incorrect outliers detected in the data can be higher in
the first part of the classification because of the initialisation part of the algorithm in which a statistic
is built using the local Lipschitz approach already discussed. The initial standard deviation of the
local Lipschitz constant is very small when the algorithm starts. The starting phase can take some
samples, normally 15-20 samples. It is the weak point of the procedure being a stochastic one, and, in
some cases, it can be not robust. The most difficult situation is if the standard deviation of the local
Lipschitz constant is small. The algorithm considered in [5] and the one presented in this contribution
are compared. The upper parts of Figures 8—10 show the results using an algorithm developed in [5]
(median filter technique) based on an application of the wavelet filter in the distillation column case.
They are compared with the proposed algorithm in which they are shown in the lower parts of the
same figures. To summarise the results, it is possible to notice that the proposed algorithm with respect
to that proposed in [5] results to be “more aggressive” in the sense that, presumably, it eliminates
data that does not belong to the fault set. This is due to the fact that, with respect to the algorithm
developed in [5], which is based on a median filter technique, this new method is statistically based,
and it is sensible for the chosen threshold (soft, hard and very hard threshold).

More in detail, in Figure 8, a data set from the distillation column case has been contaminated
with the outliers. As it can be seen, the MAD algorithm performs much better than the wavelet based
one. The MAD algorithm removes all of the outliers and does not remove any measurements that are
not outliers. On the other hand, the wavelet based approach removes some of the measurement noise
and, more seriously, also some of the signals.
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Figure 7. Simulations by using wavelet algorithms without a priori knowledge on the noise. (a) data
with artificial outliers; (b) outliers correctly detected.
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Misclassifications of the outliers can be particularly found in the first part of the data, as it can
be seen from Figure 7. The detected rate of the faulty outliers in the data expands in the first part
of the classification. The sampling period is usually requested in a linear case to be one-tenth of the
"dominating" system time constant. A part of misclassification problems are presented below. It can be
clarified by the fact that the chosen sample time of the algorithm is too long if we compare it with the
time constant (dynamics) of the considered signal. This algorithm demonstrates other problems, as
it can be seen from Figure 11. The algorithm has a problem with following the signal changes when
they occur very quickly. In this case, the algorithm can erroneously interpret the changes as sequences
of outliers.
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Figure 11. Problems for the wavelet approach. (a) case of too long sampling time with respect to the
dynamics of the system; (b) signal which changes very quickly.

6. Conclusions

This work is devoted to the Gross Error Detection applying a wavelet signal based approach.
To be more precise, it describes a signal-based algorithm, which can be implemented in industry.
This algorithm can be used for solving various problems. Identification of inductance and resistance
of an electrical systems is treated in this contribution. A priori knowledge of the noise level is not
required for the presented algorithm. Computer simulations and industrial real cases were also treated
in this work.
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