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Abstract: This paper focuses on the recursive identification problems for a multivariate output-error
system. By decomposing the system into several subsystems and by forming a coupled relationship
between the parameter estimation vectors of the subsystems, two coupled auxiliary model based
recursive least squares (RLS) algorithms are presented. Moreover, in contrast to the auxiliary model
based recursive least squares algorithm, the proposed algorithms provide a reference to improve the
identification accuracy of the multivariate output-error system. The simulation results confirm the
effectiveness of the proposed algorithms.
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1. Introduction

Multivariable systems are popular in industrial processes [1–3] and a number of successful
methods have been developed to solve the identification and control problems of multivariable
systems [4–7]. For example, Zhang and Hoagg used a candidate-pool approach to identify the
feedback and feedforward transfer function matrices and presented a frequency-domain technique
for identifying multivariable feedback and feedforward systems [8]; Salhi and Kamoun proposed
a recursive algorithm to estimate the parameters of the dynamic linear part and the static nonlinear
part of multivariable Hammerstein systems [9].

The idea of the auxiliary model is to use the measurable information to construct a dynamical
model and to replace the unknown variables in the information vector with the output of the auxiliary
model [10,11]. There are two typical identification methods for multivariate output-error systems:
stochastic gradient (SG) algorithms [12,13] and the recursive least squares (RLS) algorithms [14,15].
The SG algorithm requires lower computational cost, but the RLS algorithm has a faster convergence
rate than the SG algorithm [16]. The RLS algorithm has been applied to the identification of various
systems [17,18]. For example, on the basis of the work in [19], Jin et al. proposed an auxiliary model
based recursive least squares algorithm for autoregressive output-error autoregressive systems [20];
and Wang and Tang presented an auxiliary model based recursive least squares algorithm for a class
of linear-in-parameter output-error moving average systems [21].

Although the RLS algorithm can be applied to identify the parameter of the multivariate
output-error systems, it requires computing the matrix inversion (see Remark 1 in the following
section), resulting in a large computational burden [22]. This motivates us to study a new coupled
least squares algorithm without involving matrix inversion. The coupling identification concept is
useful for simplifying the parameter estimation of the coupled parameter multivariable systems [23].
It is based on the coupled relationship of the parameter estimates between the subsystems of
a multivariable system [24–26]. The purpose of the coupling identification is to reduce the redundant
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estimation of the subsystem parameter vectors and to avoid computing the matrix inversion of the
RLS algorithm. Recently, a coupled least squares algorithm has been proposed for multiple linear
regression systems [22].

This paper focuses on the parameter estimation of multivariate output-error systems, and the
main contributions of this paper are the following:

• for multivariate output-error systems, this paper derives two coupled least squares parameter
estimation algorithms by using the auxiliary model identification idea and the coupling
identification concept;

• the proposed algorithms can generate more accurate parameter estimates, and avoid computing
the matrix inversion in the multivariable RLS algorithm, for the purpose of reducing
computational load.

The rest of this paper is organized as follows: Section 2 gives some definitions and the
identification model of multivariate output-error systems. Section 3 presents two new coupled
auxiliary model identification algorithms. Section 4 gives two simulation examples to validate the
effectiveness of the proposed methods. Finally, some concluding remarks are offered in Section 5.

2. System Description and Identification Model

Let us introduce some notation. The symbol Im is an m×m identity matrix; 1n is an n-dimensional
column vector whose elements are 1; the superscript T denotes the matrix transpose; the norm of
the matrix X is defined as ‖X‖2 := tr[XXT]; the symbol ⊗ denotes the Kronecker product or the
direct product: if A = [aij] ∈ Rm×n, B = [bij] ∈ Rp×q, then A ⊗ B = [aijB] ∈ Rmp×nq; col[X]

denotes the vector formed by the column of the matrix X, that is, if X := [x1, x2, · · · , xn] ∈ Rm×n,
then col[X] = [xT

1, xT
2, · · · , xT

n]
T ∈ Rmn. X̂(t) denotes the estimate of X at time t and X̃(t) := X̂(t)− X

denotes the estimation error.
Consider the following multivariate output-error system:

y(t) = x(t) + v(t), (1)

x(t) :=
Φs(t)θ
A(z)

∈ Rm, (2)

A(z) := 1 + a1z−1 + a2z−2 + · · ·+ ana z−na ∈ R, (3)

where y(t) := [y1(t), y2(t), · · · , ym(t)]T ∈ Rm is the system output vector and the noisy measurement
of x(t), Φs(t) ∈ Rm×n is the information matrix consisting of the input–output data, θ ∈ Rn is the
parameter vector, and v(t) := [v1(t), v2(t), · · · , vm(t)]T ∈ Rm is the observation noise vector with
zero mean, and z−1 is a unit backward shift operator with [z−1y(t) = y(t− 1)].

Assume that the degrees m, n, na are known and when t ≤ 0, y(t) = 0, Φs(t) = 0 and v(t) = 0.
{Φs(t), y(t)} is the available measurement data.

Equations (1) and (2) can be expressed as

x(t) = Φx(t)a + Φs(t)θ, (4)

y(t) = Φ(t)ϑ + v(t), (5)

Φx(t) := [−x(t− 1),−x(t− 2), · · · ,−x(t− na)] ∈ Rm×na ,

Φ(t) := [Φx(t), Φs(t)] ∈ Rm×n0 ,

a := [a1, a2, · · · , ana ]
T ∈ Rna ,

ϑ :=

[
a
θ

]
∈ Rn0 , n0 := na + n.

Let ϑ̂(t) := [âT(t), θ̂
T
(t)] ∈ Rn0 be the estimate of ϑ at time t.
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For the identification model in (5), Φx(t) is the information matrix that consists of the unknown
inner variables x(t− j)’s, so we construct an auxiliary model xa(t), and define the estimate of Φx(t) as

Φ̂x(t) := [−xa(t− 1),−xa(t− 2), · · · ,−xa(t− na)] ∈ Rm×na .

Then, we use Φ̂x(t) and Φs(t) to construct the estimate of Φ(t) as

Φ̂(t) := [Φ̂x(t), Φs(t)] ∈ Rm×n0 .

Thus, according to (4), we can obtain the auxiliary model,

xa(t) = Φ̂x(t)â(t) + Φs(t)θ̂(t)

= Φ̂(t)ϑ̂(t).

The objective of this paper is to use the auxiliary model identification idea and the coupling
identification concept to derive new methods for estimating the system parameters θ, a1, a2, · · · , ana

from the observation data {y(t), Φs(t)} and to confirm the theoretical results with simulation examples.

3. The Multivariate Auxiliary Model Coupled Identification Algorithm

3.1. The Auxiliary Model Based Recursive Least Squares Algorithm

According to the identification model in (5), define a cost function:

J1(ϑ) :=
t

∑
j=1
‖y(j)−Φ(j)ϑ‖2.

Based on the auxiliary model identification idea and on the derivation of the RLS algorithm [27,28],
we use the output xa(t) as the unknown inner vector x(t) and replace the unknown information matrix
Φ(t) with its estimate Φ̂(t), and obtain the following auxiliary model based recursive least squares
(AM-RLS) algorithm:

ϑ̂(t) = ϑ̂(t− 1) + L(t)[y(t)− Φ̂(t)ϑ̂(t− 1)], (6)

L(t) = P(t− 1)Φ̂T
(t)[Im + Φ̂(t)P(t− 1)Φ̂T

(t)]−1, (7)

P(t) = P(t− 1)− L(t)Φ̂(t)P(t− 1), (8)

Φ̂(t) = [Φ̂x(t), Φs(t)], (9)

Φ̂x(t) = [−xa(t− 1),−xa(t− 2), · · · ,−xa(t− na)], (10)

xa(t) = Φ̂(t)ϑ̂(t). (11)

The steps of computing the parameter estimation vector ϑ̂(t) by the AM-RLS algorithm are listed
in the following:

1. Set the initial values: t = 1, ϑ̂(0) = 1n0 /p0, P(0) = p0 In0 , xa(t− j) = 1m/p0, j = 1, 2, · · · , na,
p0 = 106. Set the data length L.

2. Collect the observation data {Φs(t), y(t)} and form the information matrix Φ̂x(t) by (10).
3. Form Φ̂(t) by (9), and compute L(t) by (7) and P(t) by (8).
4. Update the parameter estimation vector ϑ̂(t) by (6).
5. Compute the output xa(t) of the auxiliary model using (11).
6. If t = L, stop the recursive computation and obtain the parameter estimates; otherwise, increase t

by 1 and go to Step 2.
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Remark 1. For the multivariable RLS algorithm in (6)–(10), we can see from (7) that it requires computing
the matrix inversion [Im + Φ̂(t)P(t− 1)Φ̂T

(t)]−1 ∈ Rm×m at each step, resulting in heavy computational
load, especially for large m (the number of outputs). This is the drawback of the multivariable RLS algorithm
in (6)–(10). This motivates us to study new coupled parameter identification methods.

3.2. The Coupled Subsystem Auxiliary Model Based Recursive Least Squares Algorithm

The coupling identification is usually used to reduce the redundant estimates of the system
parameter vectors, based on the coupled relationship of the parameter estimates between
subsystems [22].

Let φT
i (t) ∈ R1×n0 be the ith row of the information matrix Φ(t), i.e.,

Φ(t) :=


φT

1(t)
φT

2(t)
...

φT
m(t)

 ∈ Rm×n0 . (12)

From (5), we obtain m identification models (subsystems)

yi(t) = φT
i (t)ϑ + vi(t), i = 1, 2, · · · , m. (13)

From here, all subsystems contain a common parameter vector ϑ ∈ Rn0 . In general, one of the
subsystems can be used to identify the parameter vector ϑ; however, in order to improve the parameter
estimation precision, we should make full use of the information in all subsystems for identifying ϑ.

Based on the RLS algorithm in (6)–(11), and applying the auxiliary model idea, we replace the
unknown variables φi(t) in the identification algorithm with their estimates φ̂i(t), and obtain m RLS
algorithms from (13), namely, the subsystem recursive least squares (S-RLS) algorithm,

ϑ̂i(t) = ϑ̂i(t− 1) + Li(t)[yi(t)− φ̂
T

i (t)ϑ̂i(t− 1)], ϑ̂i(0) = 1n0 /p0, (14)

Li(t) = Pi(t)φ̂i(t) = Pi(t− 1)φ̂i(t)[1 + φ̂
T

i (t)Pi(t− 1)φ̂i(t)]
−1, (15)

Pi(t) = [In0 − Li(t)φ̂
T

i (t)]Pi(t− 1), Pi(0) = p0 In0 , i = 1, 2, · · · , m. (16)

From here, we can see that there is no coupled relationship between the subsystem parameter
estimation vector ϑ̂i(t).

Remark 2. For i = 1, 2, · · · , m, we can obtain m estimation vectors ϑ̂i(t) from (14)–(16), and they are all
the estimates of the common parameter vector ϑ in all subsystems, resulting in a large amount of redundant
parameter estimates. One way is to use their average as the estimate of ϑ, that is

ϑ̂(t) :=
ϑ̂1(t) + ϑ̂2(t) + · · ·+ ϑ̂m(t)

m
∈ Rn0 . (17)

If we regard the parameter estimate ϑ̂(t) in (17) as the output parameter vector, then each
S-RLS identification algorithm is still independent. According to the coupling identification concept,
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we use ϑ̂(t− 1) to replace ϑ̂i(t− 1) in the S-RLS algorithm, and get the coupled subsystem AM-RLS
(C-S-AM-RLS) algorithm:

ϑ̂i(t) = ϑ̂(t− 1) + Li(t)[yi(t)− φ̂
T

i (t)ϑ̂(t− 1)], (18)

Li(t) = Pi(t)φ̂i(t) = Pi(t− 1)φ̂i(t)[1 + φ̂
T

i (t)Pi(t− 1)φ̂i(t)]
−1, (19)

Pi(t) = [In0 − Li(t)φ̂
T

i (t)]Pi(t− 1), i = 1, 2, · · · , m, (20)

ϑ̂(t) =
ϑ̂1(t) + ϑ̂2(t) + · · ·+ ϑ̂m(t)

m
, (21)

Φ̂x(t) = [−xa(t− 1),−xa(t− 2), · · · ,−xa(t− na)], (22)

Φ̂(t) = [Φ̂x(t), Φs(t)] (23)

= [φ̂1(t), φ̂2(t), · · · , φ̂m(t)]
T, (24)

xa(t) = Φ̂(t)ϑ̂(t). (25)

The steps of computing the parameter estimation vector ϑ̂(t) by the C-S-AM-RLS algorithm
in (18)–(25) are listed in the following:

1. Set the initial values: t = 1, ϑ̂(0) = 1n0 /p0, Pi(0) = p0 In0 , xa(t− j) = 1m/p0, j = 1, 2, · · · , na,
p0 = 106. Set the data length L.

2. Collect the observation data {Φs(t), y(t)} and form the information matrix Φ̂x(t) by (22).
3. Form Φ̂(t) by (23) and read φ̂i(t) from Φ̂(t) in (24).
4. For each i, i = 1, 2, · · · , m, compute Li(t) by (19), and Pi(t) by (20), and update the parameter

estimation vector ϑ̂i(t) by (18).
5. Compute ϑ̂(t) by (21) and xa(t) by (25).
6. If t = L, stop the recursive computation and obtain the parameter estimates; otherwise, increase t

by 1 and go to Step 2.

Remark 3. The C-S-AM-RLS algorithm in (18)–(25) uses the estimate ϑ̂(t− 1) on the right-hand side of (18)
instead of ϑ̂i(t− 1) on the right-hand side of (14) for i = 1, 2, · · · , m. Thus, the C-S-AM-RLS algorithm is
different from the S-RLS algorithm.

3.3. The Coupled Auxiliary Model Based Recursive Least Squares Algorithm

In order to avoid the redundant parameter estimates, we use the coupling identification concept
to derive a coupled AM-RLS algorithm based on the C-S-AM-RLS algorithm.

Referring to the partially coupled SG identification method [24], and with the help of the Jacobi
or Gauss–Seidel iterative algorithm, replacing ϑ̂m(t− 1) with ϑ̂1(t− 1) for i = 1, replacing ϑ̂i(t− 1)
with ϑ̂i−1(t) for i = 2, 3, · · · , m, we can obtain the following coupled auxiliary model based recursive
least squares (C-AM-RLS) identification algorithm:

ϑ̂1(t) = ϑ̂m(t− 1) + L1(t)[y1(t)− φ̂
T

1(t)ϑ̂m(t− 1)], (26)

L1(t) = Pm(t− 1)φ̂1(t)[1 + φ̂
T

1(t)Pm(t− 1)φ̂1(t)]
−1, (27)

P1(t) = [In0 − L1(t)φ̂
T

1(t)]Pm(t− 1), (28)

ϑ̂i(t) = ϑ̂i−1(t) + Li(t)[yi(t)− φ̂
T

i (t)ϑ̂i−1(t)], (29)

Li(t) = Pi−1(t)φ̂i(t)[1 + φ̂
T

i (t)Pi−1(t)φ̂i(t)]
−1, (30)

Pi(t) = [In0 − Li(t)φ̂
T

i (t)]Pi−1(t), i = 2, 3, · · · , m, (31)

Φ̂x(t) = [−xa(t− 1),−xa(t− 2), · · · ,−xa(t− na)], (32)

Φ̂(t) = [Φ̂x(t), Φs(t)] (33)

= [φ̂1(t), φ̂2(t), · · · , φ̂m(t)]
T, (34)

xa(t) = Φ̂(t)ϑ̂(t). (35)
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In the above algorithm in (26)–(35), ϑ̂i(t) ∈ Rn0 is the parameter estimation vector of the ith
subsystem at time t, Li(t) ∈ Rn0 is the gain vector of the ith subsystem at time t, Pi(t) ∈ Rn0×n0 is
the covariance matrix of the ith subsystem at time t. ϑ̂i−1(t) and Pi−1(t) are the parameter estimation
vector and the covariance matrix of the (i − 1)th subsystem at time t, respectively; ϑ̂m(t − 1) and
Pm(t− 1) are the parameter estimation vector and the covariance matrix of the mth subsystem at time
t− 1, respectively, the system parameter estimation vector is defined by the parameter estimation
vector of the mth subsystem at time t: ϑ̂(t) = ϑ̂m(t).

The procedure of computing the parameter estimation vector ϑ̂m(t) in (26)–(35) is as follows.

1. Set the initial values: t = 1, θ̂m(0) = 1n0 /p0, Pm(0) = p0 In0 , xa(t− j) = 1m/p0, j = 1, 2, · · · , na,
p0 = 106. Set the data length L.

2. Collect the observation data y(t) and Φs(t), and construct Φ̂x(t) and Φ̂(t) by (32) and (33).
3. Read φ̂i(t) from Φ̂(t) in (34), compute L1(t) and P1(t) by (27) and (28), and update the parameter

estimation vector ϑ̂1(t) by (26).
4. For i = 2, 3, · · · , m, compute Li(t) and Pi(t) by (30) and (31), and update the parameter estimation

vector ϑ̂i(t) by (29).
5. Obtain the parameter estimation vector ϑ̂(t) = ϑ̂m(t) and compute xa(t) by (35).
6. If t = L, stop the recursive computation and obtain the parameter estimates; otherwise, increase t

by 1 and go to Step 2.

Remark 4. The C-AM-RLS algorithm in (26)–(35) uses the estimate ϑ̂i−1(t) on the right-hand side of (29)
instead of ϑ̂i(t− 1) on the right-hand side of (14) for i = 2, 3, · · · , m. When computing ϑ̂1(t), the C-AM-RLS
algorithm uses the estimate ϑ̂m(t− 1) on the right-hand side of (26) instead of ϑ̂i(t− 1) on the right-hand side
of (14) with i = 1. Thus, the C-AM-RLS algorithm is different from the S-RLS algorithm.

4. Examples

Example 1. Consider the following multivariate output-error system:

y(t) =
Φs(t)θ
A(z)

+ v(t),

Φs(t) =
[

y1(t− 2)u2(t− 2) y1(t− 2) sin(t/π) u1(t− 1) + u2(t− 2) u2(t− 1) sin(u2(t− 2))
y1(t− 2) sin(y2(t− 2)) y2(t− 2)u1(t− 2) u1(t− 2)u2(t− 2) u2(t− 1) cos(t/π)

]
,

θ= [θ1, θ2, θ3, θ4]
T

= [−0.25, 0.47,−0.50, 0.57]T ∈ R4,

A(z) = 1 + a1z−1 + a2z−2 = 1 + 0.30z−1 + 0.64z−2,

ϑ = [a1, a2, θ1, θ2, θ3, θ4]
T

= [0.30, 0.64,−0.25, 0.47,−0.50, 0.57]T ∈ R6.

In simulation, we generate two persistent excitation signal sequences with zero mean and unit variances as
the inputs {u1(t)} and {u2(t)}, and take v1(t) and v2(t) to be two white noise sequences with zero mean and
variances σ2

1 for v1(t), and σ2
2 for v2(t). Taking σ2

1 = σ2
2 = σ2 = 0.502, the data length L = 3000, and applying

the AM-RLS, C-S-AM-RLS and C-AM-RLS algorithms to estimate the parameters of this system, respectively,
the parameter estimates are shown in Tables 1–3, and the estimation errors δ := ‖θ̂(t)− θ‖/‖θ‖ versus t are
shown in Figures 1 and 2.

From Tables 1–3 and Figures 1 and 2, we can draw the following conclusions.

• The parameter estimation errors by the presented algorithms become smaller and smaller and go
to zero with the increasing of time t.

• In contrast to the AM-RLS algorithm, the proposed C-S-AM-RLS and C-AM-RLS algorithms
have faster convergence rates and more accurate parameter estimates with the same
simulation conditions.
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Table 1. The AM-RLS estimates and their errors for Example 1.

t a1 a2 θ1 θ2 θ3 θ4 δ (%)

100 0.19169 0.46405 −0.29921 0.51505 −0.69003 0.56147 24.77137
200 0.24129 0.55426 −0.26362 0.52514 −0.61030 0.56009 13.91359
500 0.24361 0.55706 −0.24361 0.47651 −0.56945 0.53294 10.96959

1000 0.29857 0.61286 −0.24654 0.45360 −0.55928 0.57197 5.78088
2000 0.31147 0.64219 −0.23371 0.47639 −0.51822 0.57977 2.53112
3000 0.31743 0.65208 −0.23405 0.47050 −0.48951 0.55819 2.65000

True values 0.30000 0.64000 −0.25000 0.47000 −0.50000 0.57000

Table 2. The C-S-AM-RLS estimates and their errors for Example 1.

t a1 a2 θ1 θ2 θ3 θ4 δ (%)

100 0.29097 0.63357 −0.27254 0.45781 −0.49700 0.52648 4.44497
200 0.29760 0.62737 −0.26354 0.45916 −0.50241 0.54735 2.69357
500 0.29689 0.63747 −0.25217 0.46685 −0.50539 0.55960 1.11229

1000 0.29887 0.63910 −0.25196 0.46698 −0.50283 0.55826 1.08848
2000 0.30151 0.63810 −0.24935 0.46850 −0.50098 0.55961 0.92996
3000 0.30313 0.63900 −0.24647 0.46872 −0.50302 0.56643 0.58689

True values 0.30000 0.64000 −0.25000 0.47000 −0.50000 0.57000

Table 3. The C-AM-RLS estimates and their errors for Example 1.

t a1 a2 θ1 θ2 θ3 θ4 δ (%)

100 0.29005 0.63637 −0.25615 0.45607 −0.49231 0.58483 2.14162
200 0.29623 0.64525 −0.25140 0.46821 −0.50367 0.57151 0.67931
500 0.29686 0.63477 −0.25512 0.47214 −0.50108 0.56153 1.01842

1000 0.30266 0.64036 −0.24782 0.46668 −0.50268 0.57115 0.48179
2000 0.30091 0.64021 −0.24740 0.46931 −0.50116 0.57056 0.26815
3000 0.30202 0.64160 −0.24831 0.46919 −0.49823 0.56821 0.34814

True values 0.30000 0.64000 −0.25000 0.47000 −0.50000 0.57000

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

t

δ

 C−S−AM−RLS    

 AM−RLS     

Figure 1. The AM-RLS and the C-S-AM-RLS estimation errors δ versus t for Example 1.
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Figure 2. The AM-RLS and the C-AM-RLS estimation errors δ versus t for Example 1.

Example 2. Consider the following 2-input 2-output system:

y(t) =
Q(z)
A(z)

u(t) + v(t),

A(z) = 1 + a1z−1 + a2z−2 = 1− 0.19z−1 − 0.15z−2,

Q(z) = Q1z−1 + Q2z−2

=

[
−0.31 0.25

0.28 −0.23

]
z−1 +

[
0.65 −0.38
0.41 0.62

]
z−2,

a = [a1, a2]
T = [−0.19,−0.15]T ∈ R2,

θT = [Q1, Q2] =

[
−0.31 0.25 0.65 −0.38

0.28 −0.23 0.41 0.62

]
∈ R2×4.

This example system can be transformed into the multivariate output-error system:

y(t) =
Φs(t)θ
A(z)

+ v(t),

ϕ(t) = [uT(t− 1), uT(t− 2)]T ∈ R4,

Φs(t) = I2 ⊗ϕT(t)

=

[
u1(t− 1) u2(t− 1) u1(t− 2) u2(t− 2) 0 0 0 0

0 0 0 0 u1(t− 1) u2(t− 1) u1(t− 2) u2(t− 2)

]
∈ R2×8,

Φ̂(t) =

[
x1(t− 1) x1(t− 2) u1(t− 1) u2(t− 1) u1(t− 2)
x2(t− 1) x2(t− 2) 0 0 0

u2(t− 2) 0 0 0 0
0 u1(t− 1) u2(t− 1) u1(t− 2) u2(t− 2)

]
∈ R2×10,

ϑ = [aT, col[θ]T]T

= [a1, a2, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]
T

= [−0.19,−0.15,−0.31, 0.25, 0.65,−0.38, 0.28,−0.23, 0.41, 0.62]T ∈ R10.

The simulation conditions are similar to those of Example 1. Applying the AM-RLS algorithm,
the C-S-AM-RLS algorithm and the C-AM-RLS algorithm with σ2 = 0.502 and σ2 = 0.202 to estimate
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the parameters of this system, respectively, the parameter estimates are shown in Tables 4–6, and the estimation
errors δ versus t are shown in Figures 3–7.

From Tables 4–6 and Figures 3–7, we can draw the following conclusions:

• In contrast to the AM-RLS algorithm, the proposed C-S-AM-RLS and C-AM-RLS algorithms
have faster convergence rates and more accurate parameter estimates with the same simulation
conditions, and the C-AM-RLS algorithm can obtain the most accurate estimates for the
system parameters.

• The parameter estimation errors given by the proposed algorithms are smaller under a lower
noise level—see Tables 4–6 and Figures 3–7.

Table 4. The AM-RLS estimates and errors with different noise variances for Example 2.

σ t a1 a2 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ (%)

0.50 100 −0.07767 −0.05531 −0.36662 0.24956 0.48032 −0.31206 0.31519 −0.06257 0.41747 0.62394 24.42046
200 −0.12975 −0.19484 −0.39270 0.19552 0.54739 −0.39801 0.25127 −0.15292 0.40869 0.59869 15.11250
500 −0.19310 −0.17229 −0.36609 0.20923 0.61180 −0.37565 0.30089 −0.22450 0.47133 0.60444 8.75946

1000 −0.19356 −0.18464 −0.35077 0.26929 0.61180 −0.40097 0.29274 −0.24058 0.41768 0.58457 6.77306
2000 −0.16577 −0.16642 −0.35510 0.26588 0.63592 −0.38138 0.27095 −0.24643 0.43211 0.58239 6.17573
3000 −0.17437 −0.15862 −0.34955 0.26143 0.63990 −0.38157 0.26516 −0.24155 0.41820 0.59485 4.64800

0.20 100 −0.14504 −0.09948 −0.34108 0.24926 0.56565 −0.34426 0.29779 −0.13584 0.40947 0.62501 12.55557
200 −0.16080 −0.17384 −0.35653 0.21984 0.59626 −0.38955 0.26341 −0.18663 0.40729 0.60783 8.16496
500 −0.19361 −0.16177 −0.34130 0.22732 0.62940 −0.37772 0.29134 −0.22686 0.44372 0.61191 4.82443

1000 −0.19260 −0.16915 −0.33276 0.26075 0.62898 −0.39165 0.28698 −0.23581 0.41417 0.60050 3.75051
2000 −0.17637 −0.15883 −0.33513 0.25880 0.64247 −0.38068 0.27492 −0.23911 0.42227 0.59904 3.43136
3000 −0.18131 −0.15460 −0.33203 0.25635 0.64460 −0.38087 0.27172 −0.23640 0.41457 0.60604 2.58030

True values −0.19000 −0.15000 −0.31000 0.25000 0.65000 −0.38000 0.28000 −0.23000 0.41000 0.62000

Table 5. The C-S-AM-RLS estimates and errors with different noise variances for Example 2.

σ t a1 a2 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ (%)

0.50 100 −0.21759 −0.11924 −0.38525 0.15721 0.63656 −0.34223 0.29058 −0.20577 0.37492 0.48917 15.79715
200 −0.20637 −0.14535 −0.37445 0.17481 0.63617 −0.35041 0.28941 −0.21028 0.38068 0.52643 12.03360
500 −0.20820 −0.15449 −0.35370 0.20271 0.64497 −0.35998 0.29075 −0.22235 0.40008 0.56361 7.55407
1000 −0.20219 −0.15807 −0.34231 0.22279 0.64575 −0.36723 0.28829 −0.22609 0.39938 0.57785 5.31882
2000 −0.19351 −0.15523 −0.33660 0.23115 0.65084 −0.36868 0.28424 −0.22807 0.40408 0.58666 4.04352
3000 −0.19451 −0.15372 −0.33290 0.23487 0.65196 −0.37059 0.28273 −0.22881 0.40384 0.59231 3.39624

0.20 100 −0.22599 −0.13897 −0.32193 0.22250 0.58332 −0.31192 0.25836 −0.21204 0.39836 0.55805 10.49246
200 −0.22086 −0.15125 −0.32183 0.22627 0.60226 −0.33263 0.26598 −0.21525 0.40181 0.57614 7.64726
500 −0.21073 −0.15254 −0.31739 0.23480 0.62239 −0.35282 0.27247 −0.22272 0.40840 0.59331 4.55688
1000 −0.20374 −0.15441 −0.31579 0.24128 0.63135 −0.36182 0.27507 −0.22497 0.40834 0.60063 3.11396
2000 −0.19848 −0.15281 −0.31510 0.24388 0.63828 −0.36705 0.27614 −0.22659 0.40919 0.60523 2.17345
3000 −0.19699 −0.15245 −0.31444 0.24521 0.64095 −0.36950 0.27665 −0.22739 0.40911 0.60772 1.76930

True values −0.19000 −0.15000 −0.31000 0.25000 0.65000 −0.38000 0.28000 −0.23000 0.41000 0.62000

Table 6. The C-AM-RLS estimates and errors with different noise variances for Example 2.

σ t a1 a2 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ (%)

0.50 100 −0.14313 −0.08944 −0.29923 0.14967 0.60004 −0.48000 0.27048 −0.10880 0.39393 0.64199 17.32565
200 −0.15590 −0.16031 −0.30620 0.18954 0.60690 −0.43088 0.26046 −0.17047 0.40328 0.61953 9.53865
500 −0.18908 −0.15426 −0.31365 0.22262 0.63038 −0.39293 0.27930 −0.21346 0.42501 0.61348 3.57545

1000 −0.18864 −0.15914 −0.31439 0.24558 0.63487 −0.38941 0.28005 −0.22501 0.41240 0.60972 1.98417
2000 −0.18100 −0.15438 −0.31763 0.24933 0.64474 −0.38309 0.27657 −0.23004 0.41637 0.60902 1.58563
3000 −0.18721 −0.15257 −0.31714 0.24959 0.64668 −0.38257 0.27582 −0.23014 0.41296 0.61247 1.06366

0.20 100 −0.18575 −0.14611 −0.32571 0.23906 0.65606 −0.34876 0.27370 −0.22277 0.41431 0.62734 3.27710
200 −0.18663 −0.15518 −0.32364 0.24072 0.65224 −0.36429 0.27312 −0.22690 0.41301 0.62321 2.08590
500 −0.19190 −0.15066 −0.31665 0.24569 0.65227 −0.37418 0.27914 −0.23001 0.41543 0.62035 0.96352

1000 −0.19025 −0.15184 −0.31398 0.25006 0.65002 −0.37822 0.27973 −0.23074 0.41154 0.61862 0.43133
2000 −0.18790 −0.15067 −0.31339 0.25029 0.65091 −0.37870 0.27896 −0.23105 0.41213 0.61798 0.45028
3000 −0.18935 −0.15030 −0.31286 0.25024 0.65072 −0.37924 0.27882 −0.23074 0.41111 0.61867 0.31747

True values −0.19000 −0.15000 −0.31000 0.25000 0.65000 −0.38000 0.28000 −0.23000 0.41000 0.62000
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Figure 3. The AM-RLS estimation errors δ versus t with different σ2 for Example 2.
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Figure 4. The C-S-AM-RLS estimation errors δ versus t with different σ2 for Example 2.
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Figure 5. The C-AM-RLS estimation errors δ versus t with different σ2 for Example 2.
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Figure 6. The AM-RLS, C-S-AM-RLS and C-AM-RLS estimation errors δ versus t for Example 2
(σ2 = 0.502).
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Figure 7. The AM-RLS, C-S-AM-RLS and C-AM-RLS estimation errors δ versus t for Example 2
(σ2 = 0.202).

5. Conclusions

By means of the auxiliary model identification idea, this paper employs the coupling identification
concept to propose a novel recursive identification method for multivariate output-error systems.
The proposed methods have the following properties:

• The C-S-AM-RLS algorithm and the C-AM-RLS algorithm are presented by forming a coupled
relationship between the parameter estimation vectors of the subsystems, and they avoid
computing the matrix inversion in the multivariable AM-RLS algorithm so they require lower
computational load and achieve highly accurate parameter estimates.

• With the noise-to-signal ratios decreasing, the parameter estimation errors given by the proposed
algorithms become smaller.

The basic idea of the proposed algorithms in this paper can be extended and applied
to other fields [29–31].
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