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Abstract: Traditional local active noise control systems minimise the measured acoustic pres-
sure to generate a zone of quiet at the physical error sensor location. The resulting zone of
quiet is generally limited in size and this requires the physical error sensor be placed at the
desired location of attenuation, which is often inconvenient. To overcome this, a number of
virtual sensing algorithms have been developed for active noise control. Using the physical
error signal, the control signal and knowledge of the system, these virtual sensing algorithms
estimate the error signal at a location that is remote from the physical error sensor, referred to
as the virtual location. Instead of minimising the physical error signal, the estimated error sig-
nal is minimised with the active noise control system to generate a zone of quiet at the virtual
location. This paper will review a number of virtual sensing algorithms developed for active
noise control. Additionally, the performance of these virtual sensing algorithms in numerical
simulations and in experiments is discussed and compared.
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1. Introduction

Local active noise control systems aim to create a localised zone of quiet at the physical error sensor
(typically a microphone) by minimising the acoustic pressure at the physical error sensor location with
secondary sound sources (typically loudspeakers). While significant attenuation may be achieved at the
physical sensor location, the zone of quiet tends to be very small. Also, the sound pressure levels outside
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the zone of quiet are likely to be higher than the original disturbance alone with the active noise control
system present. This is illustrated in Fig. 1 (a), where the zone of quiet located at the physical error
sensor is too small to extend to the observer’s ear and the observer in fact experiences an increase in
the sound pressure level with the active noise control system operating. Elliott et al. [1] investigated
the spatial extent of the zone of quiet when controlling pressure with a remote secondary source in a
pure-tone diffuse sound field. The zone of quiet generated at the microphone was found to be defined by
a sinc function, with the primary sound pressure level reduced by 10 dB over a sphere of diameter one
tenth of the excitation wavelength, λ/10.

The zone of quiet generated at the sensor location may be enlarged by minimising the acoustic energy
density instead of the acoustic pressure. As the control of acoustic pressure and pressure gradient at a
point is equivalent to minimising the acoustic energy density at that point [2], Elliott and Garcia-Bonito
[3] investigated the control of both pressure and pressure gradient in a diffuse sound field with two
secondary sources. Minimising both the pressure and pressure gradient along a single axis produced a
10 dB zone of quiet over a distance of λ/2, in the direction of pressure gradient measurement. This is
considerably larger than the zone of quiet obtained by minimising pressure alone.

As the zone of quiet generated at the physical error sensor is limited in size for active noise control,
virtual acoustic sensors were developed to shift the zone of quiet to a desired location that is remote
from the physical sensor. This is shown in Fig. 1 (b) where the zone of quiet is shifted from the physical
sensor to a virtual sensor located at the observer’s ear. Using the physical error signal, a virtual sensing
algorithm is used to estimate the pressure at a fixed virtual location. Instead of minimising the physical
error signal, the estimated pressure is minimised with the active noise control system to generate a zone
of quiet at the virtual location. A number of virtual sensing algorithms have been developed to estimate
the pressure at a fixed virtual location including the virtual microphone arrangement [4], the remote
microphone technique [5], the forward difference prediction technique [6], the adaptive LMS virtual
microphone technique [7], the Kalman filtering virtual sensing method [8] and the stochastically optimal
tonal diffuse field virtual sensing technique [9].

Figure 1. Comparison of local active noise control (a) at a physical sensor; and (b) at a
virtual sensor.
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Figure 1. Comparison of local active noise control (a) at a physical sensor; and (b) at a virtual sensor.
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It is, however, likely that the desired location of attenuation is not spatially fixed. This occurs, for
example, when the desired location of attenuation is the ear of a seated observer and the observer moves
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their head, thereby moving the virtual location. As a result, a number of moving virtual sensing al-
gorithms have been developed to generate a virtual microphone capable of tracking a moving virtual
location including the remote moving microphone technique [10], the adaptive LMS moving virtual mi-
crophone technique [11] and the Kalman filtering moving virtual sensing method [12].

This paper will review the spatially fixed and moving virtual sensing algorithms developed for active
noise control. Additionally, the performance of these virtual sensing algorithms in numerical simulations
and in experiments is discussed and compared. Finally, it should be noted that the performance of the
virtual sensing algorithms is generally assessed indirectly through the performance of the active noise
control system in achieving control at the virtual location. Key references are provided for those who
wish to obtain further details on any of the virtual sensing algorithms. As the focus of this paper is on
the spatially fixed and moving virtual sensing algorithms, details of active noise control algorithms that
can be used to control the sound field and generate zones of quiet at the virtual locations are not given.
Details of active noise control algorithms, such as the filtered-x LMS algorithm, may be found in Kuo
and Morgan [13], Elliott [14] and Nelson and Elliott [2].

2. Spatially Fixed Virtual Sensing Algorithms

Spatially fixed virtual sensing algorithms are used to obtain estimates of the error signals at a number
of spatially fixed virtual locations using the error signals from the remotely located physical error sen-
sors, the control signal and knowledge of the system. These virtual sensing algorithms are then combined
with an active noise control algorithm to generate zones of quiet at the fixed virtual locations. A num-
ber of spatially fixed virtual sensing algorithms have been developed in the past including the virtual
microphone arrangement [4], the remote microphone technique [5], the forward difference prediction
technique [6], the adaptive LMS virtual microphone technique [7], the Kalman filtering virtual sensing
method [8] and the stochastically optimal tonal diffuse field virtual sensing technique [9]. A discussion
of these algorithms is provided as follows.

2.1. The virtual sensing problem

The virtual sensing problem and notation used throughout this paper are introduced in this section. It
is assumed here that there are Mp physical microphones, Mv spatially fixed virtual microphones and L
secondary sources. The vector of the total pressures at the Mp physical microphones, ep(n), is defined
as

ep(n) =
[
ep1(n) ep2(n) ... epMp(n)

]T

. (1)

The total pressures at the Mp physical microphones, ep(n), is the sum of the sound fields produced by
the primary and secondary sound sources at the physical microphone locations, and may be written as

ep(n) = dp(n) + yp(n) = dp(n) + Gpuu(n), (2)

where dp(n) is a vector of the primary pressures at the Mp physical microphones, yp(n) is a vector of
the secondary pressures at theMp physical microphones, Gpu is a matrix of sizeMp×L whose elements
are the transfer functions between the secondary sources and the physical microphones, u(n) is a vector
of the secondary source strengths and n is the time step.
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Similarly, the vector of the total pressures at the Mv spatially fixed virtual locations, ev(n), is defined
as

ev(n) =
[
ev1(n) ev2(n) ... epMv(n)

]T

. (3)

The total pressures at the Mv virtual microphones, ev(n), is the sum of the sound fields produced by the
primary and secondary sources at the Mv virtual locations and may be written as

ev(n) = dv(n) + yv(n) = dv(n) + Gvuu(n), (4)

where dv(n) is the vector of the primary pressures at the Mv virtual locations, yv(n) is the vector of
secondary pressures at the Mv virtual locations and Gvu is a matrix of size Mv × L whose elements are
the transfer functions between the secondary sources and the virtual locations.

Using the physical error signals, ep(n), a virtual sensing algorithm is used to estimate the pressures,
ev(n), at the spatially fixed virtual locations. Instead of minimising the physical error signals, the es-
timated pressures are minimised with the active noise control system to generate zones of quiet at the
virtual locations.

2.2. The virtual microphone arrangement

The virtual microphone arrangement, proposed by Elliott and David [4], was the first virtual sens-
ing algorithm suggested for active noise control. This virtual sensing algorithm uses the assumption of
equal primary sound pressure at the physical and virtual microphone locations. Virtual sensing algo-
rithms similar to the virtual microphone arrangement have also been proposed by Kuo et al. [15] and
Pawelczyk [16, 17]. A block diagram of the virtual microphone arrangement is shown in Fig. 2. The
virtual microphone arrangement is most easily implemented with equal numbers of physical and virtual
sensors, so Mv = Mp [12]. The microphones are located in Mv pairs, each consisting of one physical
microphone and one virtual microphone. In this virtual sensing algorithm the primary sound pressure
is assumed to be equal at the physical and virtual microphones in each pair, i.e. that dv(n) = dp(n).
This assumption holds if the primary sound field does not change significantly between the physical and
virtual microphones in each pair.

A preliminary identification stage is required in this virtual sensing algorithm in which the matrices
of transfer functions, G̃pu and G̃vu, are modelled as matrices of FIR or IIR filters. Once this preliminary
identification stage is complete, the microphones temporarily placed at the virtual locations are removed.
As shown in Fig. 2, estimates, ẽv(n), of the total error signals at the virtual locations are calculated using

ẽv(n) = ep(n)− (G̃pu − G̃vu)u(n). (5)

The performance of the virtual microphone arrangement has been thoroughly investigated in both
tonal and broadband sound fields by a number of authors [16–32]. Theoretical analysis in a pure tone
diffuse sound field demonstrated that at low frequencies, the zone of quiet generated at a virtual micro-
phone with the virtual microphone arrangement is comparable to that achieved by directly minimising
the measured pressure of a physical microphone at the virtual location [18, 19]. At higher frequencies
however, those above 500 Hz, the 10 dB zone of quiet is substantially smaller when using a virtual micro-
phone compared to a physical microphone at the same location. This is due to the assumption of equal



Algorithms 2008, 1 73
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ỹv(n)

u(n)

G̃pu

G̃vu

d̃p(n) = d̃v(n)

+
++ −

∑∑

Figure 2. Block diagram of the virtual microphone arrangement.

however, those above 500 Hz, the 10 dB zone of quiet is substantially smaller when using a virtual micro-

phone compared to a physical microphone at the same location. This is due to the assumption of equal

primary pressure at the physical and virtual microphone locations being less valid as the wavelength

decreases [18, 19].

The performance of a local active headrest system implementing the virtual microphone arrangement

has been experimentally investigated by a number of authors[18, 19, 22, 23, 25, 27, 32]. An example of

a local active headrest system is shown in Fig. 3. Garcia-Bonito et al. [18, 19] investigated the perfor-

mance of a local active headrest system in minimising a tonalprimary disturbance at virtual microphones

located 2 cm from the ears of a manikin and 10 cm from the physical microphones. Below 500 Hz, the

10 dB zone of quiet generated at the virtual microphone extends approximately 8 cm forward and 10

cm side to side. At higher frequencies however, the assumption relating to the similarity of the primary

field at the physical and virtual microphones is no longer valid and limited attenuation is achieved at the

virtual location.

Loudspeaker

Physical mic

Figure 3. Local active headrest [23].

The performance of a local active headrest system in attenuating a broadband disturbance with a 100

primary pressure at the physical and virtual microphone locations being less valid as the wavelength
decreases [18, 19].

The performance of a local active headrest system implementing the virtual microphone arrangement
has been experimentally investigated by a number of authors [18, 19, 22, 23, 25, 27, 32]. An example of
a local active headrest system is shown in Fig. 3. Garcia-Bonito et al. [18, 19] investigated the perfor-
mance of a local active headrest system in minimising a tonal primary disturbance at virtual microphones
located 2 cm from the ears of a manikin and 10 cm from the physical microphones. Below 500 Hz, the
10 dB zone of quiet generated at the virtual microphone extends approximately 8 cm forward and 10
cm side to side. At higher frequencies however, the assumption relating to the similarity of the primary
field at the physical and virtual microphones is no longer valid and limited attenuation is achieved at the
virtual location.

Figure 3. Local active headrest [23].

Algorithms2008, 1 5

ep(n) ẽv(n)
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The performance of a local active headrest system in attenuating a broadband disturbance with a 100

The performance of a local active headrest system in attenuating a broadband disturbance with a 100
- 400 Hz frequency range was investigated by Rafaely et al. [22, 23] using feedback control. An overall
attenuation of 9.5 dB was obtained at a virtual microphone located at the ear of a manikin with the virtual
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microphone arrangement. This is compared to 19 dB being obtained at the physical microphone by
directly minimising the measured pressure signal. Differences in the attenuation achieved by minimising
the physical and virtual microphone signals were partly attributed to the physical microphone being
significantly closer to the secondary loudspeaker than the virtual microphone. This results in a longer
delay in the virtual plant, which has a negative effect on the performance of the feedback control system.

As the performance of the active headrest will be affected by the presence of the passenger’s head,
Garcia-Bonito and Elliott [20] and Garcia-Bonito et al. [19, 21] theoretically investigated the perfor-
mance of the virtual microphone in generating a zone of quiet near the surface of a reflecting sphere.
The presence of the reflecting sphere was seen to increase the size of the zone of quiet when using the
virtual microphone arrangement, especially at high frequencies. This is due to the imposed zero pressure
gradient on the reflecting surfaces.

2.3. The remote microphone technique

The remote microphone technique developed by Roure and Albarrazin [5] is an extension to the
virtual microphone arrangement [4] which uses an additional matrix of filters to compute estimates of
the primary disturbances at the virtual sensors from the primary disturbances at the physical sensors.
An active acoustic attenuation system designed to attenuate noise at a location that is remote from the
physical error sensor using the remote microphone technique was independently patented by Popovich
[33]. Versions of the remote microphone technique have also been suggested by Hashimoto et al. [34],
Friot et al. [35] and Yuan [36].

Like the virtual microphone arrangement, the remote microphone technique requires a preliminary
identification stage in which the secondary transfer matrices G̃pu and G̃vu are modelled as matrices of
FIR or IIR filters. The Mv ×Mp sized matrix of primary transfer functions between the virtual locations
and the physical locations, M̃, is also estimated as a matrix of FIR or IIR filters during this preliminary
identification stage. The secondary transfer function matrix G̃pu is identified using the secondary sources
and the physical microphones while microphones temporarily placed at the virtual locations are used to
obtain matrices G̃vu and M̃.

A block diagram of the remote microphone technique is given in Fig. 4. As shown in Fig. 4, estimates
of the primary disturbances, d̃p(n), at the physical error sensors are first calculated using

d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (6)

Next, estimates of the primary disturbances, d̃v(n), at the virtual locations are obtained using

d̃v(n) = M̃d̃p(n). (7)

Finally, estimates, ẽv(n), of the total virtual error signals are calculated as

ẽv(n) = d̃v(n) + ỹv(n) = M̃d̃p + G̃vuu(n). (8)

Radcliffe and Gogate [37] demonstrated that theoretically, a perfect estimate of the tonal disturbance
at the virtual location can be achieved with this virtual sensing algorithm provided accurate models of the
tonal transfer functions are obtained in the preliminary identification stage. Using a three-dimensional
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Figure 4. Block diagram of the remote microphone technique.Algorithms2008, 1 7
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finite element model of a car cabin, the tonal control achieved at a number of virtual microphones gen-
erated with the remote microphone technique was equivalent to that achieved by directly minimising the
measured signals at the virtual locations.

Roure and Albarrazin [5] experimentally investigated the performance of the remote microphone
technique in a room simulating an aircraft cabin with periodic noise at 170 Hz. Using twelve virtual
microphones, six physical microphones and nine secondary sources, the remote microphone technique
achieved an average attenuation of 20 dB at the twelve virtual locations with a feedforward control
approach. However, 27 dB of attenuation was obtained by directly minimising the measured pressure at
the virtual locations. This disparity was attributed to the sensitivity of the remote microphone technique
to errors in the measured transfer functions. The performance of the remote microphone technique has
also been investigated in the control of broadband noise in an acoustic enclosure [34], road traffic noise
[38] and broadband acoustic duct noise [36].

The performance of the remote microphone technique has been experimentally compared to that of
the virtual microphone arrangement in a broadband primary sound field with 50 - 300 Hz frequency range
[39]. Using a feedforward control approach, the two virtual sensing algorithms were used to generate
a zone of quiet at a virtual location inside a three-dimensional enclosure using a physical microphone
located on the enclosure wall 25 cm from the virtual location. The results demonstrated that greater
attenuation is achieved at the virtual location with the remote microphone technique. The inferior per-
formance of the virtual microphone arrangement was again attributed to the invalid assumption of equal
primary sound pressure at the physical and virtual microphone locations.

2.4. The forward difference prediction technique

The forward difference prediction technique, as proposed by Cazzolato [6], fits a polynomial to the
signals from a number of physical microphones in an array. The pressure at the virtual location is
estimated by extrapolating this polynomial to the virtual location. This virtual sensing algorithm is
suitable for use in low frequency sound fields, when the virtual distance and the spacing between the
physical microphones is much less than a wavelength. At low frequencies, the spatial rate of change of
the sound pressure between the microphones is small and extrapolation can therefore be applied [6].
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Fig. 5 (a) shows the pressure at a virtual location, x, estimated by a first-order finite difference esti-
mate. Using Mp = 2 physical microphones, separated by a distance of 2h, the equation for the estimate
of the pressure at the virtual location using two microphone linear forward difference extrapolation is
given by [6]

ẽv(n) = ep2(n) +
ep2(n)− ep1(n)

2h
x. (9)

The pressure at a virtual location, x, can also be estimated by a second-order finite difference estimate,
as shown in Fig. 5 (b). Using Mp = 3 physical microphones, each separated by a distance of h, the
equation for the estimate of the pressure at the virtual location using three microphone quadratic forward
difference extrapolation is given by [6]

ẽv(n) =
x(x+ h)

2h2
ep1(n) +

x(x+ 2h)

h2
ep2(n) +

(x+ 2h)(x+ h)

2h2
ep3(n). (10)

Figure 5. Diagram of (a) two microphone linear forward difference extrapolation; and (b)
three microphone quadratic forward difference extrapolation. The black curved line repre-
sents the actual pressure field and the dashed line represents the pressure estimate.
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The forward difference prediction technique has several advantages over other virtual sensing algo-
rithms. Firstly, the assumption of equal primary sound pressure at the physical and virtual locations does
not have to be made, but also preliminary identification is not required, nor are FIR filters or similar to
model the complex transfer functions between the sensors and the sources. Furthermore, this is a fixed
gain prediction technique that is robust to physical system changes that may alter the complex transfer
functions between the error sensors and the control sources.

The performance of forward difference prediction virtual sensors has been evaluated in a long narrow
duct and in a free field, both numerically and experimentally, by a number of authors [40–47]. Using ei-
ther linear or quadratic prediction techniques, these virtual sensors outperform the physical microphones
in terms of the level of attenuation achieved at the virtual location. While the second-order estimate is
theoretically more accurate than the first-order estimate, real-time feedforward experiments in a narrow
duct demonstrated that quadratic prediction techniques are adversely affected by short wavelength ex-
traneous noise. It was also shown by Petersen [12], that the estimation problem is ill-conditioned for the
three sensor arrangement, explaining the difference between numerical and experimental results.

In an attempt to improve the prediction accuracy of the forward difference algorithm, higher-order
forward difference prediction virtual sensors which act to spatially filter out the extraneous noise were



Algorithms 2008, 1 77

developed [45, 48]. Additional physical microphones were added to the array resulting in a greater
number of microphones than system order. The microphone weights for this over constrained system
were then calculated using a least squares approximation.

The pressure at a virtual location, x, estimated by a first-order finite difference estimate using Mp = 3

physical microphones, each separated by a distance of h, is shown in Fig. 6 (a). The equation for
the estimate of the pressure at the virtual location using three microphone linear forward difference
extrapolation is given by [45]

ẽv(n) =
(−3x− h)

6h
ep1(n) +

1

3
ep2(n) +

(3x+ 5h)

6h
ep3(n). (11)

The pressure at a virtual location, x, estimated by a first-order finite difference estimate using Mp = 5

physical microphones, separated by a distance of h/2, is shown in Fig. 6 (b). The equation for the esti-
mate of the pressure at the virtual location using five microphone linear forward difference extrapolation
is given by [45]

ẽv(n) =
(−2x+ 3h)

5h
ep1(n) +

(−x+ 2h)

5h
ep2(n) +

1

5
ep3(n) +

x

5h
ep4(n) +

(2x− h)

5h
ep5(n). (12)

The pressure at a virtual location, x, estimated by a second-order finite difference estimate usingMp = 5

physical microphones, separated by a distance of h/2, is shown in Fig. 6 (c). The equation for the
estimate of the pressure at the virtual location using five microphone quadratic forward difference ex-
trapolation is given by [45]

ẽv(n) =
(20x2 − 54xh+ 31h2)

35h2
ep1(n) +

(−10x2 + 3xh+ 9h2)

35h2
ep2(n)

+
(−20x2 − 40xh− 31h2)

35h2
ep3(n) +

(−10x2 − 27xh− 5h2)

35h2
ep4(n)

+
(20x2 − 26xh+ 3h2)

35h2
ep5(n). (13)

In experiments, the accuracy of these higher-order forward difference prediction virtual sensors was
found to be adversely affected by sensitivity and phase mismatches and relative position errors between
microphone elements in the array [45]. Such phase mismatches and position errors are unavoidable when
a large number of physical microphones is used. It has also been demonstrated by Petersen [12], that the
estimation problem is ill-conditioned for higher-order forward difference extrapolation.

In an attempt to extend the zone of quiet achieved at the virtual location, Kestell [40] and Kestell et al.
[41–43] developed virtual energy density sensors using the forward difference prediction technique. An
estimate of the energy density at a virtual location, x, using two microphone linear forward difference
extrapolation, with the arrangement of physical microphones shown in Fig. 5 (a), is given by [40, 41]

ẼDv(n) =
1

4ρc2

[(
1 +

x

2h

)2

e2
p2(n)− x

h

(
1 +

x

2h

)
ep1(n)ep2(n) +

( x
2h

)2

e2
p1(n)

− 1

(2hk)2

(
e2
p2(n) + 2ep1(n)ep2(n) + e2

p1(n)
)]
, (14)

where k is the wavenumber. An estimate of the energy density at a virtual location, x, using three
microphone quadratic forward difference extrapolation, with the arrangement of physical microphones
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Figure 6. Diagram of (a) three microphone linear forward difference extrapolation; (b)
five microphone linear forward difference extrapolation; and (c) five microphone quadratic
forward difference extrapolation. The black curved line represents the actual pressure field
and the dashed line represents the pressure estimate.
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estimate.

extrapolation, with the arrangement of physical microphones shown in Fig. 5 (a), is given by [40, 41]

ẼDv(n) =
1

4ρc2
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1 +

x

2h

)2

e2
p2(n)− x

h

(
1 +

x

2h

)
ep1(n)ep2(n) +

( x

2h

)2

e2
p1(n)

− 1

(2hk)2

(
e2

p2(n) + 2ep1(n)ep2(n) + e2
p1(n)

)]
, (14)

wherek is the wavenumber. An estimate of the energy density at a virtual location,x, using three

microphone quadratic forward difference extrapolation, with the arrangement of physical microphones

shown in Fig. 5 (b), is given by [40, 41]

ẼDv(n) =
1

4ρc2

[(
x(x + h)

2h2
ep1(n) +

x(x + h)

h2
ep2(n)

+
(x + 2h)(x + h)

2h2
ep3(n)

)2

− 1

(k)2

(
(2x + h)

2h2
ep1(n)− (2x + 2h)

h2
ep2(n) +

(2x + h)

2h2
ep3(n)

)]
. (15)

The experimental results presented by Kestell et al. [43] onthe performance of forward difference

prediction virtual energy density sensors were inconclusive and it was later demonstrated by Cazzolato

et al. [49] that these results were most likely flawed.

shown in Fig. 5 (b), is given by [40, 41]

ẼDv(n) =
1

4ρc2

[(
x(x+ h)

2h2
ep1(n) +

x(x+ h)

h2
ep2(n)

+
(x+ 2h)(x+ h)

2h2
ep3(n)

)2

− 1

(k)2

(
(2x+ h)

2h2
ep1(n)− (2x+ 2h)

h2
ep2(n) +

(2x+ h)

2h2
ep3(n)

)]
. (15)

The experimental results presented by Kestell et al. [43] on the performance of forward difference
prediction virtual energy density sensors were inconclusive and it was later demonstrated by Cazzolato
et al. [49] that these results were most likely flawed.

2.5. The adaptive LMS virtual microphone technique

The adaptive LMS virtual microphone technique developed by Cazzolato [7] employs the adaptive
LMS algorithm [13] to adapt the weights of physical microphones in an array so that the weighted
summation of these signals minimises the mean square difference between the predicted pressure and
that measured by a microphone temporarily placed at the virtual location.

For the case of Mv = 1 virtual microphones, an estimate of the total disturbance at the virtual micro-
phone location, ẽv(n), is calculated as the sum of the weighted physical sensor signals at Mp physical



Algorithms 2008, 1 79

sensors in an array and this is given by

ẽv(n) =

Mp∑

i=1

wiepi(n) = wTep(n), (16)

where w is a vector containing the Mp physical error sensor weights,

w =
[
w1 w2 · · · wMp

]T

. (17)

The weights, w, are calculated in a preliminary identification stage by switching the primary source
off and exciting the secondary source with band-limited white noise [12]. A modified version of the
adaptive LMS algorithm is used to adapt the microphone weights. This algorithm can be used to find
the optimal solution for the weights that minimises the mean square difference between the predicted
sensor quantity, ỹv(n), and that measured by a physical sensor temporarily placed at the virtual location,
yv(n). A block diagram of the adaptive LMS virtual microphone technique used to estimate the physical
error sensor weights is shown in Fig. 7. As only a single temporal tap is used, the real valued weights
correspond to pure gain and are calculated using

w(n+ 1) = w(n) + 2µyp(n)ε(n), (18)

where µ is the convergence coefficient and ε(n) is the error term. This error term, ε(n), is defined
as the difference between the actual virtual secondary disturbance and the estimated virtual secondary
disturbance, given by

ε(n) = yv(n)− ỹv(n), (19)

where the estimated virtual secondary disturbance is given by

ỹv(n) = wTyp(n). (20)

Once the weights have converged, they are fixed and the temporary microphone is removed from the
virtual location.

Figure 7. Block diagram of the adaptive LMS algorithm used to calculate the physical sensor
weights.Algorithms2008, 1 12
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Figure 7. Block diagram of the adaptive LMS algorithm used to calculate the physical sensor weights.

to predict the pressure at the virtual location more accurately than the equivalent forward difference

prediction virtual sensor.

Petersen [12] investigated the performance of the adaptiveLMS virtual microphone technique in a

broadband sound field with a frequency range of50 − 500 Hz, in a long narrow duct. For an array

of Mp = 2, 3 and5 physical sensors, the overall estimation performance decreased with an increasing

distance between the physical sensor array and the virtual location, for all three configurations of physical

sensors. The best estimation performance is theoreticallyachieved with an array of five physical sensors,

however, this configuration was found to be ill-conditionedin experiments and a similar estimation

performance was achieved with all three physical sensor configurations.

Despite being calculated by exciting the secondary source only, the weights,w, in Eq. (18), are

applied to both the primary and secondary disturbances. It has thus been assumed that the weights are

optimal in the estimation of both disturbances. This however, may not always be true, especially in the

near field of the secondary source where the spatial properties of the primary and secondary sound fields

are very different [38]. As a result, Petersen [12] suggested that the optimal weights for the estimation of

both the primary and secondary disturbances should be foundseparately, with the adaptive LMS virtual

microphone technique being implemented as shown in Fig. 8.

As shown in Fig. 8, the virtual sensing algorithm separates the physical error signals into their primary

and secondary components using the vector of the physical secondary transfer functions̃Gpu. This vector

of FIR or IIR filters is estimated in the preliminary identification stage. The primary component of the

physical error signals is calculated as [12]

d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (21)

Once the primary and secondary weights have been estimated separately using Eq. (18), the pressure at

the virtual location is estimated, as shown in Fig. 8, using

ẽv(n) = d̃v + ỹv = wT
p d̃p(n) + wT

u ỹp(n), (22)

wherewp andwu are vectors containing theMp optimal physical primary and secondary weights and

d̃p(n) andỹp(n) are vectors containing estimates of the primary and secondary disturbances at theMp

physical sensor locations.
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A virtual sensing algorithm similar to the adaptive LMS virtual microphone technique was also pro-
posed by Gawron and Schaaf [50]. The performance of the adaptive LMS virtual microphone technique
has been investigated for tonal duct noise, both numerically and experimentally [7, 45, 51, 52]. The
adaptive virtual sensors were found to be unaffected by sensitivity mismatches and relative position er-
rors adversely affecting the forward difference prediction technique. The adaptive sensors were seen
to predict the pressure at the virtual location more accurately than the equivalent forward difference
prediction virtual sensor.

Petersen [12] investigated the performance of the adaptive LMS virtual microphone technique in a
broadband sound field with a frequency range of 50 − 500 Hz, in a long narrow duct. For an array
of Mp = 2, 3 and 5 physical sensors, the overall estimation performance decreased with an increasing
distance between the physical sensor array and the virtual location, for all three configurations of physical
sensors. The best estimation performance is theoretically achieved with an array of five physical sensors,
however, this configuration was found to be ill-conditioned in experiments and a similar estimation
performance was achieved with all three physical sensor configurations.

Despite being calculated by exciting the secondary source only, the weights, w, in Eq. (18), are
applied to both the primary and secondary disturbances. It has thus been assumed that the weights are
optimal in the estimation of both disturbances. This however, may not always be true, especially in the
near field of the secondary source where the spatial properties of the primary and secondary sound fields
are very different [38]. As a result, Petersen [12] suggested that the optimal weights for the estimation of
both the primary and secondary disturbances should be found separately, with the adaptive LMS virtual
microphone technique being implemented as shown in Fig. 8.

As shown in Fig. 8, the virtual sensing algorithm separates the physical error signals into their primary
and secondary components using the vector of the physical secondary transfer functions G̃pu. This vector
of FIR or IIR filters is estimated in the preliminary identification stage. The primary component of the
physical error signals is calculated as [12]

d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (21)

Once the primary and secondary weights have been estimated separately using Eq. (18), the pressure at
the virtual location is estimated, as shown in Fig. 8, using

ẽv(n) = d̃v + ỹv = wT
p d̃p(n) + wT

u ỹp(n), (22)

where wp and wu are vectors containing the Mp optimal physical primary and secondary weights and
d̃p(n) and ỹp(n) are vectors containing estimates of the primary and secondary disturbances at the Mp

physical sensor locations.

2.6. The Kalman filtering virtual sensing method

The Kalman filtering virtual sensing method [8] uses Kalman filtering theory to obtain estimates of
the error signals at the virtual locations. In this virtual sensing method, the active noise control system is
first modelled as a state space system whose outputs are the physical and virtual error signals. A Kalman
filter is formulated to compute estimates of the plant states and subsequently estimate the virtual error
signals using the physical error signals.
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Figure 8. Block diagram of the adaptive LMS virtual microphone technique [38].Algorithms2008, 1 13
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Figure 8. Block diagram of the adaptive LMS virtual microphone technique [38].

2.6. The Kalman filtering virtual sensing method

The Kalman filtering virtual sensing method [8] uses Kalman filtering theory to obtain estimates of

the error signals at the virtual locations. In this virtual sensing method, the active noise control system is

first modelled as a state space system whose outputs are the physical and virtual error signals. A Kalman

filter is formulated to compute estimates of the plant statesand subsequently estimate the virtual error

signals using the physical error signals.

The active noise control system plant is described by the following state space model [8, 12]

z(n + 1) = Az(n) + Buu(n) + Bss(n),

ep(n) = Cpz(n) + Dpuu(n) + Dpss(n) + vp(n), (23)

ev(n) = Cvz(n) + Dvuu(n) + Dvss(n) + vv(n),

wherez(n) are theN plant states,vp(n) are the physical measurement noise signals,vv(n) are the

virtual measurement noise signals ands(n) are theK primary disturbance signals. In the state space

model,A is the state matrix of sizeN × N in discrete form,Bu is the discrete secondary input matrix

of sizeN × L, Bs is the discrete primary input matrix of sizeN ×K, Cp is the discrete physical output

matrix of sizeMp × N , Cv is the discrete virtual output matrix of sizeMv × N , Dpu andDps are the

discrete physical feedforward matrices of sizeMp × L andMp × K respectively andDvu andDvs are

the discrete virtual feedforward matrices of sizeMv × L andMv × K respectively. Inclusion of the

measurement noise signals,vp(n) andvv(n), in the state space model account for measurement noise on

the microphones at the physical and virtual locations during the preliminary identification stage. Once

the preliminary identification stage is complete, the microphones temporarily positioned at the virtual

locations are removed.

Implementation of the Kalman filtering virtual sensing method is shown in the block diagram in Fig. 9

(a). In this figure, G is the generalised plant of the acousticsystem,G̃ is an estimate of the generalised

plant given by the state space model in Eq. (23) and K are the Kalman filter gains. This is a form of

the generalised control configuration with two sets of inputs and two sets of outputs [53], as shown in

Fig. 9 (b). The generalised control configuration with two sets of inputs and two sets of outputs [53] can

therefore be interpreted as a virtual sensor arrangement.

The covariance properties of the stochastic signalss(n), vp(n) andvv(n) are required when using

Kalman filtering theory to estimate the error signals at the virtual locations. These covariance proper-

ties and the state space model of the active noise control system plant are estimated during a preliminary

The active noise control system plant is described by the following state space model [8, 12]

z(n+ 1) = Az(n) + Buu(n) + Bss(n),

ep(n) = Cpz(n) + Dpuu(n) + Dpss(n) + vp(n), (23)

ev(n) = Cvz(n) + Dvuu(n) + Dvss(n) + vv(n),

where z(n) are the N plant states, vp(n) are the physical measurement noise signals, vv(n) are the
virtual measurement noise signals and s(n) are the K primary disturbance signals. In the state space
model, A is the state matrix of size N × N in discrete form, Bu is the discrete secondary input matrix
of size N × L, Bs is the discrete primary input matrix of size N ×K, Cp is the discrete physical output
matrix of size Mp × N , Cv is the discrete virtual output matrix of size Mv × N , Dpu and Dps are the
discrete physical feedforward matrices of size Mp × L and Mp ×K respectively and Dvu and Dvs are
the discrete virtual feedforward matrices of size Mv × L and Mv × K respectively. Inclusion of the
measurement noise signals, vp(n) and vv(n), in the state space model account for measurement noise on
the microphones at the physical and virtual locations during the preliminary identification stage. Once
the preliminary identification stage is complete, the microphones temporarily positioned at the virtual
locations are removed.

Implementation of the Kalman filtering virtual sensing method is shown in the block diagram in Fig. 9
(a). In this figure, G is the generalised plant of the acoustic system, G̃ is an estimate of the generalised
plant given by the state space model in Eq. (23) and K are the Kalman filter gains. This is a form of
the generalised control configuration with two sets of inputs and two sets of outputs [53], as shown in
Fig. 9 (b). The generalised control configuration with two sets of inputs and two sets of outputs [53] can
therefore be interpreted as a virtual sensor arrangement.

The covariance properties of the stochastic signals s(n), vp(n) and vv(n) are required when using
Kalman filtering theory to estimate the error signals at the virtual locations. These covariance proper-
ties and the state space model of the active noise control system plant are estimated during a preliminary
identification stage with microphones temporarily positioned at the virtual locations. The primary distur-
bance signals, s(n), the physical measurement noise signals, vp(n), and the virtual measurement noise
signals, vv(n), are all assumed to be zero mean white stationary random processes with the following
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Figure 9. Block diagram of (a) implementation of the Kalman filtering virtual sensing
method and (b) the generalised control configuration with two sets of inputs and two sets
of outputs [53].Algorithms2008, 1 14
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Figure 9. Block diagram of (a) implementation of the Kalman filtering virtual sensing method and (b)

the generalised control configuration with two sets of inputs and two sets of outputs [53].

identification stage with microphones temporarily positioned at the virtual locations. The primary distur-

bance signals,s(n), the physical measurement noise signals,vp(n), and the virtual measurement noise

signals,vv(n), are all assumed to be zero mean white stationary random processes with the following

covariance properties [8, 12]

E
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pv Rvs 0


 δnk, (24)

whereE[·] denotes the expectation operator,I is the identity matrix andδnk is the Kronecker delta

function.

The termBss(n) in Eq. (23) can be interpreted as process noise,w(n), and the combined influence

covariance properties [8, 12]
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Sps Rp Rpv 0

Svs RT
pv Rvs 0


 δnk, (24)

where E[·] denotes the expectation operator, I is the identity matrix and δnk is the Kronecker delta
function.

The term Bss(n) in Eq. (23) can be interpreted as process noise, w(n), and the combined influence
of the measurement noise signals and disturbance signals can be interpreted as an auxiliary measurement
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noise signal, v(n), where

w(n) = Bss(n), (25)

v(n) =

[
Dpss(n) + vp(n)

Dvss(n) + vv(n)

]
. (26)

Using these definitions, the following covariance matrix can be defined

E



[

w(n)

v(n)

][
w(k)

v(k)

]T

 =

[
Q̄s S̄T

s

S̄s R̄s

]
δnk. (27)

The covariance matrix Q̄s of the process noise w(n) is given by

Q̄s = BsB
T
s . (28)

The covariance matrix R̄s of the auxiliary measurement noise v(n) is given by

R̄s =

[
R̄p R̄pv

R̄T
pv R̄v

]

=

[
Rp + ST

psDps + DpsSps + DpsD
T
ps RT

pv + ST
psD

T
vs + DpsSvs + DpsD

T
vs

RT
pv + ST

vsD
T
ps + DvsSps + DvsD

T
ps Rv + ST

vsDvs + DvsSvs + DvsD
T
vs

]
. (29)

The covariance matrix S̄s between the process noise w(n) and the auxiliary measurement noise v(n) is
given by

S̄s =

[
S̄ps

S̄vs

]
=

[
DpsB

T
s + SpsB

T
s

DvsB
T
s + SvsB

T
s

]
. (30)

The virtual sensing algorithm in state space form, that estimates the virtual error signals ẽv(n|n),
given measurements of the physical error signals ep(i) up to i = n, is as follows [8, 12]

[
z̃(n+ 1|n)

ẽv(n|n)

]
=

[
A−KpsCp Bu −KpsDpu Kps

Cv −MvsCp Dvu −MvsDpu Mvs

]


z̃(n|n− 1)

u(n)

ep(n)


 , (31)

where Kps is the Kalman gain matrix and Mvs is the virtual innovation gain matrix. The Kalman gain
matrix and the virtual innovation gain matrix are found by

Kps = (APpsC
T
p + S̄ps)R

−1
pε , (32)

Mvs = (CvPpsC
T
p + R̄−1

pv )R−1
pε , (33)

with Pps = PT
ps, the unique solution to the discrete algebraic Riccati equation given by

Pps = APpsA
T − (APpsC

T
p + S̄ps)(CpPpsC

T
p + R̄p)

−1(APpsC
T
p + S̄ps)

T + Q̄s, (34)

where Rpε is the covariance matrix of the innovation signals εp(n) = ep(n)− ẽp(n|n− 1) given by

Rpε =
[
εp(n)εp(n)T

]
= CpPpsC

T
p + R̄p. (35)
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To implement the Kalman filtering virtual sensing method, the state space matrices A, Bu, Cp, Cv,
Dpu and Dvu of the state space model in Eq. (23) and the covariance matrices Q̄s, S̄ps, R̄p and R̄pv need
to be known [12]. Together, the state space model in Eq. (23) and covariance matrices describe the be-
haviour of the active noise control system and the covariance properties of the input signals. In practice,
the behaviour of the active noise control system can be estimated in a preliminary system identification
stage using subspace identification techniques [54]. Subspace identification techniques estimate a model
of the active noise control system in an innovations form [54]. Therefore, the Kalman filtering virtual
sensing method needs to be reformulated for practical implementation with an innovations model of the
active noise control system. The steps to practical implementation of the Kalman filtering virtual sensing
method using an innovations model of the active noise control system are as follows [12]

1. Temporarily locate physical sensors at the spatially fixed virtual locations and measure an input-
output data-set

{u(n),

[
ep(n)

ev(n)

]
}Nsn=1. (36)

2. Use subspace identification techniques [54] to estimate an innovations model of the physical and
virtual error signals

z̃(n+ 1|n) = Ãz̃(n|n− 1) + B̃uu(n) + K̃s

[
εp(n)Tεv(n)T

]T

ep(n) = C̃pz̃(n|n− 1) + D̃puu(n) + εp(n) (37)

ev(n) = C̃vz̃(n|n− 1) + D̃vuu(n) + εv(n),

and estimate the covariance matrix of the white innovation signals

R̃ε =

[
˜̄Rpε

˜̄Rpvε

˜̄RT
pvε

˜̄Rvε

]
. (38)

3. Implement the Kalman filtering virtual sensing method as

[
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]
=
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ep(n)


 , (39)

where the Kalman gain matrix K̃ps and the virtual innovation gain matrix M̃vs are calculated as
follows

K̃ps =

(
ÃXsC̃

T
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[
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pvε

])
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T
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−1, (40)

M̃vs = (C̃vXsC̃
T
p + ˜̄RT

pvε)(C̃pXsC̃
T
p + ˜̄Rpε)

−1, (41)

with Xs = XT
s > 0, the unique solution to the discrete algebraic Riccati equation given by

Xs = ÃXsÃ
T − K̃ps(C̃pXsC̃

T
p + ˜̄Rpε)

−1K̃T
ps + K̃sR̃εK̃

T
s . (42)
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The Kalman filtering virtual sensing method is optimal in its estimation of the virtual error signals
given a known or measured noise covariance. Also, instead of using a number of FIR or IIR filter
matrices to compute an estimate of the virtual error signals, one compact state space model is used. This
virtual sensing algorithm is also derived including measurement noise on the sensors [8]. The Kalman
filtering virtual sensing method is however, limited to use in systems of relatively low order.

The performance of this virtual sensing algorithm in generating a zone of quiet at a virtual micro-
phone 10 cm from a physical microphone has been investigated in real-time broadband feedforward
experiments conducted in an acoustic duct over a 50 - 500 Hz frequency range [8, 12]. The state space
model of the plant was first estimated using subspace model identification techniques [54] with a mi-
crophone temporarily placed at the virtual location. Combining this virtual sensing algorithm with the
filtered-x LMS algorithm [14] achieved an overall attenuation of 19.7 dB at the virtual location. This
is compared to an attenuation of 25.1 dB being achieved by directly minimising the error signal at the
virtual location. The 5.4 dB difference was attributed to the fact that the primary disturbances at the
physical and virtual locations were not completely causally related, which is a requirement in this virtual
sensing algorithm.

2.7. The stochastically optimal tonal diffuse field virtual sensing method

The stochastically optimal tonal diffuse field virtual sensing method generates stochastically optimal
virtual microphones and virtual energy density sensors specifically for use in pure tone diffuse sound
fields [9, 55]. Like the forward difference extrapolation technique, this virtual sensing method does
not require a preliminary identification stage nor models of the complex transfer functions between the
error sensors and the sources. It is worth noting that the stochastically optimal tonal diffuse field virtual
sensing method is analogous to a fixed gain feedforward control problem.

In this section, the primary and secondary acoustic fields are considered diffuse and different notation
will be adopted for convenience. The pressure at a position x in a single diffuse acoustic field is denoted
pi(x), and gi(x) denotes the x-axis component of the pressure gradient. In this section, the subscript
i refers to a single diffuse acoustic field, whereas a lack of subscript indicates the total acoustic field
produced by superposition of the primary and secondary diffuse acoustic fields.

For a displacement vector, r = rxi + ryj + rzk, the following functions are defined:

A(r) = sinc(k|r|), (43)

B(r) =
∂A(r)

∂rx

= −k
(

sinc(k|r|)− cos(k|r|)
k|r|

)(
rx
|r|

)
, (44)

(45)

C(r) =
∂2A(r)

∂r2
x

= −k2

[
sinc(k|r|)

(
rx
|r|

)2

+

(
sinc(k|r|)− cos(k|r|)

(k|r|)2

)(
1− 3

(
rx
|r|

)2
)]

, (46)
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where k is the wavenumber. The correlations between the pressures and pressure gradients at two differ-
ent points, xj and xk, separated by r, are given by [3]

〈pi(xj)p?i (xk)〉 = A(r) 〈|pi|2〉, (47)

〈pi(xj)g?i (xk)〉 = −B(r) 〈|pi|2〉, (48)

〈gi(xj)p?i (xk)〉 = B(r) 〈|pi|2〉, (49)

〈gi(xj)g?i (xk)〉 = −C(r) 〈|pi|2〉, (50)

where 〈·〉 denotes spatial averaging and ? indicates complex conjugation. In the case that xj and xk are
the same point, the limits of A(r), B(r) and C(r) as r→ 0 must be taken. If there are Mp sensors in the
field, each measuring pressure or pressure gradient, then define p as an Mp × 1 matrix whose elements
are the relevant pressures and pressure gradients measured by the sensors. The pressure and pressure
gradient at any point can be expressed as the weighted sum of the Mp components, each of which are
perfectly correlated with a corresponding element of p and a component which is perfectly uncorrelated
with each of the elements. Therefore, for each position x, p(x) and g(x) can be written as

p(x) = Hp(x)p + pu(x), (51)

g(x) = Hg(x)p + gu(x), (52)

where Hp(x) and Hg(x) are matrices of weights which are functions of the position x only and pu(x)

and gu(x) are perfectly uncorrelated with the elements of p. It can be shown, by postmultiplying the
expressions for p(x) and g(x) by pH and spatially averaging, that

Hp(x) = Lp(x)M−1, (53)

Hg(x) = Lg(x)M−1, (54)

where

Lp(x) =
〈pi(x)pH

i 〉
〈|pi|2〉

, (55)

Lg(x) =
〈gi(x)pH

i 〉
〈|pi|2〉

, (56)

M =
〈pipH

i 〉
〈|pi|2〉

. (57)

The aim here is to estimate the pressure and pressure gradient at a virtual location. In order to do this,
p(x) and g(x) must be estimated from the known quantities in p. The pressure and pressure gradient at
any point x are given by Eqs. (51) and (52). If only the measured quantities in p are known, then the best
possible estimates of pu(x) and gu(x) are zero, since they are perfectly uncorrelated with the measured
signals. Therefore the best estimates of pressure and pressure gradient at any point x are given by

p̃(x) = Hp(x)p, (58)

g̃(x) = Hg(x)p. (59)

Therefore, in a diffuse sound field, the pressure and pressure gradient at a virtual location can be esti-
mated using Eqs. (58) and (59). This requires matrix p whose elements are the relevant pressures and
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pressure gradients measured by the sensors and calculation of the weight matrices Hp(x) and Hg(x)

using matrices Lp(x), Lg(x) and M defined in Eqs. (55) - (57).
As the distance between the locations of the physical and virtual sensors increases, the estimates of the

virtual quantities approach zero. This is because the virtual and measured quantities become uncorrelated
as this distance increases. If none of the distances between the virtual location and the physical sensors
are small, then the pressure and pressure gradient at the virtual location will be uncorrelated with the
measured quantities and the best estimate of the pressure and pressure gradient at the virtual location
will be close to zero.

In a pure tone diffuse sound field, a perfect estimate of the pressure at the virtual location may be
obtained with the deterministic remote microphone technique [5] provided accurate measurement of
the transfer functions occurs in the preliminary identification stage. Although greater control can be
achieved with the remote microphone technique, the stochastically optimal tonal diffuse field virtual
sensing technique is much simpler to implement because it is a fixed scalar weighting method requiring
only sensor position information. Unlike the remote microphone technique, this virtual sensing method
is independent of the source or sensor locations within the sound field. The weight functions only need
to be updated if the geometric arrangement of physical and virtual locations change with respect to each
other.

The performance of the stochastically optimal tonal diffuse field virtual sensing method in generating
a zone of quiet at a virtual sensor a distance of 0.1λ from the physical sensor array has been investigated
theoretically and using experimentally measured data [9, 55]. Control at a virtual microphone, using the
measured pressure and pressure gradient at a point, achieved a maximum attenuation of 24 dB at the
virtual location and generated a 10 dB zone of quiet with a diameter of λ/10. This is the same sized zone
of quiet as that achieved by Elliott et al. [1], when minimising the measured pressure at the physical
sensor location with a single secondary source. Similar control performance was obtained using two
closely spaced physical microphones to estimate the pressure at the virtual location. Minimising the
pressure and pressure gradient at virtual location with two control sources, using the measured pressures
and pressure gradients at two points, achieved a maximum attenuation of 45 dB and extended the zone
of quiet to a diameter of λ/2. This is the same sized zone of quiet as that achieved by Elliot and Garcia-
Bonito [3], when minimising the measured pressure and pressure gradient with two control sources.
Similar control performance was also obtained using physical microphones at four closely spaced points
to estimate the pressure and pressure gradient at the virtual location.

3. Moving Virtual Sensing Algorithms

As it is most likely that the virtual location is not spatially fixed, moving virtual sensing algorithms
have been developed in recent years. These moving virtual sensing algorithms estimate the error signals
at a number of virtual locations that move through the sound field. A number of moving virtual sensing
algorithms have been developed including the remote moving microphone technique [10], the adaptive
LMS moving virtual microphone technique [11] and the Kalman filtering moving virtual sensing method
[12]. A discussion of these algorithms is presented as follows.
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3.1. The remote moving microphone technique

The remote moving microphone technique [10] uses the remote microphone technique [5] to obtain
estimates of the virtual error signals at the moving virtual locations. In this section it is assumed that
there are L secondary sources, Mp physical sensors and Mv moving virtual sensors. The time-variant
locations of the Mv moving virtual microphones are contained in matrix xv(n) of size 3 ×Mv, defined
as [12]

xv(n) =
[

xv1(n) xv2(n) ... xvMv(n)
]
, (60)

where each of the moving virtual locations, xvmv(n), are defined by three spatial co-ordinates with
respect to a reference frame and are given by

xvmv(n) =
[
xvmv(n) yvmv(n) zvmv(n)

]T

. (61)

It is assumed here that the Mv moving virtual locations, xv(n), are known at every time step. In practice,
the moving virtual locations could be measured using a 3D head tracking system based on camera vision
or on ultrasonic position sensing [12].

The remote moving microphone technique is used to compute estimates of the virtual error signals,
ẽv(n), at the moving virtual locations, xv(n). A block diagram of the remote moving virtual sensing
algorithm is given in Fig. 10. In this moving virtual sensing algorithm, the remote microphone technique
is first used to obtain estimates of the virtual error signals, ˜̄ev(n), at M̄v spatially fixed virtual microphone
locations, x̄v. It is assumed here that the moving virtual locations, xv(n), are confined to a three-
dimensional region and that the spatially fixed virtual microphone locations, x̄v, are therefore located
within this region. The vector of the M̄v spatially fixed virtual microphone locations is given by

x̄v =
[

x̄v1 x̄v2 ... x̄vM̄v

]
, (62)

where each of the spatially fixed virtual locations, x̄vm̄v , are defined by three spatial co-ordinates with
respect to a reference frame and are given by

x̄vm̄v =
[
x̄vm̄v ȳvm̄v z̄vm̄v

]T

. (63)

The virtual error signals, ˜̄ev(n), at the spatially fixed virtual locations, x̄v, are calculated using the
remote microphone technique as described in Section 2.2. The remote microphone technique requires a
preliminary identification stage in which the secondary transfer matrices, G̃pu of size Mp × L and G̃vu

of size M̄v × L, are modelled as matrices of FIR or IIR filters. The M̄v ×Mp sized matrix of primary
transfer functions at the spatially fixed virtual locations from the physical locations, M̃, is also estimated
as a matrix of FIR or IIR filters during this preliminary identification stage.

Estimates of the primary disturbances, d̃p(n), at the Mp physical error sensors are first calculated
using

d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (64)
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Figure 10. Block diagram of the remote moving microphone technique.
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d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (64)

Next, estimates of the primary disturbances,˜̄dv(n), at the spatially fixed virtual locations,̄xv, are ob-
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˜̄dv(n) = M̃d̃p(n). (65)
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the error signal at a fixed physical microphone atv = 0 m or a fixed virtual microphone atv = 0.02 m.

Moreau et al. [56] then extended the remote moving virtual microphone technique to generate a virtual

microphone capable of tracking the ear of a rotating artificial head inside a three-dimensional cavity. For

Next, estimates of the primary disturbances, ˜̄dv(n), at the spatially fixed virtual locations, x̄v, are ob-
tained using

˜̄dv(n) = M̃d̃p(n). (65)

Estimates, ˜̄ev(n), of the total virtual error signals at the spatially fixed virtual locations, x̄v, are calculated
as

˜̄ev(n) = ˜̄dv(n) + ˜̄yv(n) = M̃ep(n) + (G̃vu − M̃G̃pu)u(n). (66)

As shown in Fig. 10, estimates, ẽv(n), of the virtual error signals at the moving virtual locations, xv(n),
are now obtained by spatially interpolating the virtual error signals, ˜̄ev(n), at the spatially fixed virtual
locations, x̄v.

The performance of the remote moving microphone technique has been experimentally investigated
in an acoustic duct, at an acoustic resonance [10, 12]. In the acoustic duct, the virtual microphone moved
sinusoidally between a virtual distance of v = 0.02 m and 0.12 m with a period of 10 s. Minimising the
moving virtual error signal using a feedforward control approach achieved greater than 34 dB of attenua-
tion at the moving virtual location. This is 20 dB of attenuation greater than that achieved by minimising
the error signal at a fixed physical microphone at v = 0 m or a fixed virtual microphone at v = 0.02 m.
Moreau et al. [56] then extended the remote moving virtual microphone technique to generate a virtual
microphone capable of tracking the ear of a rotating artificial head inside a three-dimensional cavity. For
±45◦ head rotations with a period of 10 s, between 30 dB and 40 dB of attenuation was experimentally
achieved at the ear of the rotating artificial head at an acoustic resonance.

3.2. The adaptive LMS moving virtual microphone technique

The adaptive LMS moving virtual microphone technique [11] uses the adaptive LMS virtual micro-
phone technique [7] to obtain estimates of the virtual error signals at the moving virtual locations. The
adaptive LMS moving virtual microphone technique is used to compute estimates of the virtual error
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Figure 11. Block diagram of the adaptive LMS moving virtual microphone technique.
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signals, ẽv(n), at the moving virtual locations, xv(n). A block diagram of the adaptive LMS moving
virtual microphone technique is shown in Fig. 11.

In this moving virtual sensing algorithm, the adaptive LMS virtual microphone technique, as de-
scribed in Section 2.4, is first used to obtain estimates of the virtual error signals, ˜̄ev(n) at the spatially
fixed virtual locations, x̄v. As shown in Fig. 11, the primary component of the physical error signals is
first calculated using the matrix of physical secondary transfer functions G̃pu and is given as [12]

d̃p(n) = ep(n)− ỹp(n) = ep(n)− G̃puu(n). (67)

Matrices of the primary and secondary weights, w̄p and w̄u, of size Mp × M̄v, at the M̄v spatially fixed
virtual locations, x̄v, are then estimated separately using Eq. (18). Estimates, ˜̄ev(n), of the total virtual
error signals at the spatially fixed virtual locations, x̄v, can then be calculated as

˜̄ev(n) = ˜̄dv(n) + ˜̄yv(n) = w̄T
p d̃p(n) + w̄T

u ỹp(n). (68)

As shown in Fig. 11, estimates, ẽv(n), of the virtual error signals at the moving virtual locations, xv(n),
are now obtained by spatially interpolating the virtual error signals, ˜̄ev(n), at the spatially fixed virtual
locations, x̄v.

The performance of the adaptive LMS moving virtual microphone technique has also been experimen-
tally investigated in an acoustic duct at an acoustic resonance [11, 12]. Again, the virtual microphone
was moved sinusoidally between a virtual distance of v = 0.02 m and 0.12 m with a period of 10 s.
Experimental results demonstrated that minimising the moving virtual error signal using a feedforward
control approach achieves an additional 18 dB of attenuation at the moving virtual location compared to
minimising the error signal at a fixed physical microphone at v = 0 m or a fixed virtual microphone at
v = 0.02 m.

3.3. The Kalman filtering moving virtual sensing method

The Kalman filtering moving virtual sensing method [12] uses Kalman filtering theory to obtain esti-
mates of the virtual error signals at the moving virtual locations. The Kalman filtering virtual microphone
method as described in Section 2.6 is first used to obtain estimates of the virtual error signals, ˜̄ev(n), at
the spatially fixed virtual locations, x̄v. A state space realisation of the Kalman filtering virtual sens-
ing algorithm that estimates the virtual error signals ˜̄ev(n|n), given measurements of the physical error
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signals ep(i) up to i = n, is as follows [12]

[
z̃(n+ 1|n)

˜̄ev(n|n)

]
=

[
A−KpsCp Bu −KpsDpu Kps

C̄v −MvsCp D̄vu − M̄vsDpu M̄vs

]


z̃(n|n− 1)

u(n)

ep(n)


 , (69)

where C̄v and D̄vu are the state space matrices of the virtual secondary transfer path matrix ˜̄Gvu at the
spatially fixed virtual locations x̄v. The Kalman gain matrix Kps can be found using equation Eq. (32)
and the virtual innovation gain matrix M̄vs, of size M̄v ×Mp, is given by

M̄vs = (C̄vPpsC
T
p + R̄−1

pv )R−1
pε , (70)

with Pps = PT
ps, the unique stabilising solution to the discrete algebraic Riccati equation given in Eq.

(34). The covariance matrix between the auxiliary measurement noises on the physical sensors and
virtual sensors spatially fixed at x̄v, R̄pv, is defined as in Eq. (29).

Estimates, ẽv(n), of the virtual error signals at the moving virtual locations, xv(n), are now obtained
by spatially interpolating the virtual error signals, ˜̄ev(n), at the spatially fixed virtual locations, x̄v.

The performance of the Kalman filtering moving virtual sensing method has also been experimentally
investigated in an acoustic duct at an acoustic resonance [12]. Again, the virtual microphone moved
sinusoidally between a virtual distance of v = 0.02 m and 0.12 m with a period of 10 s. Experimental re-
sults demonstrated that minimising the moving virtual error signal using a feedforward control approach
achieves an additional 14 dB of attenuation at the moving virtual location compared to minimising the
error signal at a fixed physical microphone at v = 0 m or a fixed virtual microphone at v = 0.02 m. While
this moving virtual sensing algorithm achieves significant attenuation at the moving virtual location, it
is limited to use in systems of relatively low order such as an acoustic duct system.

4. Conclusion

This paper has reviewed virtual sensing algorithms for active noise control. A summary of the spa-
tially fixed and moving virtual sensing algorithms, including their characteristics, advantages and disad-
vantages, is given in Table 1.

Spatially fixed virtual sensing algorithms estimate the error signal at a spatially fixed location that is
remote from the physical error sensor. The virtual microphone arrangement [4] projects the zone of quiet
away from the physical microphone using the assumption of equal primary sound pressure at the phys-
ical and virtual locations. A preliminary identification stage is required in this virtual sensing method
in which models of the transfer functions between the secondary source and microphones located at the
physical and virtual locations are estimated. These secondary transfer functions, along with the often
invalid assumption of equal sound pressure at the physical and virtual locations, are used to obtain an
estimate of the error signal at the virtual location. The remote microphone technique [5] is an extension
to the virtual microphone arrangement that uses an additional filter to compute an estimate of the pri-
mary pressure at the virtual location using the primary pressure at the physical microphone location. In
theory, a perfect estimate of the tonal sound pressure may be achieved at the virtual location with the
remote microphone technique provided accurate models of the tonal transfer functions are obtained in
the preliminary identification stage.
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The forward difference prediction technique [6] is a fixed gain virtual sensing algorithm that fits a
polynomial to the signals from a number of physical microphones in an array. The pressure at the virtual
location is estimated by extrapolating this polynomial to the virtual location. This virtual sensing method
does not require a preliminary identification stage, nor are FIR filters or similar to model the complex
transfer functions between the sensors and the sources. The forward difference prediction virtual sensors
are, however, sensitive to phase and sensitivity mismatches and relative position errors between the
physical microphones in the array.

The adaptive LMS virtual microphone technique [7] employs the LMS algorithm to adapt the weights
of physical microphones in an array so that the weighted sum of these signals minimises the mean
square difference between the predicted pressure and that measured by a microphone placed at the virtual
location. The adaptive LMS virtual microphone technique can compensate for relative position errors
and sensitivity mismatches adversely affecting the forward difference prediction technique.

The Kalman filtering virtual sensing method [8] uses Kalman filtering theory to obtain an optimal
estimate of the error signal at the virtual location. In this virtual sensing method, the active noise control
system is modelled as a state space system whose outputs are the physical and virtual error signals.
The Kalman filtering virtual sensing method does not require a number of FIR or IIR filter matrices to
compute an estimate of the virtual error signals, instead a compact state space model is used. Also, this
virtual sensing algorithm is derived with measurement noise included on the sensors.

The stochastically optimal tonal diffuse field virtual sensing method generates stochastically optimal
virtual microphones and virtual energy density sensors specifically for use in pure tone diffuse sound
fields [9, 55]. Although a perfect estimate of the pressure at the virtual location may be obtained with the
remote microphone technique [5], the stochastically optimal tonal diffuse field virtual sensing technique
is much simpler to implement being a fixed scalar weighting method requiring only sensor position
information. This virtual sensing method is independent of the source or sensor locations within the
sound field and can compensate for changes in the sound field that may alter the transfer functions
between the sensors and the sources.

Moving virtual sensing algorithms generate a virtual microphone capable of tracking a virtual location
that is moving through the sound field. Three moving virtual sensing algorithms have been developed;
the remote moving virtual microphone technique [10], the adaptive LMS moving virtual microphone
technique [11] and the Kalman filtering moving virtual sensing method [12]. When combined with an
active noise control algorithm, these three moving virtual sensing algorithms were shown to achieve
greater attenuation at the moving virtual location than control at a fixed physical or virtual sensor.
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