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Abstract: In this paper we consider a basic clustering problem that has uses in bioinformat-
ics. A structural fragment is a sequence of ` points in a 3D space, where ` is a fixed natural
number. Two structural fragments f1 and f2 are equivalent if and only if f1 = f2 · R + τ

under some rotation R and translation τ . We consider the distance between two structural
fragments to be the sum of the squared Euclidean distance between all corresponding points
of the structural fragments. Given a set of n structural fragments, we consider the problem
of finding k (or fewer) structural fragments g1, g2, . . . , gk, so as to minimize the sum of the
distances between each of f1, f2, . . . , fn to its nearest structural fragment in g1, . . . , gk. In this
paper we show a polynomial-time approximation scheme (PTAS) for the problem through a
simple sampling strategy.

Keywords: Clustering 3D point sequences; squared Euclidean distance; algorithm;
polynomial-time approximation scheme.

1. Introduction

In this paper we consider the problem of clustering similar sequences of 3D points. Two such se-
quences of points are considered the same if they are equivalent under rotation and translation. The
scenario which we consider is as follows. Suppose there is an original sequence of points that gave rise
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to a few variations of itself, through slight changes in some or all of its points. Now given these varia-
tions of the sequence, we are to reconstruct the original sequence. A likely candidate for such an original
sequence would be a sequence which is “nearest” in terms of some distance measure, to the variations.

A more complicated scenario involves k original sequences of the same length. Formally, we for-
mulate the problem as follows. Given n sequences of points f1, f2, . . . , fn, we are to find a set of k

sequences g1, . . . , gk, such that the sum of distances
∑

1≤i≤n

min
1≤j≤k

dist(fi, gj) (1)

is minimized. In this paper we consider the case where dist is the minimum sum of squared Euclidean
distances between each of the points in the two sequences fi and gk, under all possible rigid transforma-
tions on the sequences of points. A cost function in the form of the squared Euclidean distance is used
in many techniques for clustering 3D points [1]. Since our clustering problem is quite different from
those previously studied, it calls for a new technique. (The “square” in the distance measure is to fulfill
a condition needed by the method in this paper. The method does not work, for example, in the case of
the root mean squared Euclidean distance. On the other hand, the method easily adapts to other distance
measures that fulfill the required condition.)

Such a problem has potential use in clustering protein structures. A protein structure is typically given
as a sequence of points in 3D space, and for various reasons, there are typically minor variations in their
measured structures. The problem can be considered a model of the situation where we have a set of
measurements of a few protein structures, and are to reconstruct the original structures.

In this paper, we show that there is a polynomial-time approximation scheme (PTAS) for the problem,
through a sampling strategy. More precisely, we show that an optimal solution obtained by sampling
smaller subsets of the input suffices to give us an approximate solution, and the approximation ratio
improves as we increase the size of the subsets we sample.

2. Preliminaries

Throughout this paper we let ` be a fixed non-zero natural number. A structural fragment is a sequence
of ` 3D-points. The mean square distance (MS) between two structural fragments f = (f [1], . . . , f [`])

and g = (g[1], . . . , g[`]), is defined to be

MS(f, g) = min
R∈R,τ∈T

∑̀
i=1

‖ f [i]− (R · g[i] + τ) ‖2 (2)

where R is the set of all rotation matrices, T the set of all translation vectors, and ‖ x − y ‖ is the
Euclidean distance between x, y ∈ R3.

The root of the MS measure, RMS(f, g) =
√

MS(f, g) is a measure that has been extensively
studied. Note that R ∈ R, τ ∈ T that minimize

∑`
i=1 ‖ f [i]− (R · g[i] + τ) ‖2 to give us MS(f, g) will

also give us RMS(f, g), and vice versa. Since given any f and g, there are closed form equations [2, 3]
for finding R and τ that give RMS(f, g), MS(f, g) can be computed efficiently for any f and g.

Furthermore, it is known that to minimize
∑`

i=1 ‖ f [i] − (R · g[i] + τ) ‖2, the centroid of f and g

must coincide [2]. Due to this, without loss of generality we assume that all structural fragments have
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centroids at the origin. Such transformations can be done in O(n`) time. After such transformations, in
computing MS(f, g), only the parameter R ∈ R need to be considered, that is,

MS(f, g) = min
R∈R

∑̀
i=1

‖ f [i]−R · g[i] ‖2 (3)

Suppose that given a set of n structural fragments f1, f2, . . . , fn, we are to find k structural fragments
g1, . . . , gk, such that each structural fragment fi is “near”, in terms of the MS, to at least one of the
structural fragments in g1, . . . , gk. We formulate such a problem as follows:

k-CONSENSUS STRUCTURAL FRAGMENTS PROBLEM UNDER MS

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the cost∑n
i=1 min1≤j≤k MS(fi, gj).

In this paper we will demonstrate that there is a PTAS for the problem.
We use the following notations: Cardinality of a set A is written |A|. For a set A and non-zero

natural number n, An denotes the set of all length n sequences of elements of A. Let elements in a
set A be indexed, say A = {f1, f2, . . . , fn}, then Am! denotes the set of all the length m sequences
fi1 , fi2 , . . . , fim , where 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n. For a sequence S, S(i) denotes the i-th element in
S, and |S| denotes its length.

3. PTAS for the k-Consensus Structural Fragments

The following lemma, from [4], is central to the method.

Lemma 1 ([4]) Let a1, a2, . . . , an be a sequence of real numbers and let r ∈ N , 1 ≤ r ≤ n. Then the
following equation holds:

1

nr

∑
1≤i1,i2,...,ir≤n

n∑
i=1

(
ai1 + ai2 + · · ·+ air

r
− ai)

2 =
r + 1

r

n∑
i=1

(
a1 + a2 + · · ·+ an

n
− ai)

2 (4)

Let P1 = (x1, y1, z1), P2 = (x2, y2, z2), . . . , Pn = (xn, yn, zn) be a sequence of 3D points.

1

nr

∑
1≤i1,i2,...,ir≤n

n∑
i=1

‖ Pi1 + Pi2 + · · ·+ Pir

r
− Pi ‖2

=
1

nr

∑
1≤i1,...,ir≤n

n∑
i=1

(
xi1 + . . . + xir

r
− xi)

2 + (
yi1 + . . . + yir

r
− yi)

2 + (
zi1 + . . . + zir

r
− zi)

2

=
r + 1

r

n∑
i=1

(
x1 + . . . + xn

n
− xi)

2 + (
y1 + . . . + zn

n
− zi)

2 + (
z1 + . . . + zn

n
− zi)

2

=
r + 1

r

n∑
i=1

‖ P1 + P2 + · · ·+ Pn

n
− Pi ‖2 (5)
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One can similarly extend the equation for structural fragments. Let f1, . . . , fn be n structural frag-
ments, the equation becomes:

1

nr

∑
1≤i1,...,ir≤n

n∑
i=1

‖ fi1 + · · ·+ fir

r
− fi ‖2=

r + 1

r

n∑
i=1

‖ f1 + · · ·+ fn

n
− fi ‖2 (6)

The equation says that there exists a sequence of r structural fragments fi1 , fi2 , . . . , fir such that

n∑
i=1

‖ fi1 + · · ·+ fir

r
− fi ‖2 ≤ r + 1

r

n∑
i=1

‖ f1 + · · ·+ fn

n
− fi ‖2 (7)

Our strategy uses this fact —in essentially the same way as in [4]— to approximate the optimal
solution for the k-consensus structural fragments problem. That is, by exhaustively sampling every
combination of k sequences, each of r elements from the space R′ × {f1, . . . , fn}, where f1, . . . , fn is
the input and R′ is a fixed selected set of rotations, which we next discuss.

3.1. Discretized Rotation Space

Any rotation can be represented by a normalized vector u and a rotation angle θ, where u is the axis
about which an object is rotated by θ. If we apply (u, θ) to a vector v, we obtain vector v̂, which is:

v̂ = u(v · u) + (v − w(v · w)) cos θ + (v × w) sin θ (8)

where · represents dot product, and × represent cross product.
By the equation, one can verify that a change of ε in u will result in a change of at most α1ε|v| in |v̂|

for some computable α1 ∈ R; and a change of ε in θ will result in a change of at most α2ε|v| in |v̂| for
some computable α2 ∈ R. Now any rotation along an axis through the origin can be written in the form
(θ1, θ2, θ3), where θ1, θ2, θ3 ∈ [0, 2π) are respectively a rotation along each of the x, y, z axes. Similarly,
changes of ε in θ1, θ2 and θ3 will result in a change of at most αε|v|, for some computable α ∈ R.

We discretize the values that each θi, 1 ≤ i ≤ 3 may take within the range [0, 2π) into a series of
angles of angular difference ϑ. There are hence at most O(1/ϑ) of such values for each θi, 1 ≤ i ≤ 3.
Let R′ denote the set of all possible discretized rotations (θ1, θ2, θ3). Note that |R′| is of order O(1/ϑ3).

Let d be the diameter of a ball that is able to encapsulate each of f1, f2, . . . , fn. Hence any distance
between two points among f1, . . . , fn is at most d. In this paper we assume d to be constant with
respect to the input size. Note that for a protein structure, d is of order O(`) [5]. For any b ∈ R, we
can choose ϑ so small that for any rotation R and any point p ∈ R3, there exists R′ ∈ R′ such that
‖ R · p−R′ · p ‖ ≤ αϑd ≤ b.

3.2. A Polynomial-time Algorithm With Cost ((1 + ε)Dopt + c)

Our algorithm for the k-consensus structural fragments problem is summarized in Table 1.
This is what the algorithm does: In (2), we explore m distinct subsets A1, . . . , Am from f1, . . . , fn, in

the hope that each subset is from a distinct cluster in the optimal clustering. Since we explore all possible
such subsets this is bound to happen. We then try to evaluate the score of each subset Aj by sampling up
to r structural fragments (allowing repeats) from it (from (2.1) onwards). Such an evaluation is possible
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due to Equation 7. The evaluation also requires us to exhaustively try out all possible transformations in
R′, which is what we try to do in (2.2). Each of these samplings of Aj produces a consensus structural
fragment uj for Aj in (2.3), the score of which is evaluated in (2.4). Finally in (3), we output the
consensus patterns u1, . . . , um which give us the best score.

We now analyze the runtime complexity of the algorithm. Consider the number of F1, F2, . . . , Fm in
(2.1) that are possible. Let each Fj be represented by a length r string of n+1 symbols, n of which each
represents one of f1, . . . , fn, while the remaining symbol represents “nothing”. It is clear that for any Aj ,
any Fj ∈ Ar!

j , or Fj ∈ A
|Aj |!
j (where |Aj| ≤ r), can be represented by one such string. Furthermore, any

F1, F2, . . . , Fm can be completely represented by k such strings — that is, to represent the case where
m < k, k −m strings can be set to “nothing” completely. From this, we can see that there are at most
(n + 1)rk = O(nrk) possible combinations of F1, F2, . . . , Fm.

For each of these combinations, there are |R′|rk possible combinations of Θ1, Θ2, . . . , Θm at (2.2),
hence resulting in O((n|R′|)rk) iterations to run for (2.3) to (2.5). Since (2.3) can be done in O(rk`),
(2.4) in O(nk|R′|`), and (2.5) in O(n) time, the algorithm completes in O(k`(r+n|R′|)(n|R′|)rk) time.

We argue that Dmin eventually is at most (r + 1)/r of the optimal solution plus a factor. Suppose the
optimal solution results in the m ≤ k disjoint clusters A1, A2, . . . , Am ⊆ {f1, . . . , fn}.

For each Aj , 1 ≤ j ≤ m, let uj be a structural fragment which minimizes
∑

f∈Aj
MS(uj, f). Fur-

Approximation Algorithm k-CONSENSUS STRUCTURAL FRAGMENTS

Input: structural fragments f1, . . . fn, natural numbers k < n and r ≥ 1.
Output: up to k structural fragments u1, . . . um, m ≤ k.

(1) Let Dmin = ∞, Consensus= ∅. (Consensus will contain the output.)
(2) For every possible set of m ≤ k disjoint sets A1, . . . , Am ⊆ {f1, . . . , fn}.
(2.1) For every possible set F1, F2, . . . , Fm of sequences where

Fj ∈ Ar!
j if |Aj| > r, otherwise

Fj is the (unique) sequence in A
|Aj |!
j that contains all the elements of Aj .

(Note that every distinct set of F1, . . ., Fm needs to be considered only once.)
(2.2) For every possible sequence Θ1, Θ2, . . . , Θm, where Θj ∈ R′|Fj | for 1 ≤ j ≤ m.
(2.3) For j = 1 to m, find uj , the average structural fragment

for Θj(1) · Fj(1),
Θj(2) · Fj(2),

...
Θj(|Fj|) · Fj(|Fj|).

(2.4) For i = 1 to n, find di = min{‖ uj −R · fi ‖2| 1 ≤ j ≤ m,R ∈ R′}.
(2.5) If

∑n
i=1 di < Dmin,

set Dmin to
∑

j dj and set Consensus to {u1, . . . , um}.
(3) Output Consensus.

Table 1. Polynomial-time algorithm for the problem.
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thermore, for each f ∈ Aj , let Rf be a rotation where

Rf ∈ arg min
R∈R

‖ uj −R · f ‖2 (9)

and let

Dj =
∑

f∈Aj

‖ uj −Rf · f ‖2 (Hence the optimal cost, D =
∑m

j=1 Dj .) (10)

By the property of the MS measure, it can be shown that uj is the average of {Rf · f | f ∈ Aj}. For
each Aj where |Aj| > r, by Equation 6,

1

|Aj|r
∑

Fj∈Ar
j

∑

f∈Aj

‖ RFj(1) · Fj(1) + · · ·+ RFj(r) · Fj(r)

r
−Rf · f ‖2 =

r + 1

r
Dj (11)

For each such Aj , let Fj ∈ Ar
j be such that

∑

f∈Aj

‖ RFj(1) · Fj(1) + · · ·+ RFj(r) · Fj(r)

r
−Rf · f ‖2 ≤ r + 1

r
Dj (12)

Without loss of generality assume that each Fj ∈ Ar!
j . Let

µj =





RFj(1)·Fj(1)+···+RFj(r)·Fj(r)

r
if |Aj| > r

RFj(1)·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | otherwise

(13)

Then we may write,

m∑
j=1

∑

f∈Aj

‖ µj −Rf · f ‖2 ≤ r + 1

r
D (14)

For each rotation Rf , let Rf be a closest rotation to Rf within R′. Also, let

µj =





RFj(1)·Fj(1)+···+RFj(r)·Fj(r)

r
if |Aj| > r

RFj(1)·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | otherwise

(15)

Since we exhaustively sample all possible Fj ∈ Ar!
j for all possible Aj and for all R ∈ R′, it is clear

that:

Dmin ≤
m∑

j=1

∑

f∈Aj

‖ µj −Rf · f ‖2 (16)
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We will now relate the LHS of Equation 14 with the RHS of Equation 16. The RHS of Equation 16 is

m∑
j=1

∑

f∈Aj

‖ µj −Rf · f ‖2

=
m∑

j=1

∑

f∈Aj

‖ µj + (µj − µj) + (Rf · f −Rf · f)−Rf · f ‖2

≤
m∑

j=1

∑

f∈Aj

(‖ µj −Rf · f ‖ +(‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖))2

=
m∑

j=1

∑

f∈Aj

‖ µj −Rf · f ‖2 +(‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖)2

+2 ‖ µj −Rf · f ‖ (‖ µj − µj ‖ + ‖ Rf · f −Rf · f ‖)

≤
m∑

j=1

∑

f∈Aj

‖ µj −Rf · f ‖2 + 8n`b (17)

Hence by Equation 14, Dmin is at most (r + 1)/r = 1 + 1/r of the optimal solution plus a factor
c = 8n`b. Let ε = 1/r,

Theorem 2 For any c, ε ∈ R, a ((1+ε)Dopt +c)-approximation solution for the k-consensus structural
fragments problem can be computed in

O(k`(
1

ε
+ n|R′|)(n|R′|) k

ε )

time.

The factor c in Theorem 2 is due to error introduced by the use of discretization in rotations. If we are
able to estimate a lower bound of Dopt, we can scale this error by refining the discretization such that c

is an arbitrarily small factor of Dopt. To do so, in the next section we show a lower bound to Dopt.

3.3. A Polynomial-time 4-approximation Algorithm

We now show a 4-approximation algorithm for the k-consensus structural fragments problem. We
first show the case for k = 1, and then generalizes the result to all k ≥ 2.

Let the input n structural fragments be f1, f2, . . ., fn. Let fa, 1 ≤ a ≤ n be the structural fragment
where ∑

1≤j≤n∧j 6=a

MS(fa, fj)

is minimized. Note that fa can be found in time O(n2`), since for any 1 ≤ i, j ≤ n, MS(fi, fj) (more
precisely, RMS(fi, fj)) can be computed in time O(`) using closed form equations from [3].

We argue that fa is a 4-approximation. Let the optimal structural fragment be fopt, the corresponding
distance Dopt, and let fb (1 ≤ b ≤ n) be the fragment where MS(fb, fopt) is minimized.

We first note that the cost of using fa as solution,
∑

i 6=a MS(fa, fi) ≤
∑

i6=b MS(fb, fi). To continue
we first establish the following claim.
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Claim 1 MS(f, f ′) ≤ 2(MS(f, f ′′) + MS(f ′′, f ′)).

PROOF. In [6], it is shown that

RMS(f, f ′) ≤ RMS(f, f ′′) + RMS(f ′′, f ′) (18)

Squaring both sides gives

MS(f, f ′) ≤ MS(f, f ′′) + MS(f ′′, f ′) + 2RMS(f, f ′′)RMS(f ′′, f ′) (19)

Since

2RMS(f, f ′′)RMS(f ′′, f ′) ≤ MS(f, f ′′) + MS(f ′′, f ′) (20)

we have MS(f, f ′) ≤ 2(MS(f, f ′′) + MS(f ′′, f ′)).

By the above claim,
∑

i6=b

MS(fb, fi) ≤ 2
∑

i6=b

(MS(fb, fopt) + MS(fopt, fi)) (21)

= 2
∑

i6=b

MS(fb, fopt) + 2
∑

i6=b

MS(fi, fopt) (22)

≤ 2
∑

i6=b

MS(fb, fopt) + 2Dopt (23)

≤ 2
∑

j 6=b

MS(fj, fopt) + 2Dopt (24)

≤ 2Dopt + 2Dopt = 4Dopt (25)

Hence
∑

i6=a MS(fa, fi) ≤ 4Dopt. We now extend this to k structural fragments.

4-Approximation Algorithm k-CONSENSUS STRUCTURAL FRAGMENTS

Input: structural fragments S = {f1, . . . fn}, natural number k < n.
Output: up to k structural fragments A.

(1) For every set A ⊆ S of up to k structural fragments, do
(2) Compute cost(A) =

∑
f∈S−A minf ′∈A MS(f, f ′)

(3) Output A with the least cost(A).

We first pre-compute MS(f, f ′) for every pair of f, f ′ ∈ S, which takes time O(n2`). Then, at
step (1), there are at most O(nk) combinations of A, each which takes O(nk) time to compute at step
(2). Hence in total we can perform the computation in O(n2` + knk+1) time. To see that the solution
is a 4-approximation, let S1, S2, . . . , Sm where m ≤ k be an optimal clustering. Then, by our earlier
argument, there exists fi1 ∈ S1, fi2 ∈ S2, . . ., fim ∈ Sm such that each fix is a 4-approximation for Sx,
and hence fi1 , fi2 , . . . , fim is a 4-approximation for the k-consensus structural fragments problem. Since
the algorithm exhaustively search for every combination of up to k fragments, it gives a solution at least
as good as fi1 , fi2 . . . , fim , and hence is a 4-approximation algorithm.

Theorem 3 A 4-approximation solution for the k-consensus structural fragments problem can be com-
puted in O(n2` + knk+1) time.
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3.4. A (1 + ε) Polynomial-time Approximation Scheme

Recall that the algorithm in Section 3.2 has cost D ≤ (1 + ε)Dopt + 8n`b where b = αϑd. From
Section 3.3 we have a lower bound Dopt of Dopt. We want 8n`b ≤ εDopt ≤ εDopt. To do so, it suffices
that we set ϑ ≤ εDopt/(8n`αd). This results in an |R′| of order O(1/ϑ3) = O((n`d)3). Substituting this
in Theorem 2, and combining with Theorem 3, we get the following.

Theorem 4 For any ε ∈ R, a ((1 + ε)Dopt)-approximation solution for the k-consensus structural
fragments problem can be computed in

O(n2` + knk+1 + k`(
2

ε
+ nλ)(nλ)

2k
ε )

time, where λ = (n`d)3.

4. Discussions

The method in this paper depends on Lemma 1. For this reason, the technique does not extend to the
problem under distance measures where Lemma 1 cannot be applied, for example, the RMS measure.
However, should Lemma 1 apply to a distance measure, it should be easy to adapt the method here to
solve the problem for that distance measure.

One can also formulate variations of the k-consensus structural fragments problem. For example,

k-CLOSEST STRUCTURAL FRAGMENTS PROBLEM UNDER MS

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the threshold
max1≤i≤n min1≤j≤k MS(fi, gj).

While the cost function of the k-consensus structural fragments problem resembles that of the k-
means problem, the cost function of the k-closest structural fragments resembles that of the (absolute)
k-center problem. One interesting problem for future study is whether this problem has a PTAS or not.
It is not clear how to generalize the technique employed in this paper to k-closest structural fragments
problem under MS.
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