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Abstract: The electrochemical behavior of mild steel in bicarbonate solution at different dissolved
oxygen (DO) concentrations and immersion times has been studied under dynamic conditions using
electrochemical techniques. The results show that both DO and immersion times influence the
morphology of the corrosion products. In comparative tests, the corrosion rate was systematically
found to be lower in solutions with lower DO, lower HCO3

− concentrations and longer immersion
time. The SEM analyses reveal that the iron dissolution rate was more severe in solutions containing
higher DO. The decrease in corrosion rate can be attributed to the formation of a passive layer
containing mainly α-FeO (OH) and (γ-Fe2O3/Fe3O4) as confirmed by the X-ray diffractometry (XRD)
and X-ray photoelectron spectroscopy (XPS). Passivation of mild steel is evident in electrochemical
test at ≈ −600 mVSCE at pH ≥8 in dearated (≤0.8 ppm DO) chloride bicarbonate solution under
dynamic conditions.
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1. Introduction

Bicarbonate plays a major role in the dissolution reactions of steel pipelines [1]. Studies indicate
that increasing HCO3

− concentration exacerbates iron dissolution [2–4]. To date, the role of bicarbonate
ions in the corrosion process of carbon steel is still debated [5] Moreno et al. [6] confirmed that high
bicarbonate increased localized corrosion contributing to stress corrosion cracking [7,8] and pitting
corrosion [9] in carbon steel pipelines. Thomas and Davies [10] reported that bicarbonate ions reduce
the passive-active (Flade) potential for ferric oxides, while increasing the passive-active transition
potential for magnetite with increasing HCO3

− concentration when the concentration is greater than
10−2 M. However, some researchers argued that a stable-film formation (passivity) can be achieved
when a sufficient amount of bicarbonate is present [11–13]. The formation and stability of such
passive films depends to a large extent on environmental conditions, such as; applied potential,
pH, oxygen, solution chemistry, temperature, fluid flow rate, immersion time and metallurgy of the
steel [14–16]. Bicarbonate-induced corrosion is potentially relevant in many applications, such as
wellbore systems for geological sequestration of CO2 [17]. Intergranular stress corrosion cracking
(IGSCC) in underground pipelines at potential range (≈−0.625 VSCE to ≈−0.425 VSCE) has been
linked with the presence HCO3− and CO3

2− ions at pH (8–10.5) [18]. Delanty and O’Beirne [19] cited
a Canadian investigation that revealed that stress corrosion cracking (SCC) in carbon steel X65 was
more severe in oxygen restricted areas, presumably because oxygen reduction prevents hydrogen
evolution which is thought to facilitate cracking. In contrast, Yunovich et al. reported that SCC
susceptibility of API X52 carbon steel was higher in an aerated conditions than in deaerated solution
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at pH 8 and 10 [18]. Dissolved oxygen has been shown to increase corrosion rates [20–24] as expected
however, Beckett et al. and Sarin et al. [25,26] claimed it decreased with higher DO under stagnant
conditions. Dissolved oxygen is an electron acceptor in the corrosion of iron as well as oxidation of
ferrous iron [27]:

Fe + 1/2 O2 + H2O↔ Fe2+ + 2OH− (1)

Fe2+ + 1/4 O2 + 1/2 H2O + 2OH−↔ Fe(OH)3 (s) (2)

Kuch [28] reported that in the absence of oxygen, it is possible for ferric scale γ-FeOOH
(lepidocrosite) previously formed on the metal surface to act as an electron acceptor:

Fe + 2FeOOH (scale) + 2H+↔ 3Fe2+ + 4OH (3)

The corrosion process continues even after DO is depleted according to the Kuch mechanism.
However, in the absence of lepidocrosite in the scale, the corrosion reaction still proceeds in deaerated
water as reported elsewhere [26], indicating that in a near-neutral pH environment, the Kuch
mechanism is not the only mechanism of metal loss in deaerated conditions. Baek et al. [29] concluded
that DO facilitates the formation of different iron oxide products. For example, FeOOH and γ-Fe2O3

were formed at high DO concentrations whereas α-Fe2O3 was formed in deaerated solution at a more
positive potential. The influence of dissolved oxygen and immersion time in the corrosion process
of mild steel in a near-neutral pH in corrosive media remains controversial. Here, we present
an investigation of the corrosion behaviour of mild steel in chloride-containing bicarbonate solutions of
varied DO and immersion time in near-neutral pH, under dynamic conditions at moderate temperature
(23 ± 1 ◦C). Potentiodynamic polarization and electrochemical impedance spectroscopy were used to
study the corrosion processes for the electrochemical tests. By incorporating a range of surface analysis
techniques, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), we were able
to characterize the chemistry and morphology of the corrosion products.

2. Results and Discussion

2.1. Bicarbonate Concentration

Figure 1 shows the polarization profile for mild steel in 1 g/L and 5 g/L bicarbonate with 2 g/L
chloride concentration under dynamic conditions. Bicarbonate has a distinct effect on the polarization
characteristics in bicarbonate/chloride solution. The dissolution in the active and prepassive region
is accelerated by the presence of bicarbonate ions due to the formation of soluble complex anion
Fe(CO3)2

2− [3]. At≈−600 mVSCE, Fe(OH)2 is converted to Fe3O4 [29] in dearated bicarbonate solution,
resulting in passivation. At this potential (≈−600 mVSCE), Fe2O3/Fe3O4 forms an oxide film at
pH ≥ 8,. The anodic polarization current was greater with 5 g/L bicarbonate solution at corrosion
potential ≈−600 mVSCE. However, above this potential, the dissolution decreased with increasing
bicarbonate concentration.

The impedance spectra were obtained from a rotating disc electrode (specimen) immersed in
solutions containing 1 g/L and 5 g/L bicarbonate in chhloride solution. The data was fit with
equivalent circuit shown in Figure 2, and shows a good fit to the data and represents the physical
situation expected [30,31], where Rs, Rct, Ra, Qdl and Qf represent the solution resistance, charge
transfer resistance (metal/film interface), adsorption resistance (solution/film interface), double layer
capacitance and passive film capacitance, respectively. A constant phase element (CPE) defined by
the values of n and Q, is commonly used to compensate for inhomogeneity of electrode surface.
The impedance Z, of the constance phase element as given in [32]:

ZCPE = Q−1(jω)−n, (4)
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where Q and n are constant and exponent, respectively, j = (
√
−1) and ω = 2π f is the angular frequency

in rad/s calculated using f, the frequency in Hz. At low frequency, the impedance and phase angle
describe the kinetic response for the charge transfer activity, while at high frequency they depend on
surface layer inhomogeneity [33].
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Figure 1. Potentiodynamic polarization for mild steel in 1 g/L and 5 g/L bicarbonate/chloride
solutions at 2000 rpm.
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Figure 2. Equivalent circuit for impedance measurements.

Figure 3a,b show the Nyquist and Bode-phase plots measured for specimens in 1 g/L and 5 g/L
bicarbonate/ chloride solutions. The impedance spectra show similar trends, although the capacitive
loop was depressed with higher bicarbonate concentration. The decrease in the impedance spectra is
linked to iron dissolution which contributes to uneven surface roughness and irregular distribution
of current density on the specimen surface. The Bode impedance plots in Figure 3b show that at
low frequencies, the impedance is slightly lower with higher bicarbonate concentration. The lower
bicarbonate concentration exhibits higher impedance in the capacitive region, which implies that
a more protective oxide layer is achieved in low concentration bicarbonate. For this lower concentration
solution, the phase angle (θ) is higher at low frequencies compared to solution with higher bicarbonate,
indicating a more resistive barrier film layer at lower concentration. The cross-sections of the corrosion
products shown in Figure 4 reveal that a more uniform corrosion product was formed in 1 g/L
bicarbonate in comparison with 5 g/L bicarbonate solution.
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Figure 3. Impedance spectra for mild steel in bicarbonate chloride solution: (a) Nyquist plots and
(b) Bode phase angle and impedance magnitude vs. frequency plots.
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Figure 4. Cross-section of the scale formed at (a) 1 g/L (b) 5 g/L sodium bicarbonate/chloride solution
at 2000 rpm.

2.2. Dissolved Oxygen

Dissolved oxygen concentration decreases with nitrogen purging time. In the present experiments,
the nitrogen purging also led to a corresponding decrease in temperature as depicted in Figure 5.
The test solution temperature was ≈24 ◦C at 0 h purging, with DO ≈ 4 ppm. The DO decreased
significantly to≈0.8 ppm after 3 h, at which point the temperature decreased to≈18.6 ◦C. The decrease
in temperature with purging time was due to the cooling effect of the cooler nitrogen gas.
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Figure 5. Dissolved oxygen (DO) concentration and temperature as a function of N2 purging time.
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Figure 6 shows the polarization curves of mild steel in bicarbonate/chloride solution in different
DO concentrations at 2000 rpm. The anodic polarization increased without any retardation at a DO
concentration of 4 ppm, whereas one anodic peak appeared in solutions containing 1 ppm and
0.8 ppm DO. The anodic polarization current increases with corrosion potentials below ≈−600 mVSCE,
indicating iron dissolution while at potentials greater than≈−600 mVSCE, the anodic current decreases
indicating some form of passivation. A potential cause of this behaviour would be as a result
of corrosion products. For example, Fe(OH)2 formed on the specimen surface, according to the
following reaction:

Fe + 2H2O→ Fe(OH)2 + 2H+ + 2e−. (5)

Fe(OH)2 forms a defective hydrous film barrier layer between the specimen and the solution,
and consequently retards the anodic current density [34,35]. The corrosion current density decreased
with decreasing DO concentration from 201.5 µA·cm−2 to 22.3 µA·cm−2 at 4 ppm and 0.8 ppm,
respectively, as shown in Table 1. This indicates that a more compact and stable oxide film was
formed at ≈−600 mVSCE at lower DO. The increase in anodic polarisation current with decreasing
DO at a more noble potential could be attributed to the solubility of corrosion product as temperature
decreases due to the cooling effect of N2 gas and insufficient oxidation at the steel surface to form
oxide film other than through the Kuch mechanism.
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Figure 6. Potentiodynamic polarization of mild steel in 5 g/L sodium bicarbonate /chloride solution
in different dissolved oxygen concentrations at 2000 rpm.

Table 1. Polarization parameters for mild steel in 5 g/L bicarbonate/chloride solution in different
dissolved oxygen concentrations.

DO (ppm) Icorr (µA·cm−2) Ecorr (mV) ba (mV·dec−1) −bc (mV·dec−1)

0.8 22.28 −767.5 163.0 302.9
1 25.24 −780.6 138.5 222.9
4 201.52 −369.2 243.5 240.3

Figure 7a,b show the Nyquist and Bode-phase angle plots for different DO concentrations in
bicarbonate/chloride solution. The impedance semi-circle increases with decreasing DO, which implies
that decreasing DO facilitates the formation of a more stable oxide layer at the steel surface. A similar
trend can be seen in the Bode impedance magnitude spectra (Figure 7b), where the impedance increases
with decreasing DO concentrations at low frequencies. The phase angle shows a higher peak as DO
concentration decreases. A higher phase angle value at low frequency indicates a higher surface
resistance at the steel. The increase in Rct and a decrease in Qdl with increasing DO from 1015 Ω·cm2

at 0.8 ppm to 104.7 Ω·cm2 at 4 ppm as shown in Table 2 can be attributed to oxide film formation.
The film resistance (Ra) increases significantly with decreasing DO concentration, suggesting that the
corrosion product at the steel surface is more dense and protective at a relatively low DO as shown in
Figure 8.
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Table 2. Impedance parameters for mild steel in bicarbonate/chloride solution in different dissolved
oxygen concentrations.

DO (ppm) Rs (Ω·cm2) Rct (Ω·cm2) Qdl (F·cm−2) n Ra (Ω·cm2) Qa (F·cm−2)

0.8 46.3 1015 1.76 × 10−3 0.77 440.04 5.9 × 10−4

1 53.8 874.7 1.18 × 10−3 0.66 90.49 1.39 × 10−3

4 63.5 104.7 6.88 × 10−3 0.59 33.04 3.75 × 10−3
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Figure 7. Impedance spectra for mild steel in 5 g/L bicarbonate/chloride solution in different dissolved
oxygen concentration at 2000 rpm (a) Nyquist impedance plots (b) Bode and phase angle plots.
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Figure 8. Cross-section of the scale formed at in 5 g/L bicarbonate/chloride solution for (a) 4 ppm
(b) 1 ppm (c) 0.8 ppm dissolved oxygen at 2000 rpm.
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2.3. Immersion Time

Figure 9 contains polarization curves showing the effect of immersion time on mild steel in
bicarbonate/chloride solution at 0.8 ppm DO under dynamic conditions (2000 rpm) rotation speeds.
The polarisation curves show that immersion time has a marked effect on anodic and cathodic
polarization current. However, the effect was more apparent at corrosion potentials between (−250 and
+ 250 mVSCE), where anodic potential current decreased with immersion time. The curve for each
immersion time contains one anodic peak and, as expected, corrosion products on the steel surface
become thicker and more compact with immersion time. Siderite can form in relatively low flow
velocities at pH > 5, and the film thickness increases with time [16]. The passivation potential range
becomes broader with increasing immersion time, with the pitting breakdown potential Eb increasing
from ≈−355 mVSCE at 2 h to ≈−229 mVSCE after 8 h immersion time as shown in Table 3.
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Figure 9. Potentiodynamic polarization for mild steel in 5 g/L bicarbonate/chloride solution at
different immersion times at 2000 rpm.

Table 3. Polarization parameters for mild steel in 5 g/L bicarbonate/chloride solution for different
immersion times at 2000 rpm.

Immersion Time (h) Icorr (µA·cm−2) Eb (mV) Ecorr (mV) ba (mV·dec−1) −bc (mV·dec−1)

2 22.28 −355.0 −767.5 163.0 302.9
4 8.98 −292.3 −820.4 126.6 138.0
8 6.04 −229.1 −833.9 145.6 134.8

Figure 10 shows the Nyquist plots and Bode phase angle plots of mild steel in bicarbonate/chloride
solution at 0.8 ppm DO at different immersion times at 2000 rpm. The Nyquist plots in Figure 10a show
that the diameter of the semi-circle increases with immersion time, which implies that the steel surface
resistance improves with immersion time. The result is consistent with more corrosion product being
deposited on the the steel surface, and forming a relatively inert surface barrier at the steel–solution
interface. The charge transfer resistance (Rct) increased from 1015 Ω·cm2 to 2700 Ω·cm2 in going from
2 h to 8 h immersion time as shown in Table 4, presumably as a result of deterioration of the oxide film
on the steel surface. A similar result was reported in our previous work [31]. The Bode impedance
magnitude plots show similar trends. The impedance magnitude and the phase angle increase with
immersion time as evident in Bode plots at low frequencies as shown in Figure 10b, implying that the
corrosion product at the steel surface becomes denser and more protective with immersion time, as
is evident in Figure 11. It would therefore be expected that metal dissolution would be retarded, in
agreement with the data obtained from polarization curves.
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Table 4. Impedance parameters for mild steel in bicarbonate/chloride solution for different
immersion times.

Immersion Time (h) Rs (Ω·cm2) Rct (Ω·cm2) Qdl (F·cm−2) n Ra (Ω·cm2) Qa (F·cm−2)

2 46.3 1015 1.76 × 10−3 0.77 440.04 5.9 × 10−4

4 30.5 1370 1.65 × 10−3 1 804.0 5.04 × 10−4

8 41.6 2700 7.28 × 10−4 0.82 618.6 5.83 × 10−4
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Figure 10. Impedance spectra for mild steel in 5 g/L bicarbonate/chloride solution at different
immersion times at 2000 rpm (a) Nyquist impedance plots (b) Bode and phase angle plots.
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Figure 11. Cross-section of the scale formed in 5 g/L sodium bicarbonate/chloride solution at 2000 rpm
after (a) 2 h (b) 4 h and (c) 8 h immersion times.
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2.4. Surface Analysis

Figure 12 shows scanning electron micrographs obtained from the surfaces of samples immersed
in 1 g/L and 5 g/L bicarbonate chloride solutions at 2000 rpm. The SEM results show that pits with
relatively small diameters of a few microns were predominant with specimen in low bicarbonate
concentration. The density of pits decreased in the sample exposed to 5 g/L bicarbonate solution, but
the pits became much larger both in depth and width. Figure 13a–c show the surface morphologies
of specimens after corrosion tests in bicarbonate/chloride solution at different dissolved oxygen
(DO) concentrations. The micrographs revealed that the corrosion damage decreases with decreasing
dissolved oxygen due to more tenacious oxide film on the steel–solution interface, as shown in
Figure 13c for solution containing 0.8 ppm DO. Our cross-sectional images (Figure 11) show that the
oxide film thickness increases with immersion time, the film morphology also varies with immersion
time as shown in Figure 14 providing a barrier layer at the metal–solution interface, and as a result
the surface damage also decreases, ranging from pitting corrosion to general corrosion, as shownin
Figure 15.
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The corrosion pit density and pit depth in specimens immersed in 1 g/L and 5 g/L bicarbonate
were further studied using Leica optical microscopy. The results show that the corrosion pit density
decreases while the depth increases with bicarbonate concentration. The pit depth increases from
≈−8 µm to ≈−60 µm for 1 g/L and 5 g/L, respctively, as shown in Figure 16.
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Figure 16. Topography profile and 3D image of pit affected area: (a–c) 1 g/L and (d–f) 5 g/L
bicarbonate/chloride solution.

The corrosion pit density and pit depth in specimens immersed in 1 g/L and 5 g/L bicarbonate
were further studied using Leica optical microscopy. The results show that the corrosion pit density
decreases while the depth increases with bicarbonate concentration [36]. The pit depth increases from
≈8 µm to ≈60 µm for 1 g/L and 5 g/L, respctively, as shown in Figure 16. The dissolution of iron is
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accelerated in the presence of bicarbonate owing to the formation of the stable soluble complex anion
Fe (CO3)2

2− as reported in [3]. As more corrosion product is formed at the metal surface, galvanic
couples could occur between steel surfaces covered with corrosion products (cathode) and uncovered
active site (anode). This unstable thermodynamic condition accelerates the initiation and propagation
of localized corrosion as shown in Figure 17.
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Figure 17. Schematic mechanism of bicarbonate concentration effect: (a,b) 5 g/L NaHCO3 (c,d) 1 g/L
NaHCO3 concentration.

2.5. XRD Analyses

Figure 18 shows the XRD patterns for specimens immersed in bicarbonate chloride containing
solution at 2000 rpm. Figure 18a–c show the peak patterns for unimmersed and immersed specimens
in different bicarbonate concentrations. The elemental composition of the corrosion products tested
under different bicarbonate concentrations show similarities in their chemical composition. However,
the XRD patterns in Figure 18b indicate diffraction peaks of mainly Fe (iron) (44.3%) and a single peak
for β-FeO(OH) (akaganeite) (16.32%) and γ-FeO(OH) (lepidocrocite) (39.34%), in contrast to the peak
patterns in Figure 18c, with multiple peaks of both (α-FeO(OH) goethite (58.16%) and β-FeO(OH)
(akaganeite) (6.20%). The multiple peaks could probably be due to the density of the corrosion
products on the steel surface. The formation of akaganeite confirms the presence of chloride ions in
the corrosion products [31,37]. The relatively high amount of akaganeite in the specimen immersed in
1 g·L−1 bicarbonate/chloride solution implies that the corrosion product contains more chloride ions.
Figure 18d,e show the XRD peak patterns for specimens immersed in 5 g·L−1 bicarbonate/chloride
containing different dissolved oxygen concentrations. Goethite (α-FeO(OH)), siderite FeCO3 and
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maghemite (γ-Fe2O3) were formed at each DO concentration. However, more siderite FeCO3 and
maghemite (γ-Fe2O3) peaks are evident as DO decreases, as shown in Figure 18e.Materials 2016, 9, 748 13 of 18 
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Figure 18. XRD analysis of corrosion products of mild steel in bicarbonate solutions containing chloride
at 2000 rpm: (a) unimmersed (b) 1 g/L and (c) 5 g/L bicarbonate (d) 4 ppm (e) 1 ppm.

2.6. XPS Analyses

Prior to XPS measurements, samples were sputtered for 60 min using 2 keV Ar+ ions to remove
adsorbed surface contamination and reveal the underlying chemistry in more detail. Argon sputtering
is known to convert FeCO3 to FeO [38], and, correspondingly, we did not observe FeCO3, which can be
identified from its high-binding-energy contribution to C 1s, in our spectra. All spectra were calibrated
to the C-C adventitious carbon peak at 284.8 eV. In each spectrum, the dominant C 1s component was
identified as adventitious C-C. In each case, this peak had the expected companion C-O/C=O peaks at
higher binding energy. The O 1s spectra of the two samples (Figure 19) were similar, and could be
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deconvolved into two peaks: a relatively sharp peak near 530 eV (dark gray component) and a broader
peak centred near 531 eV (light gray component). The lower binding energy peak has the expected
shape and location for O2− in iron oxides (Fe3O4, α-FeO(OH) and FeO). The broader, higher binding
energy peak is consistent with the OH− oxygens in α-FeO(OH), as well as with the C-O contribution
from adventitious carbon. The analysis of Fe 2p is complicated due to the multiplet structure of Fe 2p
peaks for high-spin compounds comprising Fe2+ and Fe3+ [39]. The multiplet structure manifests in
a broad, asymmetric peak shape, particularly when measured with unmonochromated radiation as
in the present measurements, making deconvolution of contributions from multiple chemical states
difficult, and hence we offer only a qualitative analysis of the Fe 2p spectra shown in Figure 19. As with
O 1s, the samples show similar peak shapes. The spectral weight in each sample is centred near 710 eV,
consistent with contributions from Fe3O4 and α-FeO(OH).
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Figure 19. XPS collected from the Fe 2p (left) and O 1s (right) regions of Samples: (a) 1 g/L and
(b) 5 g/L. The Fe 2p data are presented without background subtraction, and without deconvolution
of the peaks. The O 1s data have had a Shirley background subtracted and have been deconvolved into
two contributions. The indicated positions for different chemical states are approximate, and are based
on values taken from [38,39].

3. Experimental Section

3.1. Materials and Solutions

Cylindrical carbon steel rod (∅ 16 mm) of grade AISI 1020 was utilized as the rotating disc
electrode (RDE). The chemical composition of the as-received rod was analyzed using a Field Emission
Electron Probe Microanalyzer (JXA-8530F) with results shown in Table 5. The test samples were
polished using emery papers of grit sizes ranging from 220 to 800. Two solutions were prepared by
dissolving analytical grade sodium bicarbonate (1 g, 5 g) and 2 g of sodium chloride in 1 L of distilled
deionized water. The solutions were deaerated by bubbling nitrogen gas three hours before sample
immersion to study the effect of bicarbonate concentrations and immersion time. To study the effects
of dissolved oxygen, nitrogen gas was bubbled for 0 h, 2 h and 3 h which resulted in 4 ppm, 1 ppm and
0.8 ppm DO concentrations, respectively, before sample immersion. The electrochemical tests were
performed at ambient temperature (22 ± 3 ◦C) at pH (8.2 ± 0.1).
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Table 5. Chemical composition of mild steel (wt %).

C Si Mn Cr Cu Ni Fe

0.20 0.32 0.79 0.01 0.01 0.01 Bal

3.2. Electrochemical Test

The corrosion tests were carried out in a 1 L glass cell containing the rotating disk electrode
(working electrode) fitted into rotating shaft of an analytical rotator AFASRE 747 (Pine Instrument).
The reference electrode was a saturated calomel electrode (SCE) connected to the cell by a bridge
and a Lugging capillary Platinum was used as counter electrode. The angular speed (ω) of the
rotating disc electrode was controlled by the ASR RDE speed controller. The rotation speed of the
RDE performed in the tests was 2000 rev/min, respectively. Corrosion evaluation was monitored
by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The tests were
performed at a scan rate of (0.167 mV/s) using a Bio-Logic instrument Model VSP 0508 potentiostat.
The potentiodynamic polarisation was obtained from a starting potential of −0.30 V vs. SCE to a final
potential of +1.20 V vs. SCE. Electrochemical impedance spectroscopy measurements were conducted
at open-circuit. Measuring frequencies ranged from 10 kHz to 0.1 Hz with a perturbing alternating
current (AC) amplitude of 10 mV and a sampling rate of 10 points per decade.

3.3. Surface Analysis

Scanning electron microscopy (SEM) imaging was performed after corrosion tests using a Zeiss
Sigma VP Field Emission Scanning Electron Microscope (Oxford XMax 50 silicon drift energy dispersive
spectroscopy EDS detector) in secondary electron (SE) image mode with an accelerating beam voltage
of 15 kV. Pit volume and pit depth were examined using Leica Optical microscopy Model DFC 490.

3.4. X-ray Diffraction

The corrosion products were characterized in-situ using a PANalytical X’pert PRO MPD powder
X-ray Diffractometer (XRD) equipped with a 40 keV, 40 mA, Co Kα. A parabolic mirror optic on the
incident side, 0.04 rad Soller slits on the source and detector side, and 0.09◦ collimator before the
detectors were used to give a parallel beam. The incident angle (ω) was fixed to 3◦ and data collected
from 6◦ to 90◦ (2θ). The other slits were optimized to ensure the beam footprint did not exceed the
sample dimensions or the detector window opening. Quantitative phase analysis was performed in
TOPAS (V5, Bruker). An instrument function collected from SRM 660a was used to accurately model
peak shape and width. Fixed incident parallel beam intensity and peak width corrections according
to Rowles and Madsen [40], Toraya et al. [41] and Haggerty et al. [42] were employed. The values
of these corrections were fixed to those for the instrument function when refining the sample data.
Other parameters refined included background, scale factors for each phase, specimen displacement,
unit cell parameters for each phase, and a Lorentzian crystallite size term for each phase.

3.5. X-ray Photoelectron Spectroscopy

XPS measurements were performed using a non-monochromatized Al Kα (1486.7 eV) source
(DAR 400, ScientaOmicron GmbH) with a 125 mm hemispherical electron energy analyser (Sphera II,
7 channel detector, ScientaOmicron GmbH). The XPS was housed in an ultrahigh vacuum chamber
with a base pressure of 10−11 mbar. XPS data were collected over Fe, C and O core levels at a pass
energy of 20 eV using 0.1 eV steps and a dwell time of 0.1 s. The O 1s core level was fit using symmetric
components after subtracting a Shirley background.
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4. Conclusions

The electrochemical behavior of mild steel in different HCO3
−, DO concentrations and immersion

time was studied, using potentiodynamic polarization and electrochemical impedance spectroscopy.
Pitting corrosion depth increases with increasing bicarbonate concentrations. Lowering the amount
of dissolved oxygen facilitates passivation, whereas an increase in dissolved oxygen and HCO3

−

in bicarbonate/chloride results in a significant increase in the cathodic oxygen reduction process
and anodic metal dissolution due to oxidation. The corrosion current density decreases significantly
with decreasing DO concentration, dropping from 201.5 µA·cm−2 at 4 ppm to 22.3 µA·cm−2 at
0.8 ppm. A relatively stable oxide films were formed at ~600 mVSCE at lowered DO (1–0.8 ppm)
concentrations. Immersion time has an important effect: the oxide film thickness increases and the
corrosion rate decreases with increasing immersion time. Internal corrosion of mild steel pipelines
in high bicarbonate/chloride environment can be minimized when DO concentration is relatively
low at pH ≥ 8 and potential ≈ −600 mVSCE. Oxygen is necessary for passive film formation, but
can be detrimental to mild steel above the critical level in high bicarbonate/chloride solution under
dynamic conditions.
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