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Abstract: Ti-6Al-4V titanium alloy milling has been frequently used in aviation/aerospace industries.
Application environments put forward high requirements to create a desired proportion of the
constituent phases and fine grain size for optimum mechanical properties of the machined workpiece.
However, quantifying microstructural features of dual-phase (o + (3) Ti-6Al-4V titanium alloy is
difficult due to its irregular geometry and large dimension span. In this paper, a novel scanning
electron microscope (SEM) image processing method was proposed to identify the content of
constituent phases of materials. The new approach is based on the fact that the constituent phases of
Ti-6Al-4V titanium alloy show different gray levels in digital images. On the basis of the processed
image, distribution and average values of grain sizes were calculated directly using Image-Pro Plus
software. By the proposed method, sensitivity of microstructural changes to milling parameters is
analyzed and the stress-strain behavior for two ductile phase alloys is developed. Main conclusions
are drawn that Ti-6Al-4V titanium alloy milling induces a high content of 3 phase and small grain size
on the machined surface. The maximum measured values of change rate of 3 phase, grain refinement
rate at the machined surface, and thickness of the deformation layer are 141.1%, 47.2%, and 12.3 um,
respectively. Thickness of the deformed layer and grain refinement rate decreased distinctly with the
increase of cutting speed, but increased with the increase of the feed rate. The parameter of the depth
of cut played a positive role in increasing the thickness of the deformed layer, while opposite to the
grain refinement rate. For the variation of the change rate of the 3 phase at the machined surface,
depth of cut is the foremost factor among the three studied parameters. Values of yield strength
varied from 889-921 MPa with the change of content of the 3 phase from 30%—45%.

Keywords: microstructure quantification; mechanical property optimization; Ti-6Al-4V; milling

1. Introduction

Milling of Ti-6Al-4V titanium alloy is the primary operating process for aviation/aerospace
manufacturing industry. However, Ti-6Al-4V is known to be difficult to machine for its high chemical
reactivity and low thermal conductivity, which gives rise to short tool life and poor machining
quality [1]. Surface integrity, with particular regard to microstructure, determines the mechanical
properties and performance of the product achieved by final machining [2,3]. Fan [4] investigated the
role of microstructure on fatigue properties of Ti-6Al-4V. The result was drawn that the fatigue strength
ranking from high to low is as follows: equiaxed, bimodal, Widmanstitten, and acicular «’ martensite
microstructure. Chan [5] found that variation of mean stress distribution in individual microstructural
units can lead to fatigue life variability in Ti-6Al-4V with a duplex microstructure. Previous studies
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have shown that the lamellar microstructure exhibits lower strength, lower ductility, and better fatigue
propagation resistance compared with an equiaxed microstructure. Equiaxed microstructure provides
better fatigue initiation resistance, but poorer propagation resistance than a lamellar microstructure.
Bimodal microstructures exhibit a well-balanced fatigue properties profile, since they combine
the advantages of both lamellar microstructure and equiaxed microstructures. For the different
mechanical properties exhibited by various microstructural features, it is important to identify the
machining-induced microstructures, and to obtain favorable microstructures.

Digital micrographs taken by scanning electron microscope (SEM) or optical metallurgical
microscope are common used to identify the variation of microstructures in and beneath the machined
surface. In Che-Haron’s [6] study on surface integrity of machining Ti-6Al-4V, it was found that a thin
deformed layer was formed underneath the machined surface under the dry cutting condition with
uncoated carbide cutting tools. A dull tool caused severe microstructure alteration when the thickness
of the deformed layer was less than 10 um. Hughes [7] showed that the thickness of the deformed
layer increased with the depth of the cut, but the effect of cutting speed and feed rate was not distinct.
The phenomenon of the 3 phase decreased at the vicinity of the machined surface was also found
when dry drilling Ti-6Al-4V [8]. Different from the above findings, neither phase transformation,
nor deformed layer, did Velasquez observe when high-speed dry turning Ti-6Al-4V in the high cutting
speed range [9]. The main reason for these inconsistent results or doubtful conclusions is that visual
inspection of microstructure micrographs is insufficient to reveal the changes in the microstructure.

To study the correlation between mechanical properties of materials and microstructural features
induced by machining, quantitative microstructural information (such as grain size, which is
the key parameter in Hall-Petch relation [10,11]) should be extracted from digital micrographs.
Several standard test methods for determining the distribution gradient of constituent phases and
average grain size have been developed [12,13]. Quantifying microstructural features in dual-phase
(x + ) Ti-6Al-4V titanium alloy are still difficult. Irregular geometry and large dimension span caused
by different thermo-mechanical processing methods are the two primary reasons. Alborz Shokrani [14]
investigated the microstructural features in end milling of Ti-6Al-4V under dry, wet, and cryogenic
conditions. Average white pixel concentration below the machined surface was identified on the basis
of various image processing techniques using Matlab. Collins [15] demonstrated the possibility of
developing automated or semi-automated stereological procedures to determine the average values
of the grain size and the volume fraction of the constituent phases. Tiley [16] measured the grain
size and volume fraction of the constituent phases using random line segments and grid of cycloids
methods. Moreover, automated or semi-automated tools for image analysis of o/ 3 Ti-alloy type
microstructures were developed to determine average values of the complex microstructural features,
such as the thickness of the Widmanstidtten «-laths, the colony scale factor, the prior 3 grain factor, and
the volume fraction of Widmanstatten « [17,18]. However, statistical characteristics of microstructures,
such as frequency of the grain size and distribution of the volume fraction were not obtained in
these studies. In the current study, a novel method of image recognition is developed to quantify
microstructural features in milling Ti-6Al-4V titanium alloy. The new approach is based on the fact
that the constituent phases of Ti-6Al-4V titanium alloy show vastly different gray levels in digital
images. By the proposed method, the distribution gradient of constituent phases on and beneath
the machined surface are identified. Meanwhile, size distribution and mean diameter of « grains
were calculated using Image-Pro Plus software on the basis of the processed images. Sensitivity of
microstructural changes (change rate of the constituent phases, depth of the deformation layer, and
grain refinement rate) to milling parameters (cutting speed, feed rate, and depth of cut) are also
investigated. On the basis of the recognized microstructural features, mechanical properties of the
machined surface are controlled.
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2. Experimental Procedure

2.1. Materials

The workpiece material studied was & + 3 two-phase Ti-6Al-4V titanium alloy, which was formed
by the free forging process. Microstructural features photographed by scanning electron microscope
(SEM), energy spectrum, and chemical compositions identified by energy dispersive spectroscopy
(EDS) are shown in Figure 1. As shown in Figure 1, the original microstructures of the material,
primary « grains shown in dark gray and lamellar « + 3 colonies shown in bright gray, are included.
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Figure 1. (a) Microstructural feature; and (b) energy spectrum and chemical compositions of the
Ti-6Al-4V alloy studied.

2.2. Cutting Experiments

The machining experiments were carried out on a vertical-type machining center
(DAEWOOACE-V500). The workpiece dimensions were 50 mm x 30 mm x 5 mm. The cutting
length was set to 50 mm. Materials for the milling cutter with four-flute and variable helix angles
(38° and 41°) were cemented carbides. The diameter of the milling cutter was 6 mm. A sketch of
the cutting tool is shown in Figure 2. The operation mode was down-milling. Each test sample
was machined with a new tool. The aim is to assess the influence of cutting conditions on the
microstructure change independently of tool wear. Machining without the use of any cutting fluid
(dry or green machining) is becoming increasingly more popular due to concerns regarding the safety
of the environment. Most industries apply cutting fluids/coolants when their use is not necessary.
The coolants and lubricants used for machining represents 16%—20% of the manufacturing costs,
hence, the extravagant use of these fluids should be restricted [19]. Based on the above considerations,
the tests were performed with dry machining.
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16mm
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Figure 2. Sketch of the milling tool with 4-flute and variable helix angles.

Taguchi’s L16 (4) orthogonal experimental design method was applied to investigate the response
of the microstructure change to cutting parameters. By reference to the cutting parameters of a certain
type of aero engine casing, levels of experimental factors are selected as shown in Table 1.

Table 1. Orthogonal experimental parameters.

Levels/Factors Cutting Speed v, (m/min) Feed Rate f, (mm/z)  Radial Depth of Cut a, (mm)

Level 1 20 0.02 0.5
Level 2 50 0.03 1.0
Level 3 80 0.04 15
Level 4 110 0.05 2.0

2.3. Samples Preparation

As shown in Figure 3, a slice of material was extracted from the center position of the machined
workpiece. Two mosaic blocks were made to identify the microstructural features on the machined
surface and the cross section. Samples were polished, and then etched in 5 mL HNO; (65% conc.)
+ 3 mL HF (40% conc.) + 100 mL HO at room temperature for 10 s (removal rate 25 nm/s) [20].
Approximately 250 nm materials were removed. A SH-3000 Mini-SEM ( HIROX, Tokyo, Japan) was
utilized to image the microstructures of the samples.

Mosaic e A
Milling tool / .

Machined
surface

Figure 3. Diagram of sample preparation.
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3. Inspection of the Microstructural Features

3.1. Qualitative Description

Figure 4 shows the microstructures taken from the cross-section and machined surface of
the workpiece at v, = 50 m/min, f, = 0.05 mm/z and 2, = 2 mm. In milling operations, strain
aging, and recrystallization occurred on and beneath the machined surface under the combined
effect of thermal, mechanical, and chemical energy. As a consequence, plastic deformation, phase
transformation, and microstructure alteration will inevitably happen. It is especially for machining
Ti-6Al-4V titanium alloy, due to its high chemical reactivity and low thermal conductivity, while,
in the cross-section of the sample, no remarkable microstructural alterations were observed by visual
inspection. Contrary to the founding in the cross-section, obvious changes of the grain sizes and the
evolution of textures were observed in the machined surface. All of the above phenomena were also
found in other milling operations by visual inspection.

Figure 4. Microstructures taken from cross-section and machined surfaces of the workpiece.

3.2. Quantitative Identification

3.2.1. Proposed Method

In a SEM image of the two-phase Ti-6Al-4V titanium alloy, the constituent phases showed different
gray levels, which are determined by the gray values of each image pixel. As such, contents of the
constituent phases can be obtained by calculating the distribution of the gray values of image pixels.
Meanwhile, some processing techniques should be applied to eliminate the influence of other factors,
such as noise and uneven light.

A digital image processing program was developed in Matlab. As shown in Figure 5, a flowchart
of the image processing shows seven main steps, including:

(1) The original image was entered into Matlab software with an uncompressed tagged image file
format. Cropping, smoothing, and sharpening were then carried out to eliminate image defects,
such as uneven brightness;

(2) Noise reduction of the digital image using a Gaussian low-pass filter;

(3) Implement the Canny edge detection algorithm after executing image graying;

(4) Superposition of the images, which are processed by step (1) and step (3), to add contrast between
the o and 3 phases;

(5) The gray image was transformed into a binary image. The image matrix of the binary image only
consists of pixel values “0” and “1”, where “1” represents the o phase, and “0” represent the
3 phase;
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(6) Extract the density of the constituent phases per square micron. The distribution gradients of the
constituent phases beneath the machined surface are then obtained; and

(7) Lamellar « + 3 colonies were regarded as a single 3 phase, and then profiles of the « phase
were picked up. The size distribution and mean diameter of « grains were then calculated using
Image-P Plus software. The statistics cover the whole SEM image with a size of 244 um x 167 pm.
The mean diameter is the average length of diameters measured at 2 degree intervals and passing
through the profile centroid of the « phase.

Original image Cropping, smooth and
sharpen

Gaussian low-pass filter

Image processing

programs
lum
R

Canny edge detection

Image superimposition

Binarization image

Figure 5. Flowchart of the image processing.

3.2.2. Identification Results

Figure 6 shows the distribution gradient of the 5 phase beneath the machined surface. The content
of the 3 phase (fg) in the matrix is ranged from 13%-30%, and the average value is 22.1%. A significant
increase of the content of the  phase at the vicinity of the machined surface was observed.
The distribution gradient of the 3 phase beneath the machined surface is consistent with micro
hardness gradient beneath the machined surface. This stems from the fact that the 3 phase is much
harder than the o phase [21]. Two key features, including the change rate of the 3 phase at the
machined surface and the settle distance of the distribution gradient of the 3 phase, could be identified
from the distribution gradient of the 3 phase. Figure 7 shows that the settle distance of the distribution
gradient of the 3 phase can be used to reflect the deformation layer depth. According to Figure 6,
values of the change rate of the 3 phase at the machined surface and deformation layer depth are
100.1%, 4 uym and 125.5%, 6 pm at v, = 50 m/min, f; = 0.02 mm/z, 4, = 1.5 mm and v, = 110 m/min,
fz =0.02 mm/z, a, = 0.5 mm, respectively.

Figure 8 shows the microstructures and grain size distributions of the original material and the
machined surface under different cutting condition. Grain diameters of the original material ranged
from 6 pm to 24 pm, and the average value is 11.7 pm. Grain refinement was noticed at the machined
surface under different cutting condition. The grain refinement rates under the cutting condition of (b),
(c), and (d) in Figure 7 were 30.34%, 29.1%, and 27.35%, respectively.

Under the cutting conditions of the present study, ranges of measured values of the change rate
of the 3 phase, the grain refinement rate at the machined surface, and the thickness of the deformation
layer are 46.7%-141.1%, 18.6%—47.2%, and 3.7-12.3 um, respectively.

Microstructural parameters, such as the phase distribution gradient and the grain size frequency,
are the key factors in understanding the relationship between microstructural features and mechanical
properties of the machined surface. Quantification of these microstructural parameters allows cutting
parameters optimization to obtain the desired mechanical properties.
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Figure 6. Distribution gradients of the 3 phase beneath the machined surface. (a) v, = 50 m/min,
f- =0.02mm/z, a, = 1.5 mm; and (b) v, = 110 m/min, f, = 0.02 mm/z, 2, = 0.5 mm.
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Figure 7. Similarity between the settle distance of the distribution gradient of the 3 phase and the
deformed layer thickness.
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o grains

Figure 8. Microstructure and grain size distribution of the original material and the machined surface.
(a) Original microstructure and frequency of grain sizes; (b) machined surface (v, = 20 m/min,
f> =0.03 mm/z, a, = 1.5 mm); (c) machined surface (v, = 50 m/min, f; = 0.05 mm/z, g, = 2.0 mm);
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and (d) machined surface (v, = 80 m/min, f, = 0.04 mm/z, 2, = 1.0 mm).

3.3. Milling Parameter Sensitivity Analysis

8 of 14

Different microstructural features are generated in milling Ti-6Al-4V titanium alloy under
different cutting conditions. As a consequence, the final machined workpiece will express discrepant
mechanical properties. A quantitative description of the sensitivity of microstructural features to



Materials 2016, 9, 628 9of 14

milling parameters can play a vital role in controlling the performance of the workpiece. Three main
features, including the change rate of the 3 phase on the machined surface, the thickness of the
deformed layer, and the grain refinement rate were investigated in this research.

Variations of microstructural features with milling parameters are given in Figures 9-11.
Cutting speed, feed rate, and depth of cut have been approved to affect microstructural features
distinctly. In the milling process, variations of microstructural features depend on various factors,
such as cutting temperature, strain, and strain rate, etc. With the increase of the cutting speed, cutting
temperature increased in the primary shear zone, which is in favor of recovery, recrystallization,
and grain growth. On the contrary, contact duration decreased with the increase of the cutting speed.
As a consequence, the deformation degree in the tool-workpiece contact zone is small. A greater
cutting force and deformation can be developed by increasing the feed rate and the depth of cut.
Therefore, the mechanical work and energy, which would be converted to the driving energy of the
phase transformation and grain growth, went up. All of these reasons are responsible for the variation
of microstructural features in milling Ti-6Al-4V titanium alloy. In the range of experimental parameters,
the thickness of the deformed layer and grain refinement rate decreased distinctly with the increase of
the cutting speed, but increased with the increase of the feed rate. The parameter of the depth of cut
played a positive role in increasing the thickness of the deformed layer, while opposite to the grain
refinement rate. For the variation of the change rate of the 3 phase at the machined surface, the depth
of cut is the foremost factor among the three studied parameters.

40 4 10  ~200
354

150

100

Grain refinement rate (%)
Thickness of deformation layer (um)
>
Change rate of 8 phase (%)

25 T T
30 60 90

20
Cutting speed (m/min)

Figure 9. Variations of microstructural features with the cutting speed.
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100
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Figure 10. Variations of microstructural features with the feed rate.
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Figure 11. Variations of microstructural features with the depth of cut.

4. Mechanical Property Optimization

Hall-Petch relation [22] expressed the dependency of the lower yield point or the fracture stress
of metals on the grain size. It was also suggested for the effect of the grain size on other mechanical
properties of polycrystalline metals and alloys [23]. As shown in Equation (1), the flow stress has a
linear relationship with the reciprocal square root of grain size:

o9 = ki1 + k2d70'5 (1)

where ki, ky are material constants, and oy and d are flow stress and grain size.

For the reason that the Hall-Petch relation was proposed for the single phase material, originally,
this relationship was not reliable for « + 3 two-phase Ti-6Al-4V titanium alloy. Furthermore, grain size
is difficult to calculate due to the complex microstructural features of Ti-6Al-4V, which is comprised
with « phase and the lamellar « + 3 colonies, although the Hall-Petch relation was occasionally used.
For these reasons, a constituent phase content-based finite element model was proposed.

The underlying idea in modeling flow stress of the o + 3 two phase Ti-6Al-4V titanium alloy is to
simulate a uniaxial tensile experiment. The finite element analyses were performed under constant
stress increments and in the plane stress condition.

As shown in Figure 12, is the schematic diagram of geometry modeling. Micrographs of the
two-phase microstructure were first obtained, where a lamellar « + 3 colony was regarded as a
single 3 phase. Edges of the two phases were then mapped using Solidworks software. o phases are
represented in yellow and {3 phases are in blue. In Solidworks/Simulation, the Ramberg—Osgood
(R-O) constitutive model, shown in Equation (2), was applied. Material constants of the constituent
phases are listed in Table 2.

o doy,, o N
£ =—4+ —2(—

PG ©
where oy, N, a', E are yield stress, inverse of the strain hardening exponent, empirical constant,
and Young’s modulus, respectively. The Ramberg—Osgood constitutive equation was created on
the basis of rate-independent plastic flow. Hardening behavior of the material depends on the
material constants 4’ and N. Due to the power-law relationship between stress and plastic strain,
the Ramberg-Osgood model implies that plastic strain is present even for very low levels of stress.
Nevertheless, for low applied stresses and for the commonly used values of the material constants a’
and N, the plastic strain remains negligible compared to the elastic strain. On the other hand, for stress
levels higher than oy, plastic strain becomes progressively larger than elastic strain.
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Table 2. Material constants of the constituent phases for Ti-6Al-4V [5].

Phase oy (MPa) E (GPa) a’ N
[o4 345 140 17.959 3.484
B 1000 170 8.246 5.305

SEM micrograph

Geometric model in Solidworks

11 0f 14

Figure 12. Schematic diagram of geometry modeling (fg = 22.1%).

Contact condition is set to global contact, where the constituent phases are bonded. Therefore, no
contact surface separation will be produced in the process of the simulation. Moreover, incompatible
mesh technology and the plane triangle element with three nodes were applied in the simulation.

Figure 13 shows the stress and strain contour figures under the condition that the tensile stress is
600 Mpa. The average stress and strain of each state can be calculated using Equations (3) and (4):

[

€

1
‘—/J‘VO'dV

1
V JVEdV

®)

4)

where, 7 and ¢ are the average stress and the average strain, V is the total volume of the microstructure
model, and o and ¢ are the stress computed at every Gauss point in the model. Based on the average
stress and strain of each state, stress-strain curve was drawn. Seven microstructures were simulated
with volume fractions of primary a grains ranging from 0-100%. They are all shown in Figure 14. As a
contrast, a stress-strain curve (red in Figure 14) reported in [24] was chosen (strain-rate hardening and
thermal softening were not considered in the present study).
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Figure 13. (a) Stress and (b) strain contour figures under the condition that the tensile stress is 600 Mpa
(fp =22.1%).
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Figure 14. Computed stress-strain curves for various contents of 3 phase.

The correlation coefficient (R), as described by Equation (5), was applied to illustrate the statistical
relationship between the reference curve and the predicted one (Brown in Figure 14):

R izt (5i—%) (i)
VI (-T2 (- 9

where x; and y; are the data point of reference and predicted curves. X and ¥ are average values of data
points of reference and predicted curves.

The calculated value of R was 0.893, which indicated a high degree of consistency between
reference and predicted stress-strain curves. Conclusion can also be drawn from Figure 14 that a high
content of 3 phase represented a high strength of material.

Yield strength, which is measured by 0.2% offset strain method, was identified from Figure 14.
According to Figure 15, values of yield strength varied from 889-921 MPa with the change of content
of 3 phase from 30% to 45%.

The most outstanding advantage of the proposed method of characterizing microstructural
features is its available in presenting gradient distribution of microstructural features beneath the
machined surface. These studied microstructural features were closely related to the mechanical
property as represented by the stress-strain behavior. As a consequence, the proposed method will
serve as a powerful tool in developing machining parameters—mechanical property models of the
dual-phase Ti-6Al-4V titanium alloy.

©)
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Figure 15. Yield strength variation of the material with content of the (3 phase.

5. Conclusions

To quantify microstructural features and control the machining-induced mechanical properties
in milling titanium alloy Ti-6Al-4V, a novel method of image recognition is developed to identify the
microstructural changes at the vicinity of the machined surface. According to this investigation’s
results, the conclusions can be summarized as follows:

1. A digital image processing method was proposed. The new approach is based on the fact that
the constituent phases of Ti-6Al-4V titanium alloy show different gray levels in digital images.
By the proposed method, microstructural features, including the content of constituent phases
and grain size, were identified. A high content of the 3 phase and small grain size were found
at the machined surface. The maximum measured values of change rate of 3 phase, grain
refinement rate at the machined surface, and thickness of the deformation layer are 141.1%, 47.2%,
and 12.3 um, respectively.

2. Sensitivity of microstructural changes to milling parameters was investigated. The thickness
of the deformed layer and grain refinement rate decreased distinctly with the increase of the
cutting speed, but increased with the increase of the feed rate. The parameter of the depth of cut
played a positive role in increasing the thickness of the deformed layer, while opposite to the
grain refinement rate. For the variation of the change rate of the 3 phase at the machined surface,
the depth of cut is the foremost factor among the three studied parameters.

3. Stress-strain behavior of two ductile phase alloys was developed using the finite element method.
A high content of the 3 phase was found to have a high strength of materials. Values of yield
strength varied from 889-921 MPa with the change of content of the 3 phase from 30%—45%.
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