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Abstract: The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl
methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl
methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical
impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition
performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist
plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and
HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition.
Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better
anti-corrosion performance than HPMCAS. The study is of certain importance for designing green
corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.
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1. Introduction

Currently, there are three primary methods of corrosion control: reducing metal oxidation [1],
decreasing corrosion of corrosive liquids [2], and isolating metal from the corrosive environment
via dry films [3–5]. In a liquid environment, the common approach is to add corrosion inhibitors to
form a physical adsorption layer on the surface, thereby blocking the penetration of active substances
and reducing corrosion [6–8]. However, most inhibitors are harmful and can contaminate the global
environment. Thus, several researchers have investigated the effects of polymeric corrosion inhibitors,
such as polyamide compounds [9], polyacrylic acid [10], polymeric materials [11], and cellulosic
polymers [12], which show considerable promised anticorrosion behavior.

According to the requirements of the Paris climate agreements and sustainable development,
extensive studies on green materials for anti-corrosive films have recently been conducted [13–16].
The objective of the present study is to evaluate the anti-corrosion performance of biopolymer
hydroxypropyl methylcellulose (HPMC) derivatives in a saline solution. HPMC was extracted
from high purity wood pulp from natural forests. Owing to its high film forming ability [17]
and flexibility [18], it has been widely employed in the medical field [19–21] and the food
industry [22]. Meanwhile, HPMC has a good capability for distributing and preventing grease and
gas penetration [23], and is therefore used in sustainable manufacturing [24]. Moreover, owing to its
biocompatibility [25] and decomposability [26,27], it is also used as a corrosion inhibitor [28–31].
Traditional HPMC is soluble in water; thus, it is not suitable for a water and high humidity
environment. It is usually added to liquid as a corrosion inhibitor. In the sustainable manufacturing
applications, solid films were used to replace the solution-type inhibitor for the environmental-friendly
considerations. Therefore, acetate, succinate, and phthalates were added to HPMC to obtain
hydroxypropyl methylcellulose phthalate (HPMCP) and hydroxypropyl methylcellulose acetate
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succinate (HPMCAS). They not only preserve the characteristics of HPMC, but are also insoluble in
water, and function well in strong acid environments. The material details of HPMCP and HPMCAS
are listed in Table 1. The composition of high speed steel is listed in Table 2.

Table 1. The compositions list of hydroxypropyl methylcellulose phthalate (HPMCP) and
hydroxypropyl methylcellulose acetate succinate (HPMCAS).

Materials Molecular
Weight

Methoxy
Content (%)

Hydroxypropoxy
Content (%)

Phthalyl
Content (%)

Acetyl
Content (%)

Succinoyl
Content (%)

HPMCP 37,900 20.0%~24.0% 6.0%~10.0% 21.0%~27.0%
HPMCAS 18,000 20.0%~24.0% 5.0%~9.0% 5.0%~9.0% 14.0%~18.0%

Table 2. Composition of high speed steel.

Composition C Mn Cr W V Mo Si P S Ni Cu Fe

SKH51 0.82 0.24 4.20 6.50 2.05 5.78 0.23 0.02 0.01 0.08 0.12 79.95

2. Results and Discussion

2.1. Film preparation and Characteristics Measurement

The film thickness can be controlled by precisely adjusting the drop amount, as shown in
Figure 1. HPMCP-1, HPMCP-2 and HPMCP-3 correspond to 600, 1200 and 1800 µL, respectively.
The corresponding thicknesses are 200, 360, and 580 µm, respectively. HPMCAS-1, HPMCAS-2 and
HPMCAS-3 correspond to 600, 1200 and 1800 µL, respectively. The corresponding thicknesses are 180,
360, and 560 µm, respectively. The results show that the thickness of the HPMCP and HPMCAS films
could be accurately adjusted and controlled.
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Raman spectroscopy was utilized to investigate the material characteristics of HPMC derivatives.
The Raman spectra of HPMCP and HPMCAS are presented in Figure 2. The characteristic peaks of
HPMC are depicted, including those at 1360 cm´1 (COH bending) and 1450 cm´1 (CH2 twist) [32].
Moreover, a comparison of the two curves of HPMCP and HPMCAS shows that there is no obvious
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different absorption peak. It reflects that although phthalate, acetate, and succinate were added to
HPMC to meet the requirements of acid and moisture resistance, HPMCP and HPMCAS preserved the
structural properties of HPMC. Therefore, Raman spectroscopy could be used to assess the material,
decomposability, and uniformity properties of HPMCP and HPMCAS [32,33].
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As shown in Figure 4, Rs represents the resistance of saline solution; Rf represents the resistance 
of the HPMC derivatives film; CPE_film is the capacitance of the HPMC film; Rct is the resistance 
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Figure 2. Raman spectroscopy graphs of HPMCP and HPMCAS.

2.2. Anti-Corrosion Behavior

Figure 3a shows the Nyquist plots of the four measured samples. The first sample is uncoated high
speed steel (HSS). A series of samples are denoted HPMCP-1, HPMCP-2 and HPMCP-3, respectively.
Figure 3b shows the Nyquist plots of HPMCAS with varying thickness. It can be seen that the left part
was a semi-circle, and the right part was an incomplete semi-circle. Hence, it can be determined that
the plot is comprised of two time constants. The equivalent circuit diagram shown in Figure 4 was
used to simulate the actual conditions [34].
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As shown in Figure 4, Rs represents the resistance of saline solution; Rf represents the resistance
of the HPMC derivatives film; CPE_film is the capacitance of the HPMC film; Rct is the resistance
between the steel and solution, also called the charge-transfer resistance; CPE_dl is the capacitance of
the double electrode layer. CPE was used in this study as opposed to the capacitance in the traditional
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equivalent circuit model as there was an uneven current potential distribution; CPE would be more
accurate according to previous studies [35–37].
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In the equivalent circuit diagram, Rf corresponds to the left semi-circle in Figure 3; the larger the
Rf, the larger the radius in the Nyquist plot, and the better the anti-corrosion ability. Rct corresponds
to the right semi-circle. As the aim of the current study is to investigate the anti-corrosion ability of the
film, we focus on Rf.

The original data was fitted with an equivalent circuit diagram, and the fitting data is shown in
Table 2. The film resistance (Rf) of HPMCP-1, HPMCP-2, and HPMCP-3 are 989, 1260, and 1368 Ω,
respectively. The film resistance of HPMCAS-1, HPMCAS-2, and HPMCAS-3 are 987, 1339 and 1535 Ω,
respectively. For both materials, the film resistance increased with increasing film thickness, as did the
penetration depth [38], indicating enhanced resistance ability with increasing film thickness.

By comparing the Rf for HPMCP and HPMCPAs, the results clearly demonstrate that HPMCP
and HPMCAS were at the same scale. However, the increase in impedance for the HPMCAS can be
attributed to it having a better hydrophilicity than HPMCP. The high capacitance, CPE_film, is related
to the high extent at which water has penetrated the film [39]. Comparison of CPE_film-T for HPMCAS
and HPMCP shows that the former had a larger CPE_film-T, i.e., greater moisture content. This is
consistent with the experiment on contact angles. Compared to HPMCP, HPMCAS showed a smaller
contact angle, namely, a better hydrophilic property. Higher hydrophilicity of HPMCAS compared to
HPMCP and bare HSS may result from high-wettability. This leads to an increased concentration of
corrosive substance on the HSS surface.

Previous results show that HPMCP and HPMCAS films had demonstrated promising anti-corrosion
behavior. The potentiodynamic polarization (PP) method was further used to record the variation
in current and potential during the experiment. The polarization curves for HPMCP and HPMCAS
with different thicknesses are shown in Figure 5. The curves are divided into cathodic and anodic
polarization. Cathodicpolarization is the section before the lowest point, representing hydrogen
reduction in the experiment: 2H+ + 2e´ Ñ H2. Anodic polarization is the right section after the lowest
point, representing metal oxidation in the experiment: MÑMn+ + ne´.

The bottom point of the curve represents the corrosion potential. The corrosion current (Icorr)
was measured using Tafel extrapolation. Within 50 mV of the corrosion potential, a linear region,
called the Tafel region, was obtained. The tangent lines of cathodic polarization (slope βa) and
anodic polarization (slope βc) intersect in the horizontal axis at the point of corrosion current (Icorr),
which represents the corrosion rate. In the present study, Icorr was used to evaluate the anti-corrosion
ability of the film [40,41], the data of which are shown in Table 3.

The electrochemical corrosion measurements of HSS, HPMCP and HPMCAS are shown in Table 4.
The Tafel plots for the HPMCP yield corrosion potentials of Ecorr = ´388.1, ´294.9, and ´230.5 mV
for HPMCP-1, HPMCP-2, and HPMCP-3, respectively, which are more positive than that of the bare
HSS, where Ecorr = ´547.5 mV. Moreover, the corrosion current (Icorr) of HPMCP-1, HPMCP-2,
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and HPMCP-3 were 6.8, 5.2, and 0.8 µA/cm2, respectively, which are significantly lower than that of
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Table 3. EIS fitting results and contact angles of HPMCP and HPMCAS coated electrodes.

Item/Index Rs (Ω) Rf (Ω) CPE_film-T(F) CPE_fim-P Contact Angle (˝/H2O)

HPMCP-1 128 989 3.49 ˆ 10´5 0.40342 68.8
HPMCP-2 157 1260 1.85 ˆ 10´5 0.42213 68.6
HPMCP-3 160 1368 1.34 ˆ 10´5 0.44124 69.4

HPMCAS-1 90 987 5.49 ˆ 10´5 0.38172 63.3
HPMCAS-2 115 1339 2.76 ˆ 10´5 0.39806 65.0
HPMCAS-3 120 1535 2.42 ˆ 10´5 0.39101 63.0

Table 4. Electrochemical corrosion measurement of HSS, HPMCP and HPMCAS coated electrodes.

Item/Index ´Ecorr (mV) Icorr (µA/cm2) βa (mV/dec) βc (mV/dec)

bare HSS 547.5 26.3 65.4 ´159.9
HPMCP-1 388.1 6.8 124.9 ´99.3
HPMCP-2 294.9 5.2 112.2 ´119.9
HPMCP-3 230.5 0.8 117.5 ´108.0

HPMCAS-1 294.4 1.8 119.5 ´114.5
HPMCAS-2 211.1 1.4 105.5 ´108.4
HPMCAS-3 176.7 1.7 102.6 ´105.2

The Tafel plots for the HPMCAS yield a corrosion potential of Ecorr = ´294.4, ´211.1, and
´176.7 mV for HPMCAS-1, HPMCAS-2, and HPMCAS-3, respectively, which are more positive
than that of the bare HSS. Moreover, the corrosion current (Icorr) for HPMCAS-1, HPMCAS-2, and
HPMCAS-3 was 1.8, 1.4, and 1.7 µA/cm2, respectively, which are significantly lower than that of the
HSS. From Table 3, it can be seen that for HPMCP and HPMCAS, the corrosion current decreased
with increasing film thickness, indicating a reduced corrosion rate. Thus, there is a positive correlation
between film thickness and the corrosion resistance performance.

Comparison of HPMCP-3 and HPMCAS-3 shows that the corresponding Icorr decreased
considerably when we used the phthalate function group, suggesting the formation of hydrophobic
properties. The electrochemical measurement results show that the HPMCP film provided better
protection against corrosion of the HSS than the HPMCAS.

In terms of viscosity, the values for HPMCP and HPMCAS were 100 and 200 mPa¨ s, respectively.
The high viscosity of HPMCAS resulted in poor film formation, causing defects and inferior smoothness
of the film [42], and, therefore, poor corrosion resistance. HPMCP had low material viscosity,
hydrophobic surface and low moisture content resulted in promising corrosion resistance performance.
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3. Materials and Methods

3.1. Film Preparation and Characteristics Measurement

First, 10 g of HPMCP and HPMCAS powders (Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) were
mixed with 18 mL water and 72 mL alcohol. The solution was stirred at room temperature until all
particles were dissolved. A micropipette was used to draw up 600–1800 µL of the mixed solution
and to deposit it on polished high-speed steel. A film was then formed after 1-day rest under normal
temperature and pressure conditions. A 3D scanner (Keyence, VK9710, Osaka, Japan) was used for the
thickness measurement.

The Raman spectra were recorded using a micro-Raman spectrometer (Renishaw, New Mills, UK).
The contact angles were measured using a First Ten Angstroms FTA-1000B (Portsmouth, VA, USA)
at ambient temperature. Water droplets were carefully dropped onto the surface of the samples, and
the contact angle was determined from the average of three measurements at various positions on
the sample.

3.2. Anti-Corrosion Behavior

The corrosion potential and corrosion current of samples were electrochemically measured
by the PP method. The working electrode was made of Teflon to grip the high speed steel test
piece. A saturated calomel electrode was used as the reference electrode to measure the potential.
The auxiliary electrode was a platinum electrode to conduct current. The output potential current was
controlled and measured by a potentiostat. The electrolyte was a 0.5 M saline solution.

EIS were recorded on an AC Impedance Analyzer (HIOKI 3533-05, Nagano, Japan). The frequency
range was 200,000–0.01 Hz, and the amplitude was 0.01 V, 10 points/decade.

4. Conclusions

(1) The corrosion resistance performance of green polymer material HPMC derivatives
was demonstrated.

(2) Both EIS and PP suggested promising corrosion resistance performance of HPMCP and HPMCAS.
(3) The film thickness of HPMC derivatives was positively correlated the corrosion resistance ability.
(4) HPMCP has hydrophobic surface and low moisture content; thus, it provided better anti-corrosion

protection than HPMCAS.
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