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Abstract: The complete bioconversion of the carbohydrate fraction is of great importance for a
lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials,
and depending basically on the main parameters within the pretreatment steps, numerous byproducts
are generated and they act as inhibitors in the fermentation operations. In this sense, the impact
of inhibitory compounds derived from lignocellulosic materials is one of the major challenges
for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative
effects of these compounds, numerous methodologies have been tested including physical, chemical,
and biological processes. The main physical and chemical treatments have been studied in this work
in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms
for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic
hydrolysates obtained by chemical processes with SO2, due to the complex matrix of these materials
and the increase in these methodologies in future biorefinery markets. Recommendations of different
detoxification methods have been given.
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1. Introduction

Lignocellulosic materials represent one of the most promising sources of renewable raw material
for various biotechnological processes, giving useful biobased chemicals and fuels, due to their low
economic value and high availability [1–4]. Lignocellulosic biomass is the most abundant renewable
biological resource and it is outside the human food chain, making it an attractive raw material for
biorefinery options. Within lignocellulosic biomass, wood, straw, stalks, and bagasse have a global
inventory of 1750, 1145, 970, and 75 million tons of biofibres, respectively [5]. In Europe, a wide variety
of biomasses can be found, with European forestry and agriculture highly diversified with a good mix
between forest (42% of the European area) and agriculture (40%, i.e., 1.7 Mkm2), except in Scandinavia
where forest is predominant (up to 70% of forest area) [6].

Lignocellulosic biomass includes herbaceous crops, agriculture and industrial residues such as
sugarcane bagasse, corn stover or straw, softwood, hardwood, and municipal solid waste [7–10].
The choice of raw material depends on location and availability among other factors [11]. For example,
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in the case of using lignocellulosic waste materials for the conversion of bioethanol, wheat straw
(with a production of 354.34 ˆ 106 ton/year), rice straw (731.3 ˆ 106 ton/year), corn straw
(128.02 ˆ 106 ton/year), and sugarcane bagasse (180.73 ˆ 106 ton/year) are the four major agro-wastes
to be used, according to Sarkar et al. [12].

Lignocellulosic biomass has a complex structure consisting of three major fractions: cellulose
(35%–50% dry weight), hemicelluloses (15%–35%), and lignin (10%–25%) [13–18]; and their relative
abundances depend on the type of biomass feedstock [4,19]. Cellulose is the most abundant natural
polymer. It is a linear/linear helical water-insoluble polysaccharide consisting of glucose monomers
from several hundred up to tens of thousands [20]. Hemicelluloses are heteropolysaccharides
and have an amorphous structure [20], comprising pentoses (xylose, arabinose) and hexoses
(mannose, glucose, galactose), which can be substituted with phenolic, uronic, or acetyl groups [10].
Lignin has a complex phenolic polymeric structure. Its structure results from the condensation
of phenylpropene units. The precursors of lignin are p-hydroxyphenol alcohol, guaïacyl alcohol,
and syringyl alcohol. Lignin plays an important role in cell wall structure, acting as a glue holding
together the cellulose and hemicellulose fibres [13].

All of the fractions from lignocellulosic biomass can be used to obtain several products. Cellulose
has been used as potential production of pulp and/or paper from the year 105 in ancient China.
Hemicellulose makes up the second most principal fraction of the plant cell wall after cellulose and is
a potential substrate for the production of bioethanol and/or value-added products of commercial
significance [4,21,22]. In addition, different products can be obtained from lignin [23,24]: (i) power,
fuel, and syngas products; (ii) macromolecules; and (iii) low-molecular weight aromatic or phenolic
compounds. However, the heterogeneous nature of polymeric lignin makes it very difficult to control
and standardise the properties and quality of lignin products [24]. Despite significant efforts in the past
few decades, the commercial lignin market has stagnated at between 1.0 and 1.3 million metric tonnes
per year [25]. ‘You can make anything out of lignin . . . except money’ has long been a myth in the pulp
and paper industry. Although this may be an unfair statement, it expresses a deep frustration with
over a century’s effort and expectation on lignin product development. The majority of the existing
lignin products nowadays are based on lignosulphonates [24].

Due to the possibilities of obtaining a great variety of products and fuels, a new
concept—biorefinery—has been developed. A biorefinery is an analogue to the current petro-refinery,
in the sense that it produces energy and chemicals. The IEA Bioenergy Task 42 defines biorefining as
‘the sustainable processing of biomass into a spectrum of bio-based products (food, feed, chemicals
and/or materials) and bioenergy (biofuels, power and/or heat)’ [26,27] and this term was recently
redefined in the project Biorefinery Euroview as follows: “Biorefineries could be described as integrated
biobased industries using a variety of technologies to make products such as chemicals, biofuels,
food and feed ingredients, biomaterials, fibres and heat and power, aiming at maximising the added
value along the three pillars of sustainability (Environment, Economy and Society)” [6].

Conversion of lignocellulosic materials to higher value products requires separation of the material
into its components. Pretreatments range from simple size reduction to more advanced biological
or physico-chemical processes designed to improve the digestibility of the biomass [28]. Physical,
chemical, and biological treatments such as acid or alkaline hydrolysis, enzymatic hydrolysis, solvent
extraction, precipitation, membrane technologies and steam, and CO2 or ammonia explosion can
be used [14,16,29–32]. Among these processes, thermo-chemical or hydrolysis processes have been
recognised as the most extensive processing steps in lignocellulosic biomass to obtain fermentable
sugar and other byproducts and several review documents provide a general overview of the
field [14,33]. However, due to the heterogeneous nature of lignocellulosic biomass, in addition to
sugars, the chemical hydrolysis of lignocellulosics can release several compounds that act as microbial
inhibitors [11,22,34]. The type of lignocellulosic material (grasses, hardwoods, softwoods, etc.),
the cell wall composition, and the severity of the thermochemical conditions employed for hydrolysis
(defined as the combination of time, high temperature, and low pH used) mostly determine the nature
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of the inhibitors and the concentration can vary greatly [8,22,35–43]. Moreover, individual inhibitors
may not have a strong effect on fermenting microorganisms, but combinations of them can drastically
hamper fermentation reactions [41,44–49].

To minimise the negative effects of these compounds on fermentation, numerous methodologies
have been tested for hydrolysate treatment, including physical (evaporation), chemical (solvent extraction,
overliming, activated charcoal adsorption, ion exchange, etc.), and biological (microbiology, enzyme,
adaption of fermenting microorganism, etc.) methods [3,4,11,14,35,37,50–60]. Biological methods
(such as laccase- or peroxidase-mediated methods, changes in fermentation strategies, microbial
acclimatization, direct implication of microorganisms favouring inhibitor metabolism, and microbial
pretreatment of lignocellulose) could be more useful. However, enzymatic detoxification, modified
fermentation strategies, and microbial pretreatment of lignocellulose are slow and time-consuming
and some of the enzymes are expensive [4,11]; therefore, a lot of research still needs to be carried
out on the development and optimisation of these procedures. Furthermore, much of the research
has been carried out at laboratory scale and there are few pilot-scale or full-scale investigations on
the use of enzymes to detoxify lignocellulosic hydrolysate [11]. On the other hand, physical and
physico-chemical methods are fast and better known at pilot scale; however, factors like significant
sugar loss, affinities, and cost need to be optimised [22].

The main objective of this review is to analyse the most significant inhibitors in the structure
of lignocellulosic materials and the main physical and physico-chemical detoxification methods in
order to give some recommendations to valorise the hemicellulosic biomass towards the biorefinery
concept. A search of the literature quickly reveals the complicated nature of the topic of hydrolysate
toxicity, brought about by the multitude of biomass feedstock, pretreatment and conditioning methods,
fermentation methods, and fermentation strains tested. Different biomass feedstocks and pretreatment
processes generate different combinations of toxic compounds; different fermentation strains have
different levels of natural resistance; and changes in the fermentation processes can lead to different
levels of resistance [49]. In order to clarify the obtained results, detoxification processes have been
analysed in relation to the group of inhibitors and the raw material. The best results have been obtained
and discussed. In addition, novel procedures and the combination of different processes have been
studied. Finally, due to the importance of the chemical pretreatments with SO2 to depolymerise the
lignocellulosic materials into a high-purity-cellulose and the production of lignosulphonates in the
hydrolysates, a section about the possibilities of detoxification processes in these kinds of materials
has been added in this review.

2. Inhibitors in Lignocellulosic Materials

The classification of the inhibitors is based mainly on the origin and they can be divided
into the following major groups: furan derivatives such as furfural and 5-hydroxymethylfurfural
(HMF), phenolic compounds, weak organic acids (levulinic, formic, and acetic acids), raw material
extractives (acidic resins, tannic acids, and terpene acids), and heavy metal ions (iron, nickel,
aluminium, chromium, etc.) [22,35–38]. Figure 1 shows the main inhibitors in lignocellulosic materials.
With increased knowledge and understanding of the mechanisms of inhibition and detoxification,
it is understood that specific chemical functional groups are responsible for the inhibitory effect and
toxicity to microbes [11,59]. Naming the inhibitors by functional group implies likely mechanisms of the
inhibition, and potentially helps to facilitate the investigation and understanding of the detoxification
of the inhibitors; therefore, the inhibitors are classified into different groups and related to the origin in
the plant cell.

Due to the heterogeneous nature of lignocellulosic biomass, the degradation of byproducts
produced during the fermentation can vary significantly. The variety and concentration of
inhibitory compounds also depend upon the raw material used, the pretreatment conditions such
as treatment materials, temperature, pH, pressure, and time duration, and the amount of solids in
the reactor [35–37,42,59,61–63]. In general, it was observed that low-molecular-weight compounds
show more toxic effects to microbes than do high molecular-weight compounds [64]. This property
could perhaps be ascribed to an easier transport of the smaller molecules via a variety of mechanisms,
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including passive diffusion [59]. Enzymatic hydrolysis of lignocellulosic biomass may also release
inhibitors from biomass. Organic acids such as ferulic and p-coumaric acids can be obtained during
fermentation and saccharification from the arabinoxylan. These acids from the biomass structure are
toxic to fermentation microorganisms [51].
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2.1. Furan Inhibitors

Pentoses and some hexoses are released from hemicelluloses, from which 2-furaldehyde (furfural)
and 5-hydroxymethyl-2-furaldehyde (5-hydroxymethylfurfural; HMF) can be formed by dehydration
of these sugars at high temperature and acidic conditions [11,59,65,66]. Furfurals are generated during
xylose degradation while HMF is generated during hexose degradation [22]. Furfural and HMF are
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furan derivatives and commonly called ‘furan inhibitors’. Evidence has shown that the metabolic
conversion products of furfural and HMF, furan methanol and furan-2,5-dimethanol, are also furan
derivatives, but less toxic to fermentative microorganisms [48,59,67].

Furan inhibitors are considered particularly undesirable due to their relative abundance and
toxic effect [41,68–70]. The inhibitor and toxic effects appear to be caused by the aldehyde functional
group rather than the furan ring [59]. Furfural and HMF are usually the representative inhibitors of
yeast and bacterial growth and fermentation [11,36,42,71–73]. In addition, they inhibit the glycolytic
enzymes used to liberate the sugars from the (hemi-)cellulose fractions and interfere with the activity
of dehydrogenases, causing a reduction in growth rates and cell yields [2,11,49,74,75]. HMF, a toxic
compound originating from the degradation of hexose, is the most important intermediate product in
the acidic hydrolysis process. Its inhibitory effect is similar to that of furfural, causing a longer lag
phase during growth [36]. However, HMF is considered less toxic than furfural [76,77].

Furan inhibitors can also be used as byproducts. Furfural is chemically produced at large scale for
application as a solvent or as a building block for resins. HMF and furfural are additionally applied as
flavour compounds and in the manufacture of pharmaceuticals [2,78–80].

2.2. Weak Acids

HMF and furfural can further break down to produce levulinic acid, formic acid, and furonic acid
when the severity factor increases [43]. In the case of acetic acid, it is formed from the acetyl group of
hemicellulose fraction [43,59].

The toxicity of these acids is mainly due to its undissociated form; thus, the medium pH is
important [37,54,77]. Acids disrupt cellular energy generation by collapsing pH gradients especially
at low pH [45]. Although formic acid has a low pKa of 3.75 and thus a lower concentration of
undissociated molecules at the pH prevailing in fermentation, it is more toxic to the yeast due to
its small size compared with acetic acid (pKa 4.75) and levulinic acid (pKa 4.66). The small size
of the formic acid molecule is thought to increase its mass transport through the cell wall; after
entering the cytosol, the acid dissociates, lowering the pH and inhibiting cell growth. The organic
acids inhibit the yeast when the concentration is so high that yeast cells start to die and they also
partially deactivate enzymes [11,65,81,82]. The relative toxicity is a function of hydrophobicity because
this characteristic determines the ability of the compound to pass through the membrane [45,49].
Alcohols are generally less toxic than related acids or aldehydes, but their toxicity is also related to
hydrophobicity. They appear to cause a breakdown in membrane structure [46].

2.3. Phenolic Compounds

Phenolics, another inhibitor generated from lignin breakdown, may exist in three different
forms: acid, ketone, and aldehyde (e.g., catechol, vanillic acid, syringic acid, vanillone,
syringaldehyde, and conferyl aldehyde). Among other inhibitory derivatives of phenolics, 4-hydroxy
benzoic acid, ferulic acid, and guaiacol are the most commonly observed in lignocellulose acid
hydrolysates [11,22,36,42,59]. Phenolics have been reported to be among the most toxic compounds to
fermentation microorganisms [42,51,54,65]. The phenolic compounds are toxic to the yeast; phenolics
partition into membranes and lead to loss of integrity, interfering with cell growth and sugar
transport [49,83].

In the same way as other inhibitors, phenolics can be used for several applications. Some of
them are based on their antioxidant activity against reactive species involved in aging and in chronic,
autoimmune, inflammatory, coronary, and degenerative diseases [84–87]. Their antioxidant properties
may explain a part of the potential cancer chemopreventive properties [88], although the antioxidant
activity alone is not sufficient to explain their whole set of biological properties [89–92].

2.4. Other Inhibitors

The lignocellulosic raw material also generates tannic acid, terpenes, and other polymers upon
chemical degradation. In addition, SO2 from the raw material hydrolysis may inhibit fermentative
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reactions, being harmful to microbial growth and metabolic activities [22,37,59]. Heavy metal ions
(iron, chromium, nickel, and copper) can originate from corrosion of hydrolysis equipment. Although
they are not always produced in large quantities, they can have some toxic effect on the alcoholic
fermentation microorganisms [37,51].

2.5. Synergistic Effects

The sum of the effects of all toxic compounds in hydrolysates is almost certain to be more
than the sum of the parts. Synergies have already been detected in simple combinations, and the
ability to test for toxic effects on a high throughput manner will allow for the identification of more
complex combinations of individual compounds or fractions. The existence of these synergies
implies that alteration of pretreatment and conditioning steps to eliminate a single member of
a synergistic combination could have a greater impact than elimination of compounds acting
alone. It also helps explain why enhanced resistance to furfural alone can improve fermentation
in hydrolysate [48,49,72,93].

Synergistic and antagonistic effects are thought to occur when combinations are more inhibitory
than the sum of the individual effects. Many references point out the synergistic effect of different
inhibitors in lignocellulosic fermentation [22,41,44,45,47–49,94]. Furan inhibitors in combination with
acids, especially acetic acid, have been demonstrated to have synergistic effects [44,47–49]. However,
some combinations were less than the sum of individual components, indicating an antagonistic effect
and probably due to the fact that one compound could interfere with the toxic action of the other.
Examples of these protective interactions are vanillyl alcohol with catechol, coniferyl alcohol, guaiacol,
hydroquinone, and methylcatechol as well as the combination of furfural with methylcatechol [49].
However, due to a lack of understanding about the synergistic interactions among inhibitors and the
mechanisms of these interactions, highly inhibitor-resistant microorganisms might not be expected in
the short term [51].

3. Physico-Chemical Detoxification Processes

The low-concentration of fermentable sugar in original samples derived from lignocellulose
hydrolysates would lead to an extremely low product concentration in the fermentation process.
Therefore, the removal of inhibitors and concentration of sugars in lignocellulosic hydrolysates before
fermentation is becoming more and more important [18].

The formation of inhibitors during biomass (pre-)treatment may be prevented by careful
control of the process parameters. Although considerable progress has been made in lab-scale
hydrolysis processes [95], it should be noted that the formation of inhibitory byproducts is not
easily prevented in an economical way at an industrial scale. Hence, it is often preferred to remove
inhibitors prior to fermentation. Therefore, in order to facilitate fermentation processes, additional
remediation treatments—including physical, chemical, or biochemical detoxification procedures—are
often required to remove these inhibitory compounds [37,59,96]. Several techniques have been
proposed for the hydrolysate detoxification, including overliming or neutralisation [35,55,65,96,97],
adsorption [10,37,98–107], liquid–liquid extraction [63,108], evaporation [62,65,109,110], and enzyme
or microorganism treatment [57,65,111,112].

Detoxification methods can be divided into the following three main groups [3]: biological,
physical, and chemical. Biological treatments involve the use of microorganisms or enzymes that act
on the toxic compounds present in the hydrolysate by changing their chemical structures [57,111].
The physical methods promote the removal of toxic compounds from the medium without changing
their chemical structures [10,62,63,102,105]. On the other hand, the main chemical detoxification
methods employed in hydrolysate treatment are based on the addition of reductive substances and
pH modification [35,96,113].

Nevertheless, the effectiveness of a detoxification method depends on (i) the type of hemicellulosic
hydrolysate, because each type of hydrolysate has a different degree of toxicity; (ii) the concentration
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of inhibitors; and (iii) the microorganism being used, because each species of micro-organism has a
different degree of tolerance to inhibitors [50,53,54,59,114,115]. Furthermore, as each detoxification
method is more specific for certain types of compounds, better results could be obtained by combining
two or more different methods [50].

On the other hand, inhibitor removal is a very selective process and it is difficult to identify
a standard process that provides satisfactory results for all substrates. In addition, not all potentially
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory
compounds present in various hydrolysates remains a critical area of research for enabling the
development of improved detoxification methods. Considering the need to keep low the process
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the
abovementioned methods may not be an economically worthwhile approach given the costs associated
with additional processing steps and the loss of fermentable sugars [59].

However, these additional steps add cost and complexity to the process and generate extra
waste products. Economic improvements in biofuel and bioproduct production could be achieved if
these inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for
value-added products of commercial interest [22].

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated
in this review. Results from the literature have been graphed and discussed in relation to the main
inhibitory compounds and taking into account the lignocellulosic raw material.

3.1. Evaporation

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure [50,59].
Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118].
A different colour in columns has been used in relation to the lignocellulosic raw material. In addition,
in order to compare the obtained results, all of the data have been correlated to the concentration
factor employed based on glucose (100% being the same concentration factor as glucose). In all cases,
70 ˝C has been used in the vacuum evaporation process. As can be observed in Figure 2, all sugar
content has similar results to glucose with concentration factors between 89% and 117% [37,63,116–118],
giving the same concentration in the evaporation unit, except for xylose and arabinose in the case of
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addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
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was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
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was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
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Figure 2. Results of sugar and inhibitors concentration during vacuum evaporation for  corn stover 
[63],  eucalyptus wood [50,62],  rice straw [37,117],  soybean hulls [116], and  olive tree 
pruning residue [118] hydrolysates. The number included in the x axis is related to the reference 
number. Cell: Cellobiose, M: Mannose, L: Levulinic acid. 

3.2. Liming and Overliming 

Several chemical methods have been applied to precipitate toxic compounds such as alkali 
treatment using Ca(OH)2 or NaOH. By employing this overliming treatment, the pH of the hydrolysate 
can be increased to 9–10, and subsequently readjusted to an appropriate value using acid addition prior 
to microbial fermentation. This method in general reduces aldehyde and ketone inhibitors, including 
furfural and HMF, and improves microbial growth and fermentation performance [35,36,96]. 

Treatment of the hydrolysate with Ca(OH)2 prior to fermentation, referred to as overliming, is one 
of the most efficient detoxification methods and has been commonly used in studies reported 
previously. However, one drawback with overliming is the formation of a calcium sulphate precipitate. 
Another limitation is a considerable degradation of fermentable sugars if it is done under too harsh 
conditions (high pH and high temperature). In addition, a very harsh overliming condition might cause 
quantitative degradation of some inhibitors. Thus, the detoxifying treatment must be systematically 
evaluated to determine the optimum conditions where a high improvement in fermentability is 
achieved with the lowest sugar degradation [77]. 

Figures 3–8 show the obtained results of overliming or liming from the literature 
[56,57,65,77,96,97,113,117–124]. In all cases, the lignocellulosic raw material used in the papers is 
shown by a different colour. Figure 3 shows the results of weak acid (acetic, formic, and levulinic 
acids) removal. Negative values are due to the dilution or concentration of the sample during the 
experiment and the negative value of removal means that the final concentration of the inhibitor is 
higher after the treatment. In all cases, no big differences among the raw material are detected with 
slightly higher values of removal when  olive residues have been detoxified. The best results have 
been given in the case of levulinic acid for  brewery’s spent grain hydrolysates [119]. In this case, 
Ca(OH)2 at pH 10 and 1 h of process is used. Results close to 50% of acetic acid have been obtained 
in the case of  olive residues liming at pH equal to 5.5 using Ca(OH)2 during 10 min. The same 
results have been obtained when overliming at pH 10 with Ca(OH)2 or CaO during 10 min followed 
by a decrease of the pH to 5.5 with H2SO4 is used [118] and for formic acid when overliming with 
Ca(OH)2 is used with a previous water extraction [97]. The detoxification of weak acids in the rest of 
the experiments is close to 20%. 
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can be increased to 9–10, and subsequently readjusted to an appropriate value using acid addition prior 
to microbial fermentation. This method in general reduces aldehyde and ketone inhibitors, including 
furfural and HMF, and improves microbial growth and fermentation performance [35,36,96]. 

Treatment of the hydrolysate with Ca(OH)2 prior to fermentation, referred to as overliming, is one 
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previously. However, one drawback with overliming is the formation of a calcium sulphate precipitate. 
Another limitation is a considerable degradation of fermentable sugars if it is done under too harsh 
conditions (high pH and high temperature). In addition, a very harsh overliming condition might cause 
quantitative degradation of some inhibitors. Thus, the detoxifying treatment must be systematically 
evaluated to determine the optimum conditions where a high improvement in fermentability is 
achieved with the lowest sugar degradation [77]. 

Figures 3–8 show the obtained results of overliming or liming from the literature 
[56,57,65,77,96,97,113,117–124]. In all cases, the lignocellulosic raw material used in the papers is 
shown by a different colour. Figure 3 shows the results of weak acid (acetic, formic, and levulinic 
acids) removal. Negative values are due to the dilution or concentration of the sample during the 
experiment and the negative value of removal means that the final concentration of the inhibitor is 
higher after the treatment. In all cases, no big differences among the raw material are detected with 
slightly higher values of removal when  olive residues have been detoxified. The best results have 
been given in the case of levulinic acid for  brewery’s spent grain hydrolysates [119]. In this case, 
Ca(OH)2 at pH 10 and 1 h of process is used. Results close to 50% of acetic acid have been obtained 
in the case of  olive residues liming at pH equal to 5.5 using Ca(OH)2 during 10 min. The same 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
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Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
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recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
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hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
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[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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olive
tree pruning residue [118] hydrolysates. The number included in the x axis is related to the reference
number. Cell: Cellobiose, M: Mannose, L: Levulinic acid.

3.2. Liming and Overliming

Several chemical methods have been applied to precipitate toxic compounds such as alkali
treatment using Ca(OH)2 or NaOH. By employing this overliming treatment, the pH of the hydrolysate
can be increased to 9–10, and subsequently readjusted to an appropriate value using acid addition prior
to microbial fermentation. This method in general reduces aldehyde and ketone inhibitors, including
furfural and HMF, and improves microbial growth and fermentation performance [35,36,96].

Treatment of the hydrolysate with Ca(OH)2 prior to fermentation, referred to as overliming,
is one of the most efficient detoxification methods and has been commonly used in studies reported
previously. However, one drawback with overliming is the formation of a calcium sulphate precipitate.
Another limitation is a considerable degradation of fermentable sugars if it is done under too harsh
conditions (high pH and high temperature). In addition, a very harsh overliming condition might cause
quantitative degradation of some inhibitors. Thus, the detoxifying treatment must be systematically
evaluated to determine the optimum conditions where a high improvement in fermentability is
achieved with the lowest sugar degradation [77].

Figures 3–8 show the obtained results of overliming or liming from the
literature [56,57,65,77,96,97,113,117–124]. In all cases, the lignocellulosic raw material used in
the papers is shown by a different colour. Figure 3 shows the results of weak acid (acetic, formic,
and levulinic acids) removal. Negative values are due to the dilution or concentration of the sample
during the experiment and the negative value of removal means that the final concentration of the
inhibitor is higher after the treatment. In all cases, no big differences among the raw material are
detected with slightly higher values of removal when
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and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 

brewery’s spent grain hydrolysates [119].
In this case, Ca(OH)2 at pH 10 and 1 h of process is used. Results close to 50% of acetic acid have
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51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
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was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
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neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
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olive residues liming at pH equal to 5.5 using Ca(OH)2 during 10 min.
The same results have been obtained when overliming at pH 10 with Ca(OH)2 or CaO during 10 min
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
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costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
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[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
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117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
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due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
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concentration factor employed based on glucose (100% being the same concentration factor as 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
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however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
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inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 
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in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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Figure 5. Results of HMF removal during liming and/or overliming for  olive residues [97,118,123], 

 brewery’s spent grain [119],  Kappaphycus alvarezii [77],  sugarcane bagasse [113],  rice straw 
[117], and  spruce [120] hydrolysates. The number included in the x axis is related to the reference 
number. 

Figure 6 shows the results of phenolics. In this case, the treated lignocellulosic material has a 
great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
residues are treated [118], 41% for  sugarcane bagasse [96], and 29% in the case of  spruce 
hydrolysates [120]. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 
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products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 
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[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
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due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
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arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
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recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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spruce hydrolysate, using a pH value of 12 with Ca(OH)2 and a reaction time of
more than 20 h (the same conditions when furans are completely removed). In this case, losses of
glucose from 65% to 71% at 60 ˝C and from 33% to 47% at 25 ˝C; xylose from 87% to 88% at 60 ˝C
and from 75% to 77% at 25 ˝C; mannose from 64% to 69% at 60 ˝C and from 30% to 48% at 25 ˝C;
and galactose from 69% to 71% at 60 ˝C and from 69% to 86% at 25 ˝C are obtained [120].
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
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compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
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inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
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glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
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great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
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objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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is related to the reference number.

According to all results, liming or overliming can be used to remove some acids such as levulinic
or formic acids, furans and phenolics; however, overliming does not remove acetic acids, which are
known to inhibit ethanol production at concentrations greater than 2 g/L [51,125]. An optimisation of
the pH between 10 and 11 and reaction time should be done, depending on the inhibitor and the raw
material. Furthermore, in all cases, Ca(OH)2 is recommended.

3.3. Adsorption

Adsorption enables the separation of selected compounds from dilute solutions. Compared to
alternative technologies, adsorption is attractive for its relative simplicity of design, operation and
scale-up, high capacity and favourable rate, insensitivity to toxic substances, ease of regeneration,
and low cost. Additionally, it avoids using toxic solvents and minimises degradation [92]. Adsorption is
a technique that is used frequently in biorefineries for product polishing and removal of minor
impurities [126].

Activated charcoal is the most employed adsorbent [10,57,62,77,106,116,118,119]. However,
other adsorption methods for detoxification include the use of zeolite [127], eartomaceous earth [128],
wood charcoal [129], diatomacenous earth [128], or polymeric adsorbents [100]. Zeolites are widely
used as ion-exchange beds in domestic and commercial water purification, softening, and other
applications. Zeolites have a porous structure that can accommodate a wide variety of cations, such as
Na+, K+, Ca2+, Mg2+, and others, which are loosely held and can readily be exchanged in a contact
solution. Eken-Saraçoglu and Arslan [127] conducted detoxification tests with CaO and combinations
with zeolite during ethanol production from corn cob hemicellulose hydrolysate by Pichia stipitis
and Candida shehatae. They found that the single neutralisation method did not support high ethanol
production (2.8 g/L) during fermentation of hydrolysates by C. shehatae with only 2.8 g/L ethanol
obtained. However, neutralisation and zeolite treatments significantly increased the final ethanol
concentration to approximately 6.0 g/L. Wood charcoals were also tested for removal of inhibitors
such as furan and phenolic compounds in wood hydrolysates [129]. Wood charcoals prepared at
various temperatures were found to selectively remove only the inhibitors without reducing the levels
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of fermentable sugars. A wood charcoal treatment with a wood charcoal weight to hydrolysates ratio
of 0.07 could enhance the fermentation of wood hydrolysates [129]. Polymeric adsorbents can also be
used to remove aldehydes, such as furfural, that inhibit fermentation. Weil et al. [100] investigated the
removal of furfural from a biomass hydrolysate using XAD-4 (polystyrene-divinylbenzene copolymer
bead) and XAD-7 (methacrylic ester bead) polymeric adsorbents and manufactured by Rohm and
Haas (Philadelphia, PA, USA). The XAD-4 showed higher specificity for furfural removal than XAD-7,
and it also had little interaction with glucose.

Different authors have studied the detoxification of lignocellulosic hydrolysates by adsorption
with activated charcoal. Figure 9 shows the obtained results for
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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were found to selectively remove only the inhibitors without reducing the levels of fermentable sugars. 
A wood charcoal treatment with a wood charcoal weight to hydrolysates ratio of 0.07 could enhance 
the fermentation of wood hydrolysates [129]. Polymeric adsorbents can also be used to remove 
aldehydes, such as furfural, that inhibit fermentation. Weil et al. [100] investigated the removal of 
furfural from a biomass hydrolysate using XAD-4 (polystyrene-divinylbenzene copolymer bead) and 
XAD-7 (methacrylic ester bead) polymeric adsorbents and manufactured by Rohm and Haas 
(Philadelphia, PA, USA). The XAD-4 showed higher specificity for furfural removal than XAD-7, and 
it also had little interaction with glucose. 

Different authors have studied the detoxification of lignocellulosic hydrolysates by adsorption 
with activated charcoal. Figure 9 shows the obtained results for  brewery’s spent grain [119],  
sugarcane bagasse [57],  hardwood chips [10],  soybean hulls [116],  Eucalyptus grandis [62],  
Kappaphycus alvarezii [77],  olive tree pruning residue [118], and  rape straw [106] hydrolysates. 
However, the kind of raw material has no influence on the adsorption results. 

As can be observed in Figure 9, the best results are obtained for levulinic acid (from 40% to 100%), 
furans, furfural, and HMF (from 28% to 100%), following by phenolics (from 50% to 88%). When acetic 
and formic acids are removed, the highest value of detoxification is 47% for  sugarcane bagasse [57] 
and 42% for  hardwood chips [10], respectively; and the losses of sugars are under 27% of glucose and 
43% of arabinose in the case of  Eucalyptus grandis [62], 8% for mannose for  soybean hulls [116], 20% 
of galactose when  Kappaphycus alvarezii hydrolysates are detoxified [77], and only 8% of xylose in the 
case of  soybean hulls [116]. On the other hand, regarding the adsorption of acetic acid, in spite of 
having a low value, the best results are obtained in the case of using lower pHs in the hydrolysate, from 
1.8 to 2.5, according to the results of Villareal et al. [62] and Schirmer-Michel et al. [116]. This behaviour 
is also shown in the results of HMF and phenolics; however, the losses of sugars in this case are higher 
[62]. 

 
Figure 9. Results of losses of sugar and removal of inhibitors during adsorption with activated charcoal 
for  hardwood [10,62],  brewery’s spent grain [119],  soybean hulls [116],  sugarcane bagasse 
[57],  Rape straw [106],  Kappaphycus alvarezii [77], and  olive residues [118] hydrolysates. The 
number included in the x axis is related to the reference number. M: Mannose, Gal: Galactose. 

In conclusion, adsorption treatment is recommended to detoxify different kinds of lignocellulosic 
materials, from hardwood to softwood and other lignocellulosic residues, giving very good results in 

rape straw [106] hydrolysates.
However, the kind of raw material has no influence on the adsorption results.

As can be observed in Figure 9, the best results are obtained for levulinic acid (from 40% to 100%),
furans, furfural, and HMF (from 28% to 100%), following by phenolics (from 50% to 88%). When
acetic and formic acids are removed, the highest value of detoxification is 47% for
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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Figure 11. Results of removal of furans during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. F: Furans. 

 
Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  

hardwood chips [10], respectively; and the losses of sugars are under
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Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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and only 8% of xylose in the case of
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

soybean hulls [116]. On the other hand, regarding the
adsorption of acetic acid, in spite of having a low value, the best results are obtained in the case of
using lower pHs in the hydrolysate, from 1.8 to 2.5, according to the results of Villareal et al. [62]
and Schirmer-Michel et al. [116]. This behaviour is also shown in the results of HMF and phenolics;
however, the losses of sugars in this case are higher [62].
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Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
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development of improved detoxification methods. Considering the need to keep low the process 
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abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 
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inhibitory compounds and taking into account the lignocellulosic raw material. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or
recovery of the adsorbate will determine the economics and viability of the process [51].

3.4. Ion Exchange Resins

Ion exchange resin treatment is one of the most efficient methods for lignocellulosic hydrolysate
detoxification [54]. In this case, depending on the kind of inhibitor, anionic or cationic resin can be used.
However, due to the complex structure of the lignocellulosic materials—all of the inhibitors are usually
associated to complex molecules with anions and cations—both kinds of resins are recommended.
Figures 10–12 show the results of removal of inhibitors and the losses of sugars in the case of using ion
exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids.

The best results have been obtained for levulinic acid. Regarding the rest of the acids,
the best results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond,
CA, USA) [98] and A193 S [130] for
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

Eucalyptus grandis [62]. However,
low results of acids (acetic and formic) are obtained for
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 

brewery’s spent grain hydrolysate [119].
When cationic resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for
acetic acid and 23% of formic acid are obtained, while removals close to 100% are obtained in the case
of levulinic acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs.

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic
resins. In this case, the most important variable is the pH value. When anionic resin is used,
a pH value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and
Villarreal et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is
recommended [98]. The results of removal of furfural are higher than HMF and with respect to
the raw material, the best results are obtained for
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
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The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
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Figure 10. Results of removal of acids during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. 
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et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
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Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  

Eucalyptus grandis [62] hydrolysates.
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or 
recovery of the adsorbate will determine the economics and viability of the process [51]. 

3.4. Ion Exchange Resins 

Ion exchange resin treatment is one of the most efficient methods for lignocellulosic hydrolysate 
detoxification [54]. In this case, depending on the kind of inhibitor, anionic or cationic resin can be used. 
However, due to the complex structure of the lignocellulosic materials—all of the inhibitors are usually 
associated to complex molecules with anions and cations—both kinds of resins are recommended. 
Figures 10–12 show the results of removal of inhibitors and the losses of sugars in the case of using ion 
exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids. 

The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
good results have been obtained for acetic acid for  Eucalyptus grandis [62]. However, low results of 
acids (acetic and formic) are obtained for  brewery’s spent grain hydrolysate [119]. When cationic 
resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
and 23% of formic acid are obtained, while removals close to 100% are obtained in the case of levulinic 
acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs. 

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic 
resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 
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resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
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resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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the increase of temperature does not affect the detoxification process as much. In the results of Millati 
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and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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related to the reference number. F: Furans. 

 
Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 
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were found to selectively remove only the inhibitors without reducing the levels of fermentable sugars. 
A wood charcoal treatment with a wood charcoal weight to hydrolysates ratio of 0.07 could enhance 
the fermentation of wood hydrolysates [129]. Polymeric adsorbents can also be used to remove 
aldehydes, such as furfural, that inhibit fermentation. Weil et al. [100] investigated the removal of 
furfural from a biomass hydrolysate using XAD-4 (polystyrene-divinylbenzene copolymer bead) and 
XAD-7 (methacrylic ester bead) polymeric adsorbents and manufactured by Rohm and Haas 
(Philadelphia, PA, USA). The XAD-4 showed higher specificity for furfural removal than XAD-7, and 
it also had little interaction with glucose. 

Different authors have studied the detoxification of lignocellulosic hydrolysates by adsorption 
with activated charcoal. Figure 9 shows the obtained results for  brewery’s spent grain [119],  
sugarcane bagasse [57],  hardwood chips [10],  soybean hulls [116],  Eucalyptus grandis [62],  
Kappaphycus alvarezii [77],  olive tree pruning residue [118], and  rape straw [106] hydrolysates. 
However, the kind of raw material has no influence on the adsorption results. 

As can be observed in Figure 9, the best results are obtained for levulinic acid (from 40% to 100%), 
furans, furfural, and HMF (from 28% to 100%), following by phenolics (from 50% to 88%). When acetic 
and formic acids are removed, the highest value of detoxification is 47% for  sugarcane bagasse [57] 
and 42% for  hardwood chips [10], respectively; and the losses of sugars are under 27% of glucose and 
43% of arabinose in the case of  Eucalyptus grandis [62], 8% for mannose for  soybean hulls [116], 20% 
of galactose when  Kappaphycus alvarezii hydrolysates are detoxified [77], and only 8% of xylose in the 
case of  soybean hulls [116]. On the other hand, regarding the adsorption of acetic acid, in spite of 
having a low value, the best results are obtained in the case of using lower pHs in the hydrolysate, from 
1.8 to 2.5, according to the results of Villareal et al. [62] and Schirmer-Michel et al. [116]. This behaviour 
is also shown in the results of HMF and phenolics; however, the losses of sugars in this case are higher 
[62]. 
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resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or 
recovery of the adsorbate will determine the economics and viability of the process [51]. 

3.4. Ion Exchange Resins 

Ion exchange resin treatment is one of the most efficient methods for lignocellulosic hydrolysate 
detoxification [54]. In this case, depending on the kind of inhibitor, anionic or cationic resin can be used. 
However, due to the complex structure of the lignocellulosic materials—all of the inhibitors are usually 
associated to complex molecules with anions and cations—both kinds of resins are recommended. 
Figures 10–12 show the results of removal of inhibitors and the losses of sugars in the case of using ion 
exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids. 

The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
good results have been obtained for acetic acid for  Eucalyptus grandis [62]. However, low results of 
acids (acetic and formic) are obtained for  brewery’s spent grain hydrolysate [119]. When cationic 
resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
and 23% of formic acid are obtained, while removals close to 100% are obtained in the case of levulinic 
acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs. 

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic 
resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 

 
Figure 10. Results of removal of acids during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. 
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
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Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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were found to selectively remove only the inhibitors without reducing the levels of fermentable sugars. 
A wood charcoal treatment with a wood charcoal weight to hydrolysates ratio of 0.07 could enhance 
the fermentation of wood hydrolysates [129]. Polymeric adsorbents can also be used to remove 
aldehydes, such as furfural, that inhibit fermentation. Weil et al. [100] investigated the removal of 
furfural from a biomass hydrolysate using XAD-4 (polystyrene-divinylbenzene copolymer bead) and 
XAD-7 (methacrylic ester bead) polymeric adsorbents and manufactured by Rohm and Haas 
(Philadelphia, PA, USA). The XAD-4 showed higher specificity for furfural removal than XAD-7, and 
it also had little interaction with glucose. 

Different authors have studied the detoxification of lignocellulosic hydrolysates by adsorption 
with activated charcoal. Figure 9 shows the obtained results for  brewery’s spent grain [119],  
sugarcane bagasse [57],  hardwood chips [10],  soybean hulls [116],  Eucalyptus grandis [62],  
Kappaphycus alvarezii [77],  olive tree pruning residue [118], and  rape straw [106] hydrolysates. 
However, the kind of raw material has no influence on the adsorption results. 

As can be observed in Figure 9, the best results are obtained for levulinic acid (from 40% to 100%), 
furans, furfural, and HMF (from 28% to 100%), following by phenolics (from 50% to 88%). When acetic 
and formic acids are removed, the highest value of detoxification is 47% for  sugarcane bagasse [57] 
and 42% for  hardwood chips [10], respectively; and the losses of sugars are under 27% of glucose and 
43% of arabinose in the case of  Eucalyptus grandis [62], 8% for mannose for  soybean hulls [116], 20% 
of galactose when  Kappaphycus alvarezii hydrolysates are detoxified [77], and only 8% of xylose in the 
case of  soybean hulls [116]. On the other hand, regarding the adsorption of acetic acid, in spite of 
having a low value, the best results are obtained in the case of using lower pHs in the hydrolysate, from 
1.8 to 2.5, according to the results of Villareal et al. [62] and Schirmer-Michel et al. [116]. This behaviour 
is also shown in the results of HMF and phenolics; however, the losses of sugars in this case are higher 
[62]. 

 
Figure 9. Results of losses of sugar and removal of inhibitors during adsorption with activated charcoal 
for  hardwood [10,62],  brewery’s spent grain [119],  soybean hulls [116],  sugarcane bagasse 
[57],  Rape straw [106],  Kappaphycus alvarezii [77], and  olive residues [118] hydrolysates. The 
number included in the x axis is related to the reference number. M: Mannose, Gal: Galactose. 

In conclusion, adsorption treatment is recommended to detoxify different kinds of lignocellulosic 
materials, from hardwood to softwood and other lignocellulosic residues, giving very good results in 
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Figure 3. Results of acid removal during liming and/or overliming for  olive residues [97,118],  
brewery’s spent grain [119],  sugarcane bagasse [57,113],  rice straw [117],  spruce [113,120], 
and  Kappaphycus alvarezii [77] hydrolysates. The number included in the x axis is related to the 
reference number. 

Figures 4 and 5 show the results of furan derivatives. In all cases, a great variability of results is 
obtained, depending on the experiments; however, two different behaviours can be observed in relation 
to the raw material: (i) in the case of using  olive tree pruning or olive stones,  sugarcane bagasse,  
rice straw, and  Kappaphycus alvarezii (cottonii), a maximum of 80% detoxification is obtained; 
however; (ii) when  brewery’s spent grain hydrolysate or  spruce hydrolysate are treated, close to 
100% is obtained in both furfural and HMF in most cases [119,120]. In all cases, an increase in time (red 
arrows in the figure) and pH in the experiments gives better results of both furfural and HMF; however, 
the increase of temperature does not affect the detoxification process as much. In the results of Millati 
et al. [120], the use of Ca(OH)2 with a pH close to 12 with a reaction time of more than 20 h is 
recommended to obtain detoxification results close to 100%. When NaOH or NH4OH is used, instead 
of Ca(OH)2, maximum percentages of removal between 33% and 43% in the case of furfural and 23% 
and 47% for HMF are obtained, with the best results, from 40% to 47%, occurring when NH4OH is 
used [113,118]. 

sugarcane bagasse [57,101],

Materials 2016, 9, 574 14 of 36 

 

the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or 
recovery of the adsorbate will determine the economics and viability of the process [51]. 

3.4. Ion Exchange Resins 

Ion exchange resin treatment is one of the most efficient methods for lignocellulosic hydrolysate 
detoxification [54]. In this case, depending on the kind of inhibitor, anionic or cationic resin can be used. 
However, due to the complex structure of the lignocellulosic materials—all of the inhibitors are usually 
associated to complex molecules with anions and cations—both kinds of resins are recommended. 
Figures 10–12 show the results of removal of inhibitors and the losses of sugars in the case of using ion 
exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids. 

The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
good results have been obtained for acetic acid for  Eucalyptus grandis [62]. However, low results of 
acids (acetic and formic) are obtained for  brewery’s spent grain hydrolysate [119]. When cationic 
resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
and 23% of formic acid are obtained, while removals close to 100% are obtained in the case of levulinic 
acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs. 

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic 
resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 
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sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

rice straw [117],
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Figure 11. Results of removal of furans during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. F: Furans. 

 
Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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were found to selectively remove only the inhibitors without reducing the levels of fermentable sugars. 
A wood charcoal treatment with a wood charcoal weight to hydrolysates ratio of 0.07 could enhance 
the fermentation of wood hydrolysates [129]. Polymeric adsorbents can also be used to remove 
aldehydes, such as furfural, that inhibit fermentation. Weil et al. [100] investigated the removal of 
furfural from a biomass hydrolysate using XAD-4 (polystyrene-divinylbenzene copolymer bead) and 
XAD-7 (methacrylic ester bead) polymeric adsorbents and manufactured by Rohm and Haas 
(Philadelphia, PA, USA). The XAD-4 showed higher specificity for furfural removal than XAD-7, and 
it also had little interaction with glucose. 

Different authors have studied the detoxification of lignocellulosic hydrolysates by adsorption 
with activated charcoal. Figure 9 shows the obtained results for  brewery’s spent grain [119],  
sugarcane bagasse [57],  hardwood chips [10],  soybean hulls [116],  Eucalyptus grandis [62],  
Kappaphycus alvarezii [77],  olive tree pruning residue [118], and  rape straw [106] hydrolysates. 
However, the kind of raw material has no influence on the adsorption results. 

As can be observed in Figure 9, the best results are obtained for levulinic acid (from 40% to 100%), 
furans, furfural, and HMF (from 28% to 100%), following by phenolics (from 50% to 88%). When acetic 
and formic acids are removed, the highest value of detoxification is 47% for  sugarcane bagasse [57] 
and 42% for  hardwood chips [10], respectively; and the losses of sugars are under 27% of glucose and 
43% of arabinose in the case of  Eucalyptus grandis [62], 8% for mannose for  soybean hulls [116], 20% 
of galactose when  Kappaphycus alvarezii hydrolysates are detoxified [77], and only 8% of xylose in the 
case of  soybean hulls [116]. On the other hand, regarding the adsorption of acetic acid, in spite of 
having a low value, the best results are obtained in the case of using lower pHs in the hydrolysate, from 
1.8 to 2.5, according to the results of Villareal et al. [62] and Schirmer-Michel et al. [116]. This behaviour 
is also shown in the results of HMF and phenolics; however, the losses of sugars in this case are higher 
[62]. 

 
Figure 9. Results of losses of sugar and removal of inhibitors during adsorption with activated charcoal 
for  hardwood [10,62],  brewery’s spent grain [119],  soybean hulls [116],  sugarcane bagasse 
[57],  Rape straw [106],  Kappaphycus alvarezii [77], and  olive residues [118] hydrolysates. The 
number included in the x axis is related to the reference number. M: Mannose, Gal: Galactose. 

In conclusion, adsorption treatment is recommended to detoxify different kinds of lignocellulosic 
materials, from hardwood to softwood and other lignocellulosic residues, giving very good results in 

rape straw [106] hydrolysates.
The number included in the x axis is related to the reference number.
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Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange
resin treatments. Phenolics are well removed in the case of using anionic resins with results
from 57% to 79% [57,98,106] and only a small influence is observed for the initial pH and the raw
material. In the case of metals, very good results are obtained for chromium, following by Zn (46%),
Fe (29%), Na (15%), and Ni (4%) [101]. Regarding sugars, this is one of the best methods with only a
small amount of sugar lost in all of the experiments. The highest losses of sugars have been obtained
for
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Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
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Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  

Eucalyptus grandis at lower pHs (1.8), giving 44% losses of glucose and 29% of arabinose [62].

3.5. Liquid–Liquid Extraction

In biorefineries, liquid-liquid extraction is widely implemented for recovering fuels and
chemicals from biological mixtures such as fermentation broths [126]. A solvent (extractant) that
is immiscible with the process solution is used to extract the solute. After extraction, the extract
(extracted solute + extractant) is separated from the raffinate (original solution depleted of the solute)
by another unit operation, most commonly a gravity settler. The solute is recovered from the extract by
evaporating the extractant. Extraction is an equilibrium-governed process that relies on the distribution
of the solute between the original and extracting solvents. Important factors for selecting the extraction
solvent include: partition coefficient (distribution constant), immiscibility with the original solvent,
and boiling point for evaporation [126].

Figure 13 shows the obtained results of solvent extraction. Chloroform, ethyl acetate, n-hexane,
trialkylamine, trichloroethylene, cloud point extraction (CPE), and boronic acids with organic solvent
have been used for
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

olive tree pruning residue [118], sugarcane bagasse [131]
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or 
recovery of the adsorbate will determine the economics and viability of the process [51]. 

3.4. Ion Exchange Resins 

Ion exchange resin treatment is one of the most efficient methods for lignocellulosic hydrolysate 
detoxification [54]. In this case, depending on the kind of inhibitor, anionic or cationic resin can be used. 
However, due to the complex structure of the lignocellulosic materials—all of the inhibitors are usually 
associated to complex molecules with anions and cations—both kinds of resins are recommended. 
Figures 10–12 show the results of removal of inhibitors and the losses of sugars in the case of using ion 
exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids. 

The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
good results have been obtained for acetic acid for  Eucalyptus grandis [62]. However, low results of 
acids (acetic and formic) are obtained for  brewery’s spent grain hydrolysate [119]. When cationic 
resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
and 23% of formic acid are obtained, while removals close to 100% are obtained in the case of levulinic 
acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs. 

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic 
resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 

 
Figure 10. Results of removal of acids during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. 

corn stover [63,132],
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

wood [134], and
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Figure 4. Results of furans and furfural removal during liming and/or overliming for  olive residues 
[97,118,123],  brewery’s spent grain [119],  sugarcane bagasse [57,96,113,121],  rice straw [117], 

 spruce [56,65,113,120,122], and  synthetic [124] hydrolysates. The number included in the x axis 
is related to the reference number. 

 
Figure 5. Results of HMF removal during liming and/or overliming for  olive residues [97,118,123], 

 brewery’s spent grain [119],  Kappaphycus alvarezii [77],  sugarcane bagasse [113],  rice straw 
[117], and  spruce [120] hydrolysates. The number included in the x axis is related to the reference 
number. 

Figure 6 shows the results of phenolics. In this case, the treated lignocellulosic material has a 
great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
residues are treated [118], 41% for  sugarcane bagasse [96], and 29% in the case of  spruce 
hydrolysates [120]. 

synthetic [135] hydrolysates. Both ethyl acetate and trialkylamine
give the best results for furans and phenolics [63,118,132–134], trialkylamine, and trichloroethylene in
the case of acids [63,132,134]. Wilson et al. [133] found that ethyl acetate extraction was more effective
than roto-evaporation in removing the inhibitors. The roto-evaporation removed furfural and most of
the acetic acid but did not reduce lignin-derivative levels. The ethyl acetate extraction removed all
the inhibitory compounds, except acetic acid, which was not completely removed by the ethyl acetate
extraction process [51,133].
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57% to 79% [57,98,106] and only a small influence is observed for the initial pH and the raw material. 
In the case of metals, very good results are obtained for chromium, following by Zn (46%), Fe (29%), 
Na (15%), and Ni (4%) [101]. Regarding sugars, this is one of the best methods with only a small 
amount of sugar lost in all of the experiments. The highest losses of sugars have been obtained for  
Eucalyptus grandis at lower pHs (1.8), giving 44% losses of glucose and 29% of arabinose [62]. 

3.5. Liquid–Liquid Extraction 

In biorefineries, liquid-liquid extraction is widely implemented for recovering fuels and 
chemicals from biological mixtures such as fermentation broths [126]. A solvent (extractant) that is 
immiscible with the process solution is used to extract the solute. After extraction, the extract (extracted 
solute + extractant) is separated from the raffinate (original solution depleted of the solute) by another 
unit operation, most commonly a gravity settler. The solute is recovered from the extract by evaporating 
the extractant. Extraction is an equilibrium-governed process that relies on the distribution of the solute 
between the original and extracting solvents. Important factors for selecting the extraction solvent 
include: partition coefficient (distribution constant), immiscibility with the original solvent, and boiling 
point for evaporation [126]. 

Figure 13 shows the obtained results of solvent extraction. Chloroform, ethyl acetate, n-hexane, 
trialkylamine, trichloroethylene, cloud point extraction (CPE), and boronic acids with organic solvent 
have been used for  olive tree pruning residue [118], sugarcane bagasse [131]  corn stover 
[63,132], aspen [133],  wood [134], and  synthetic [135] hydrolysates. Both ethyl acetate and 
trialkylamine give the best results for furans and phenolics [63,118,132–134], trialkylamine, and 
trichloroethylene in the case of acids [63,132,134]. Wilson et al. [133] found that ethyl acetate 
extraction was more effective than roto-evaporation in removing the inhibitors. The roto-evaporation 
removed furfural and most of the acetic acid but did not reduce lignin-derivative levels. The ethyl 
acetate extraction removed all the inhibitory compounds, except acetic acid, which was not 
completely removed by the ethyl acetate extraction process [51,133]. 

 
Figure 13. Results of losses of sugar and removal of inhibitors during solvent extraction for  olive 
residues [118],  hardwood [133,134],  corn stover [132], and  synthetic [131,135] hydrolysates. 
The number included in the x axis is related to the reference number. For: Formic acid, Lev: Levulinic 
acid. 

Figure 13. Results of losses of sugar and removal of inhibitors during solvent extraction for
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figure 11. Results of removal of furans during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
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resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 
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resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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the case of furans and phenolics and lower losses of sugars; however, some acids such as acetic and 
formic are not removed from the sample. For all adsorption-based detoxification methods, the reuse or 
recovery of the adsorbate will determine the economics and viability of the process [51]. 
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exchange resins [57,62,98,101,117,119,130]. Figure 10 shows the results of detoxification of weak acids. 

The best results have been obtained for levulinic acid. Regarding the rest of the acids, the best 
results have been obtained using anionic resins AG1-X8 (BioRad Laboratories, Richmond, CA, USA) 
[98] and A193 S [130] for  Picea abies and  corn stover hydrolysates, respectively. In addition, very 
good results have been obtained for acetic acid for  Eucalyptus grandis [62]. However, low results of 
acids (acetic and formic) are obtained for  brewery’s spent grain hydrolysate [119]. When cationic 
resins IRN-77 and XAD-X8 (BioRad Laboratories) are used, removals up to only 14% for acetic acid 
and 23% of formic acid are obtained, while removals close to 100% are obtained in the case of levulinic 
acid [98,119]. The pH needs to be optimised in all cases, giving better results at lower pHs. 

The results of furans, Figure 11, are much better in all cases, using both anionic and/or cationic 
resins. In this case, the most important variable is the pH value. When anionic resin is used, a pH 
value of 0.77 to 5.5 is recommended according to the results of Carvalheiro et al. [119] and Villarreal 
et al. [62]. However, in the case of using a cationic resin, an initial pH value of 10 is recommended 
[98]. The results of removal of furfural are higher than HMF and with respect to the raw material, the 
best results are obtained for  corn stover [130],  brewery’s spent grain [119], and  Eucalyptus 
grandis [62] hydrolysates. 

 
Figure 10. Results of removal of acids during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. 
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Figure 4. Results of furans and furfural removal during liming and/or overliming for  olive residues 
[97,118,123],  brewery’s spent grain [119],  sugarcane bagasse [57,96,113,121],  rice straw [117], 

 spruce [56,65,113,120,122], and  synthetic [124] hydrolysates. The number included in the x axis 
is related to the reference number. 

 
Figure 5. Results of HMF removal during liming and/or overliming for  olive residues [97,118,123], 

 brewery’s spent grain [119],  Kappaphycus alvarezii [77],  sugarcane bagasse [113],  rice straw 
[117], and  spruce [120] hydrolysates. The number included in the x axis is related to the reference 
number. 

Figure 6 shows the results of phenolics. In this case, the treated lignocellulosic material has a 
great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
residues are treated [118], 41% for  sugarcane bagasse [96], and 29% in the case of  spruce 
hydrolysates [120]. 

synthetic [131,135] hydrolysates. The
number included in the x axis is related to the reference number. For: Formic acid, Lev: Levulinic acid.
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Cloud point extraction can be used for phenolics [135]. The surfactant-based cloud point extraction
aqueous two phase system is a new method having the potential for separation and recovery of
inhibitors. Cloud point extraction is an upcoming technology to preconcentrate and separate many
of the trace elements from different chemical and biological systems. The system is sustainable as it
involves benign extractants like surfactants and low concentrations at slightly elevated temperatures
to form clouds that separate out from the bulk solution [136].

3.6. Filtration by Membrane Operations

Membrane technologies, especially the pressure-driven membrane filtration, are efficient,
cost-competitive, and promising separation methods during industrial production process [137].
In integrated biorefineries, membrane-based separation technologies are becoming more widely
deployed due to their versatility, separation efficiency, energy savings, and economic benefits [126,138].
They are used in the food, pharmaceutical, biotechnological, bioprocessing, and chemical industries.
A membrane is a porous, semi-permeable separation medium that fractionates different species from a
solution based on size, shape, solubility, or molecular interactions. The permeate solution containing
the “smaller” species penetrates through the membrane, whereas the retentate solution containing the
“larger” species is rejected by the membrane. Membranes are fabricated from many materials including
inorganics such as alumina or silica or organics such as polyethersulfone, polyamides, or cellulose
acetate. Membranes are commercially available in different module formats, including tubular, hollow
fibre, flat sheet, spiral wound, etc. Membranes can be fabricated with pore diameters ranging from
<1 nm (virtually non-porous) to 10 µm.

Applications of membrane technology for sugar fractionation, sugar concentration, and inhibitor
separation from lignocellulose hydrolysates have been studied in recent years. Microfiltration,
ultrafiltration and nanofiltration are the widely used membrane filtration processes in biorefineries.
The pore diameters of the membranes are in the range of 2 nm to 50 nm for ultrafiltration and 50 nm to
5 µm for microfiltration [126]. Membrane operations are used especially in the case of lignin derivatives
in order to separate the lignin fraction to the hemicellulosic content [139]. However, unfortunately,
wood hydrolysates have a high fouling tendency that might lead to inefficient process operations due
to decreased filtration capacity and increased costs. It is difficult to obtain detailed information about
the main foulants because the composition of the wood hydrolysate is very complex, containing many
challenging components, and studies focusing on fouling in biorefinery applications are thus far not
widely available. Fouling of membranes leads to increasing costs because of a decrease in filtration
capacity, an increase in the number of membrane cleanings required, and a decrease in membrane
lifetime [139]. To be able to effectively separate hemicelluloses with ultra- or microfiltration, fouling
problems should be prevented or at least mitigated. This could be done by pretreating the wood
hydrolysate to remove possible foulants before ultrafiltration [139]. Several methods can be used
to prevent fouling problems in membrane operations of lignocellulosic materials, such as liming or
overliming, centrifugation, liquid–liquid extraction, or adsorption. According to Koivula et al. [139],
the best results were given by the use of adsorption and/or pulse corona discharge treatments.

Figure 14 shows the results of filtration by membrane operations in detoxification of lignocellulosic
hydrolysates. In all cases, very good results have been obtained, except for
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figure 5. Results of HMF removal during liming and/or overliming for  olive residues [97,118,123], 

 brewery’s spent grain [119],  Kappaphycus alvarezii [77],  sugarcane bagasse [113],  rice straw 
[117], and  spruce [120] hydrolysates. The number included in the x axis is related to the reference 
number. 

Figure 6 shows the results of phenolics. In this case, the treated lignocellulosic material has a 
great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
residues are treated [118], 41% for  sugarcane bagasse [96], and 29% in the case of  spruce 
hydrolysates [120]. 

synthetic [52,141] hydrolysates. However, depending on the kind of sugar, high losses can
be obtained, from glucose (up to 5%), xylose and arabinose (up to 14%), and mannose and galactose
(up to 30%) [17,52,141–145].
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Figure 14. Results of losses of sugar and removal of inhibitors during membrane operations for  
olive residues [142],  synthetic [17,52,141,143,144],  rice straw [117] hydrolysates, and  black 
liquor [145]. The number included in the x axis is related to the reference number. Lev: Levulinic acid, 
Lig.: lignin, Ma: Mannose, Ar: Arabinose, Ga: Galactose. 

3.7. Combination Processes 

Table 1 shows a summary of all of the physico-chemical processes described in this paper. Main 
removal of inhibitors, conditions, advantages, and disadvantages are shown in the table. In addition, 
other advantages for all of them are the simplicity of design, operation, and scale-up. In some cases, 
the organic solvents, resins, or adsorbents can be regenerated and the separation of the inhibitors 
from the sugar substrate is easy, giving some other possibilities of valorisation. The costs of all of 
these processes are not high, depending mainly on the reagents and materials (solvents, membranes, 
resins, and adsorbents), with the best option being the overliming process. 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 
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in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figure 6 shows the results of phenolics. In this case, the treated lignocellulosic material has a 
great influence on the final results, giving maximum detoxification results of 66% when  olive tree 
residues are treated [118], 41% for  sugarcane bagasse [96], and 29% in the case of  spruce 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 
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compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 
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Figure 14. Results of losses of sugar and removal of inhibitors during membrane operations for  
olive residues [142],  synthetic [17,52,141,143,144],  rice straw [117] hydrolysates, and  black 
liquor [145]. The number included in the x axis is related to the reference number. Lev: Levulinic acid, 
Lig.: lignin, Ma: Mannose, Ar: Arabinose, Ga: Galactose. 

3.7. Combination Processes 

Table 1 shows a summary of all of the physico-chemical processes described in this paper. Main 
removal of inhibitors, conditions, advantages, and disadvantages are shown in the table. In addition, 
other advantages for all of them are the simplicity of design, operation, and scale-up. In some cases, 
the organic solvents, resins, or adsorbents can be regenerated and the separation of the inhibitors 
from the sugar substrate is easy, giving some other possibilities of valorisation. The costs of all of 
these processes are not high, depending mainly on the reagents and materials (solvents, membranes, 
resins, and adsorbents), with the best option being the overliming process. 
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3.7. Combination Processes

Table 1 shows a summary of all of the physico-chemical processes described in this paper.
Main removal of inhibitors, conditions, advantages, and disadvantages are shown in the table.
In addition, other advantages for all of them are the simplicity of design, operation, and scale-up.
In some cases, the organic solvents, resins, or adsorbents can be regenerated and the separation
of the inhibitors from the sugar substrate is easy, giving some other possibilities of valorisation.
The costs of all of these processes are not high, depending mainly on the reagents and materials
(solvents, membranes, resins, and adsorbents), with the best option being the overliming process.

However, often a combination of different inhibitor removal methods is more efficient than any
single method alone to remove a variety of inhibitory compounds, such as applying pH adjustments,
activated charcoal adsorption, boiling, and/or evaporation [59,146]. Figure 15 shows the obtained
results in combination processes.
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However, often a combination of different inhibitor removal methods is more efficient than any 
single method alone to remove a variety of inhibitory compounds, such as applying pH adjustments, 
activated charcoal adsorption, boiling, and/or evaporation [59,146]. Figure 15 shows the obtained 
results in combination processes.  Eucalyptus wood [50,147],  ponderosa pine wood [43], and  
rice straw [117] hydrolysates have been studied. The best results are obtained for overliming + ethyl 
acetate extraction + activated charcoal adsorption for phenolics for eucalyptus wood hydrolysates 
[147] and the use of activated charcoal or diatomaceous earths + anionic resin in the case of furans for 
eucalyptus wood [50]. In addition, using flocculation + resin-wafer electrodeionisation (RW-EDI), 
good results in all of the inhibitors have been obtained, with a removal of 60%–74% of furans, 77% 
acetic acid, and 97% of sulphuric acid when Ponderosa pine wood hydrolysate is used as the raw 
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Figure 15. Results of losses of sugar and removal of inhibitors when a combination of processes is 
used for  eucalyptus wood [50,147],  ponderosa pine wood [43], and  rice straw [117] 
hydrolysates. 

3.8. Other Processes 

3.8.1. Steam Stripping 

Steam stripping, also known as steam distillation, is a process of removing temperature sensitive 
compounds that cannot be separated by normal distillation due to decomposition at high sustained 
temperatures. It removes volatile inhibitors or inhibiting end-products such as furfural and acetic 
acid; the same as evaporation, the main disadvantage is that this process cannot remove several 
compounds from the lignin content [51]. 

3.8.2. Reducing Agents 

The addition of reducing agents to fermentation media improved their fermentability. Three 
methods have been proposed for overcoming unfavourable oxidation-reduction potential in this 
media: phytochemical reduction by large amounts of yeast; use of reducing agents; and production 
of reducing substances from sugars by either caramelisation or alkali degradation [51]. When Na2SO3, 
NaHSO2, Na3SO3·5H2O, Na2S2O3, Na2S2O5, KHSO3, Na2S, sulphite waste liquor, alkali-decomposed 
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 

3.1. Evaporation 

Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 

Evaporation can be used to detoxify hemicellulosic hydrolysates in the case of acids 
[37,50,62,63,116–118] and furans inhibitors [37,50,62,63,116–118]. Close to 80% of the acetic acid in 
relation to glucose is evaporated at 70 °C [37,50,62,63,116,118]. Huang et al. [117], however, only 
recovered a small fraction of acetic acid in rice straw, in this case, because a previous overliming process 
was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

rice
straw [117] hydrolysates have been studied. The best results are obtained for overliming + ethyl acetate
extraction + activated charcoal adsorption for phenolics for eucalyptus wood hydrolysates [147] and
the use of activated charcoal or diatomaceous earths + anionic resin in the case of furans for eucalyptus
wood [50]. In addition, using flocculation + resin-wafer electrodeionisation (RW-EDI), good results
in all of the inhibitors have been obtained, with a removal of 60%–74% of furans, 77% acetic acid,
and 97% of sulphuric acid when Ponderosa pine wood hydrolysate is used as the raw material [43].
Both processes, flocculation + resin-wafer electrodeionisation, are explained in the following section.
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Table 1. Main physico-chemical separation methods for lignocellulosic materials.

Method Characteristics Inhibitors Advantages Disadvantages

Vacuum
evaporation

- Reduce volatile compounds
- No previous overliming or neutralisation is recommended
- Optimisation for pentoses in relation to hexoses,
depending on the lignocellulosic material is needed

Acids and furans - Lower losses of sugars - Not good for phenolics

Liming and
overliming

- Precipitate toxic compounds with alkali treatment
- The use of Ca(OH)2 is recommended
- Optimisation of time and pH to compromise inhibitors
removal and losses of sugars is needed

Levulinic acid,
furans

- Some phenolics can also
be removed
- Cheapest option
- No high temperature
is necessary

- Not good for acetic acid,
depending on the material
- Sometimes, high losses
of sugars

Adsorption

- Separation of substances with an adsorbent
- Activated charcoal is the most common sorbent; however,
to reduce the losses of sugars, other sorbents can be used
- Optimisation of the initial pH is necessary

Levulinic acid,
furans and
phenolics

- No high temperature
- Ease of regeneration and
valorisation options

- High losses of sugars in
most of cases

Ion exchange
resins

- Separation of substances by ion exchange
- Both anionic and cationic are recommended to remove all
of the inhibitors
- Optimisation of the initial pH in the case of acids
and furans

Acids, furans,
phenolics,
heavy metals

- Removal of all of the inhibitors
- Ease of regeneration and
valorisation options

- High losses of sugars in
some cases
- Costs of the resins

Liquid–liquid
extraction

- Ethyl acetate and trialkylamine for furans and phenolics
- Trialkylamine and trichloroethylene for acids
- Cloud point extraction in the case of phenolics

Acids, furans,
and phenolics

- Ease of regeneration and
valorisation options

- Organic
solvent management

Filtration by
membranes
operations

- Microfiltration, nanofiltration, and ultrafiltration
- Previous pre-treatment to reduce the fouling

Lignin
compounds

- Easy separation and
valorisation options

- Fouling problems
- Optimisation of the sugar
losses is needed
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However, often a combination of different inhibitor removal methods is more efficient than any 
single method alone to remove a variety of inhibitory compounds, such as applying pH adjustments, 
activated charcoal adsorption, boiling, and/or evaporation [59,146]. Figure 15 shows the obtained 
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Steam stripping, also known as steam distillation, is a process of removing temperature sensitive 
compounds that cannot be separated by normal distillation due to decomposition at high sustained 
temperatures. It removes volatile inhibitors or inhibiting end-products such as furfural and acetic 
acid; the same as evaporation, the main disadvantage is that this process cannot remove several 
compounds from the lignin content [51]. 

3.8.2. Reducing Agents 

The addition of reducing agents to fermentation media improved their fermentability. Three 
methods have been proposed for overcoming unfavourable oxidation-reduction potential in this 
media: phytochemical reduction by large amounts of yeast; use of reducing agents; and production 
of reducing substances from sugars by either caramelisation or alkali degradation [51]. When Na2SO3, 
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Figure 11. Results of removal of furans during ion exchange resin treatment for  Picea abies [98],  
sugarcane bagasse [57,101],  corn stover [130],  brewery’s spent grain [119],  rice straw [117],  
Eucalyptus grandis [62], and  rape straw [106] hydrolysates. The number included in the x axis is 
related to the reference number. F: Furans. 

 
Figure 12. Results of removal of phenolics and heavy metals and losses of sugar during ion exchange 
resin treatment for  Picea abies [98],  sugarcane bagasse [57,101],  corn stover [130],  brewery’s 
spent grain [119],  rice straw [117],  Eucalyptus grandis [62], and  rape straw [106] hydrolysates. 
The number included in the x axis is related to the reference number. 

Figure 12 shows the results of phenolics, metals, and losses of sugars in different ion exchange 
resin treatments. Phenolics are well removed in the case of using anionic resins with results from  
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On the other hand, inhibitor removal is a very selective process and it is difficult to identify a 
standard process that provides satisfactory results for all substrates. In addition, not all potentially 
inhibitory compounds have been identified to date. It is possible that some undiscovered compounds 
have synergistic inhibitory effects even at low concentrations, as is the case for the aldehyde inhibitors 
furfural and HMF. Therefore, continuing efforts to identify and understand the profiles of inhibitory 
compounds present in various hydrolysates remains a critical area of research for enabling the 
development of improved detoxification methods. Considering the need to keep low the process 
costs of commodity products such as ethanol, the removal of inhibitors from hydrolysates using the 
abovementioned methods may not be an economically worthwhile approach given the costs 
associated with additional processing steps and the loss of fermentable sugars [59]. 

However, these additional steps add cost and complexity to the process and generate extra waste 
products. Economic improvements in biofuel and bioproduct production could be achieved if these 
inhibitors could be eliminated from the hydrolysates, as they limit their efficient utilisation for value-
added products of commercial interest [22]. 

The physico-chemical detoxification processes for lignocellulosic materials have been evaluated 
in this review. Results from the literature have been graphed and discussed in relation to the main 
inhibitory compounds and taking into account the lignocellulosic raw material. 
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Vacuum evaporation is a physical method that is used to reduce the amounts of volatile 
compounds present in different hydrolysates; therefore, it is considered a detoxification procedure 
[50,59]. Figure 2 shows the results of vacuum evaporation by different authors [37,50,62,63,116–118]. 
A different colour in columns has been used in relation to the lignocellulosic raw material. In 
addition, in order to compare the obtained results, all of the data have been correlated to the 
concentration factor employed based on glucose (100% being the same concentration factor as 
glucose). In all cases, 70 °C has been used in the vacuum evaporation process. As can be observed in 
Figure 2, all sugar content has similar results to glucose with concentration factors between 89% and 
117% [37,63,116–118], giving the same concentration in the evaporation unit, except for xylose and 
arabinose in the case of  eucalyptus wood hydrolysates, whereas xylose and arabinose are between 
51% and 62% in the case of eucalyptus hemicellulosic hydrolysates [62] and from 81% to 99% in the 
case of Eucalyptus grandis [50], pointing out the importance of the optimisation of this method for 
hydrolysates with more pentose sugar content. On the other hand, when vacuum evaporation for  
rice straw hydrolysates is used [37,117], a slight increase of the xylose (13% higher) and arabinose 
(15%–17% higher) is found in relation to glucose. 
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was used in the hydrolysate. In the case of furan derivatives, however, the results are more dispersed. 
Very good results of evaporation of furfural are obtained in all cases except for  soybean hulls 
hydrolysate [116] and  olive tree pruning hydrolysates [118]. In both cases, the reason was probably 
due to the pH of the sample, close to 5.5. Therefore, a previous neutralisation of the liquor is not 
recommended to remove this kind of pollutant; however, if the valorisation of this compound is the 
objective, a previous neutralisation is recommended. Regarding HMF, worse results are obtained in all 
cases. The best result in this case was in the sample of  rice straw hydrolysate with no previous 
neutralisation, giving a detoxification of more than 80% in relation to the final concentration of glucose 
[37]. Regarding the concentration of phenolics, a final percentage between 62% and 92% in relation to 
the concentration of glucose is given; therefore, only a maximum evaporation of about 40% is 
obtained. 

rice straw [117] hydrolysates.

3.8. Other Processes

3.8.1. Steam Stripping

Steam stripping, also known as steam distillation, is a process of removing temperature sensitive
compounds that cannot be separated by normal distillation due to decomposition at high sustained
temperatures. It removes volatile inhibitors or inhibiting end-products such as furfural and acetic acid;
the same as evaporation, the main disadvantage is that this process cannot remove several compounds
from the lignin content [51].

3.8.2. Reducing Agents

The addition of reducing agents to fermentation media improved their fermentability.
Three methods have been proposed for overcoming unfavourable oxidation-reduction potential
in this media: phytochemical reduction by large amounts of yeast; use of reducing agents; and
production of reducing substances from sugars by either caramelisation or alkali degradation [51].
When Na2SO3, NaHSO2, Na3SO3¨ 5H2O, Na2S2O3, Na2S2O5, KHSO3, Na2S, sulphite waste liquor,
alkali-decomposed sugar, ascorbic acid, cysteine, or reduced iron filings were added to the hydrolysates,
an improved fermentation was observed [51]. Diethanolamine, triethanolamine, pyridine, aniline,
dimethylaniline, and similar substances also showed favourable action toward fermentation under
the same conditions. The amount of reducing agent required is dependent upon the length and
temperature of the heat treatment period. The mechanism of detoxification by reducing agents is not
clear. However, researchers have found that toxic and oxidizing compounds such as furfural and HMF
would be reduced to their less inhibitory alcohol forms inside yeast cells associated with oxidation
of NAD(P)H, and redirect yeast energy to fixing the damage caused by furans and by intracellular
reduced NAD(P)H and ATP levels [51,81,148].
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3.8.3. Other Membrane Processes

There are some other membrane-based processes, such as electrodialysis, electrodeionisation,
pervaporation, vapour permeation, membrane distillation, and supported liquid membranes that
are used frequently, but not included in the filtration spectrum. Among them, electrodialysis
and electrodeionisation are charge-based membrane separations processes that operate under the
driving force of electrochemical potential and separate charged species from uncharged species or
fractionate multi-charged species. Pervaporation and vapour permeation operate under the driving
force of chemical potential and fractionate organic/water mixtures with the help of a permselective
(non-porous for all practical purpose) membrane. The permeate transports across the membrane in
the gas phase. Membrane-based processes that are relevant in integrated biorefineries are described
below [126].

Electrodialysis is an ion exchange membrane process that uses an electrical potential as a driving
force. Its system typically consists of a cell arrangement with a series of alternating anion and cation
exchange membranes between an anode and a cathode to form individual cells having a volume
with two adjacent membranes. Electrodialysis has been widely applied to bioseparation processes to
separate organic acids such as lactic acid, citric acid, acetic acid, and their salts including conventional
applications to mineralise water, desalinate saline solutions, produce table salt, and treat wastewater.
However, membrane fouling, which takes place due to deposition of organics on the membrane
surface, is one of the most significant considerations [149]. In biorefineries, electrodialysis was used
to remove acids from mixed wood hydrolysate [150], but the effect of removal on the fermentation
performance was not studied in a systematic way. Rather, several batches were analysed and the
fermentable sugars (glucose, galactose, mannose, and xylose) ranged from 10 to 121 g/L; acetic acid
from 0.43 to 6.2 g/L; HMF from below limit of detection to 2.2 g/L. Though the different batches
supported varied fermentation results with C. shehatae strain PFL-Y-049, it is not possible to draw
conclusions regarding the efficacy of electrodialysis because no unconditioned hydrolysate batches
were used as controls [49]. According to the results of Lee et al. [149], the electrodialysis process was
effective for removing the fermentation inhibitors (acids, phenolics, and metals), and the fermentable
sugar concentrations were unaffected. Most of the acetic acid was removed due to its ionic properties.
Phenolics were removed with an efficiency of >50% under all pretreatment conditions. It is assumed
that the removal of non-ionisable hydrophobic inhibitors is related to their rejection from the membrane
surface, as ion exchange membrane surfaces have hydrophilic properties. However, most of the HMF
and furfural, which are also non-ionisable hydrophobic inhibitors, remained in the hydrolysate after
electrodialysis, showing low removal efficiency for all experiments.

Electrodeionisation is a modified version of electrodialysis that contains conductive ion exchange
resin beads within the diluate compartment. Electrodeionisation combines the advantages of
electrodialysis and conductive ion exchange resin chromatography. It utilises in situ regeneration of
the conductive ion exchange resin beads by a phenomenon known as “water splitting”. Water splitting
on the surface of the resin beads regenerates the beads and ensures higher ionic conductivity within
the diluate compartment [126]. In conventional electrodeionisation, loose ionic exchange resin beads
are used; however, the researchers at Argonne National Laboratory have improved the technology
by using resin wafers to incorporate the loose ion exchange resin. The modified platform is called
Resin-wafer electrodeionisation. Argonne patented the technology to fabricate and use the resin
wafers [151]. The technology offers enhanced flow distribution, higher conductivity, superior pH
control, ease of material handling and system assembly, and a porous solid support for incorporation
of catalysts, biocatalysts, and other adjuvants. The pH can be electrochemically controlled, enabling
selective removal of acids or other charged species based on the isoelectric point. At low conductivity,
resin-wafer electrodeionisation offers a significant decrease in power consumption compared to
electrodialysis. In comparison to conventional ion exchange columns, it does not have to be regenerated
with stoichiometric amounts of acids/bases. Rather, in situ regeneration of the resin beads in
electrodeionisation takes place by water splitting due to the applied electric field [43].



Materials 2016, 9, 574 22 of 37

Resin-wafer electrodeionisation is one of several processes than can be used to remove organic
and mineral acids from solutions, an alternative to reduce the overliming cost. Resin-wafer
electrodeionisation has been used extensively for production of boiler grade water from impaired
sources, high fructose corn syrup desalination, desalination of glycerol, production and recovery of
organic acids [152], especially organic acids from fermentation broth [153], post-transesterification
glycerine desalting [154], conditioning of biomass hydrolysate liquor [155], and for CO2 capture
from flue gas [156]. According to the results of Lin et al. [156], using resin-wafer electrodeionisation,
>99% sulphuric acid and >95% of acetic acid were removed. For the neutral xylose sugar, >98% was
retained. By adjusting the operating conditions, selective separation of sulphuric acid and acetic
acid was achieved to obtain two separate acid enriched streams. For a typical case, the sulphuric
acid-enriched stream contained around 20 g/L of sulphuric acid and 1 g/L of acetic acid. On the other
hand, the acetic acid-enriched stream contained around 0.5 g/L of sulphuric acid and 9 g/L of acetic
acid. The sulphuric acid stream could be recycled back for the dilute acid pretreatment, while the
acetic acid stream could be recovered as a value-added biobased co-product.

3.8.4. Aqueous Two-Phase Extraction

Aqueous two-phase systems are clean alternatives for traditional solvent extraction systems.
These techniques are formed when two polymers, or one polymer and one salt are mixed together
at appropriate concentrations and at a particular temperature. The two phases are mostly composed
of water and non-volatile polymers, thus eliminating the use of volatile organic solvents. Aqueous
two-phase extraction is normally performed under mild conditions, for example, 25 ˝C, which do
not harm or denature unstable/labile biomolecules or microorganisms. In this process, the interfacial
stress (at the interface between the two layers) is lesser (400-fold less) than that in water-organic
solvent systems used for solvent extraction, causing less damage to the molecules to be extracted.
The separation of the phases and the partitioning of the compounds occur rapidly. The process has
been tested for a number of years in biotechnological applications as a benign separation method.
In addition, it has been investigated for extractive fermentation and removal inhibitors [51,157] from
lignocellulosic hydrolysates during biofuel production from biomass. Major disadvantages of aqueous
two-phase extraction include the relatively high cost of the polymer, the recycling of polymer(s),
and poor selectivity, although specialized and efficient systems may be developed by varying factors
such as temperature, degree of polymerization, and presence of certain ions [51].

3.8.5. Supercritical Extraction

Any substance at a temperature and pressure above its thermodynamic critical point will become
supercritical fluid, which can diffuse through solids like a gas and dissolve materials like a liquid.
Additionally, close to the critical point, small changes in pressure or temperature result in large
changes in density, allowing many properties to be adjusted. Supercritical fluids may be suitable as a
substitute for organic solvents in a range of industrial and laboratory processes. However, the capital
cost is expensive [51]. Supercritical fluid extraction of an acid hydrolysate of spruce removed a
number of potentially toxic compounds by varying degree, resulting in improved fermentation yields
and productivity with baker’s yeast as fermentation organism [158]. Furfural was reduced by 93%,
coniferyl aldehyde by 91%, but HMF was only reduced by 10%, acetic acid by 19% and levulinic acid
by 6%. Even the poorly removed compounds were identified in the extracted material, concentrated
by the evaporation of CO2 [49].
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3.8.6. Advanced Oxidation Processes

A new, promising, and little studied method for the detoxification of lignocellulosic hydrolysates
is the use of advanced oxidative processes. Advanced oxidative processes can be defined as those
methods where hydroxyl radicals (HO¨ ) are produced in sufficient quantities to act as the main
oxidizing agent. The hydroxyl radical is a powerful oxidizing agent that is able to mineralize
biorecalcitrant organic compounds or convert them into biodegradable compounds [159]. Due to its
high reactivity, the hydroxyl radical must be generated in situ, which may be accomplished with a
number of different processes. Hydroxyl radicals can be generated as a result of a combination of
strong oxidizing agents, such as hydrogen peroxide and ozone. Ultraviolet (UV) or visible radiation
and catalysts such as metal ions and semiconductors can also be used to create hydroxyl radicals [3].
Advanced oxidation processes have been studied for the remediation of lignin derivatives from pulp
and paper industry wastewater. Such processes have the ability to degrade toxic and recalcitrant
compounds, thereby reducing the toxicity of effluents and enhancing their susceptibility to biological
agents. Therefore, it is possible to apply this kind of process as a method of reducing the toxicity of
lignocellulosic hydrolysates [3].

3.8.7. Polyelectrolytic Flocculation

That said, the use of polyelectrolyte flocculating agents with chemistries similar to ion exchange
and hydrophobic interaction resins may yet provide a feasible detoxification method while minimizing
sugar losses [60]. The polyelectrolyte may preferentially react or form a complex with non-inhibitory
compounds, thus reducing the number of active sites available for removing the inhibitory compounds;
we have already shown that chloride or sulphate ions interfere with the removal of acetic acid using
PEI [160]. Similarly, inhibitory compounds might also interact with other species in solution, which
could alter their ability to interact with the polymer [60].

Flocculation by polyelectrolytes can be an alternative method to remove inhibitory compounds
either before or after the enzymatic hydrolysis. Polethyleneimine (PEI) is a soluble secondary amine
cationic polymer, commonly used as a flocculating agent to precipitate cellular debris and other
insoluble solids. It has been evaluated for removal of suspended solids from biomass slurries [161]
and Carter et al. [60,160] studied the efficiency of PEI to remove furfural and HMF from clarified
pre-enzymatic hydrolysis liquor [43].

4. Application to Lignocellulosic Materials Derived from SO2-Based Processes

The valorisation of lignosulphonate fractions and the upturn of dissolving pulp production have
given an increase in the pulping and hydrolysis processes derived from SO2 such as sulphite pulping,
sulphite pre-treatment (SPORL), and SO2-Ethanol-Water (SEW) processes [16,146,162,163].

The acid sulphite process is based on the extraction of cellulose by the attack under acidic
conditions (pH of 1.35 ˘ 0.15) in the presence of excess free SO2 [16]. The main advantages of this
process are (i) the production of a high-purity cellulose (dissolving pulp) for not only textile fibre
production but also for high value-added films, plastics and coatings among others [163]; and (ii) the
possibility to obtain a high separation of all of the main components: cellulose, hemicellulose, and
lignin [16].

However, in addition to the acid sulphite process, other pretreatments such as SPORL or SEW
can be used to obtain dissolving pulp. SPORL is reported to be the most energy-efficient pretreatment
method in terms of sugar production per unit of consumed energy [164,165]. The first step consists of
chipping woody biomass into large pieces of up to 38 mm length/width and a thickness of about 6 mm.
Wood chips are then reacted for 10–30 min and at 160–190 ˝C, with a solution of 1%–8% bisulphate
and 0.5%–2.2% sulphuric acid (on oven dry wood), depending on the wood type. The substrate is
created by means of a disk refiner that separates the pretreated, softened chips at a fibre interface
level [164–166]. The SO2-Ethanol-Water (SEW) process has the potential to replace the acid sulphite



Materials 2016, 9, 574 24 of 37

process for the production of rayon-grade pulps owing to a higher flexibility in the selection of the
raw material source, substantially lower cooking times, and the near absence of sugar degradation
products [163]. In this case, this novel fractionation process has the potential to replace the acid sulphite
process owing to a higher flexibility in the selection of the raw material source, substantially lower
cooking times, and the near absence of sugar degradation products. The SEW process gives more
sugar substrate and fewer inhibitors than the magnesium-based sulphite process, especially furans
and acids. However, no differences are seen in the properties of the dissolving pulps resulting from
both acidic processes [163]. In addition, the SEW process only requires evaporation of ethanol and
SO2 for recovery of the fractionation chemicals due to the absence of a base (Mg or Na) in the cooking
liquor [146].

The upturn of dissolving wood pulps in the market during the last 10 years may be attributed to
a consistent growth of regenerated cellulose fibre production, particularly in China, where 61% of the
current global rayon production capacities are located. The annual dissolving wood pulp production
in 2011 was 4.2 million t, of which 2.9 million t accounted for commodity applications, e.g., rayon,
while the residual 1.3 million t were converted to specialties, e.g., to cellulose acetate. Market studies
clearly indicate that this trend of increasing demand of regenerated cellulose fibres and thus dissolving
pulps will prevail during the next decades [163]. In the case of sulphite pulping, the annual production
of bleached sulphite eucalypt pulp is around one million tonnes per year, contributing to the economic
profits of South Africa, Portugal, and Spain [167].

The major components of the spent liquors from sulphite, SEW, and SPORL are lignosulphonates
and sugars, which are recognised valuable byproducts for the production of added-value
products [164,168,169]. The chemical composition depends on the wood species used for the pulping and
this information is essential regarding eventual liquor utilization for different purposes [167,170,171].
Typical spent sulphite liquor from Eucalyptus globulus contains lignosulphonates, from 60 to 80 g/L,
and sugars, from 35 to 45 g/L, from hydrolysed hemicelluloses, mainly xylose. Hence, this lignocellulosic
material is a prospective substrate for bioprocessing once it has a high concentration of monomeric
sugars and some proportion of oligomeric saccharides [167]. However, the presence of high amounts
of acetic acid (8–9 g¨ L´1), furfural, polyphenols, and low molecular weight lignosulphonates inhibits
the microbial metabolism, which is the main drawback for spent sulphite liquor bioprocessing [31,37].
These products of hemicellulose and lignin degradation negatively affect fermentation efficiency
due to their toxicity towards fermentative microorganisms, inhibiting both growth and alcoholic
metabolisms [37]. Spent sulphite liquors can be considered as promising raw materials for the
production of bioethanol since 90 billion litres of spent liquors are produced annually [171]. However,
the removal of inhibitors is a difficult task in this kind of samples [31,172,173].

Table 2 shows the results of detoxification in this kind of materials [108,146,162,172,174–180].
The most problematic task in this case is the separation of lignosulphonates and sugars because
lignosulphonates act as a glue in the mixture and the majority of the processes give the same quantity
of separation for both lignosulphonates and sugars [174,179]. In the case of sulphite liquor, better
results are obtained when using ion exchange resin [175] (with removals of lignosulphonates and
acetic acid close to 100% and losses of sugar of 28%) and the best results have been obtained when a
combination of processes of overliming, neutralisation with CO2, and resin are used [179]. In the case
of SPORL liquid, overliming has been used to separate both sugars and lignosulphonates, obtaining
the maximum separation when 10 g/L Ca(OH)2 at 30 ˝C and pH equal to 10 during 90 min is
used [162]. Membrane operations have also been used to detoxify the samples, giving the best results
when combining different membranes in series [178]. Regarding the SEW process, a combination of
separation processes in series was necessary to detoxify the samples [146].
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Table 2. Separation of lignocellulosic inhibitors in SO2-based processes.

Raw Material Treatment Inhibitor Removal
(%)

Initial
Concentration Ref.

Hydrolysates
from

SO2-pretreated
spruce wood

Activated charcoal

Furans 94 1 g/L

[172]

Acetic acid 28 1.72 g/L
Formic acid 39 0.18 g/L
Phenolics 88 1.3 g/L

Overliming
Furans 45 1 g/L

Aliphatic acids – –
Phenolics 14 1.3 g/L

NH4OH
Furans 15 1 g/L

Aliphatic acids – –
Phenolics 8 1.3 g/L

NaOH
Furans 8 1 g/L

Aliphatic acids 6 1.9 g/L
Phenolics 1 1.3 g/L

Anion exchanger at pH 10
Furans 26 1 g/L

Aliphatic acids 23 1.9 g/L
Phenolics 79 1.3 g/L

Anion exchanger at pH 5.5
Furans 9 1 g/L

Aliphatic acids 28 1.9 g/L
Phenolics 53 1.3 g/L

Cation exchanger at pH 10
Furans 15 1 g/L

Aliphatic acids 10 1.9 g/L
Phenolics 22 1.3 g/L

Cation exchanger at pH 5.5
Furans 6 1 g/L

Aliphatic acids 9 1.9 g/L
Phenolics 8 1.3 g/L

Spent sulphite
liquor

Nanofiltration
Lignosulphonates 99 84 g/L

[174]

Glucose 85 9.31 g/L
Xylose 78 30.9 g/L

Ultrafiltration
Lignosulphonates 57 84 g/L

Sugars 76 49 g/L

Reverse Osmosis
Lignosulphonates 68 84 g/L

Glucose 96 9.31 g/L
Xylose 93 30.9 g/L

Spent sulphite
liquor

Cation and anion exchange

Ca2+ 99 0.05%

[175]
Mg2+ 100 0.55%

Lignosulphonates 99 12%
Acetic acid 100 1%

Sugars 28 5%

SPORL liquid

10 g/L lime 30 ˝C pH = 10
90 min

Lignosulphonates 11 50 g/L

[162]

Glucose 100 12 g/L
Xylose 100 148 g/L

20 g/L lime 30 ˝C pH = 12
90 min

Lignosulphonates 26 50 g/L
Glucose 100 12 g/L
Xylose 60 148 g/L

90 g/L lime 30 ˝C pH = 12.5
90 min

Lignosulphonates 38 50 g/L
Glucose 59 12 g/L
Xylose 58 148 g/L

20 g/L lime 75 ˝C pH = 12
90 min

Lignosulphonates 36 50 g/L
Glucose 21 12 g/L
Xylose 5 148 g/L
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Table 2. Cont.

Raw Material Treatment Inhibitor Removal
(%)

Initial
Concentration Ref.

Spent sulphite
liquor Ultrafiltration 100 kDa Lignosulphonates 80 38% [176]

Spent sulphite
liquor Ultrafiltration

Lignosulphonates 67 56%
[177]Sugars 95 32%

Acetic acid 36 6.6 g/L

Spent sulphite
liquor

Ultrafiltration 15 kDa/5 kDa
in series

Sugars 89 23.31 g/L

[178]
Lignosulphonates 65 41.1 g/L

Ultrafiltration 15 kDa/
5 kDa/1 kDa in series

Sugars 82 23.31 g/L
Lignosulphonates 72 41.1 g/L

Phenolics 76 1.33 g/L

Spent sulphite
liquor

Anionic resin, 24 h, 30 ˝C,
150 rpm

Acetic acid 10 11.2 g/L

[179]

Sugars 12 35.9 g/L
Lignosulphonates 41 119.5 g/L

Overliming CaO pH = 11.5,
70 ˝C, 15 min

Acetic acid ´19 11.2 g/L
Sugars 4 35.9 g/L

Lignosulphonates 43 119.5 g/L
SO2 87 5.5 g/L

Activated carbon, 24 h,
30 ˝C, 150 rpm

Acetic acid 50 11.2 g/L
Sugars 6 35.9 g/L

Lignosulphonates 20 119.5 g/L
SO2 ´13 5.5 g/L

Combined:
CaO + resin PA408

Acetic acid 40 11.2 g/L
Sugars 91 35.9 g/L

Lignosulphonates 90 119.5 g/L

Combined:
CaO + neutralisation

with CO2 + resin

Acetic acid ´19 11.2 g/L
Sugars 4 35.9 g/L

Lignosulphonates 81 119.5 g/L

SEW Softwood

Evaporation

Sugars

26

18.9%

[146]

Steam Stripping +1 *
Lime +2 *

Catalytic Oxidation +2 *

Evaporation

Lignin

75

16.7%
Steam Stripping +1 *

Lime +8 *
Catalytic Oxidation +1 *

Evaporation Furfural 99 0.1%

Evaporation HMF 0 0.1 g/L

Evaporation
Acetic acid

´100
0.3%Steam Stripping +100 *

SEW Spruce

Evaporation

Sugars

6

17.1%
Steam Stripping +2 *

Lime +2 *
Catalytic Oxidation +0 *

Evaporation

Lignin

77

17.8%
Steam Stripping +2 *

Lime +0 *
Catalytic Oxidation +4 *

Evaporation Furfural 99 0.2%

Evaporation HMF 0 * 0.1%

Evaporation
Acetic acid

60
1.0%Steam Stripping +40 *
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Table 2. Cont.

Raw Material Treatment Inhibitor Removal
(%)

Initial
Concentration Ref.

Spent sulphite
liquor

Liquid–liquid extraction
with diethyl ether

Sugars 99 193 g/L

[108]

Phenolics 49 12.40 g/L
Acetic acid 58 6.93 g/L

Levulinic acid 64 0.11 g/L
Formic acid 94 0.23 g/L

Furfural 88 0.20 g/L
HMF 81 0.13 g/L

Liquid–liquid extraction
with chloroform

Sugars 99 193 g/L
Phenolics 56 12.40 g/L

Acetic acid 75 6.93 g/L
Levulinic acid 75 0.11 g/L

Formic acid 97 0.23 g/L
Furfural 97 0.20 g/L

HMF 92 0.13 g/L

Spent sulphite
liquor

Ethyl acetate pH 3.4 Phenolics 89–100 12.4 g/L
[180]

Ethyl acetate pH 2 Phenolics 67–73 12.4 g/L

* all of the processes are in series; therefore, this is the removal in relation to the previous one, according to the
initial concentration.

In addition to lignosulphonates, other inhibitors can be separated from the spent liquors, such as
phenolics, with a high antioxidant activity [180], weak acids, and furans. In this case, the use of
exchange resins or the use of liquid–liquid extraction can be very promising techniques [108,180].
A high removal of furans and phenolics and small loss of sugars were found in the results of extraction
with chloroform according to the results of Llano et al. [108]. Based on the experiments carried out
by Alexandri et al. [180], the use of ethyl acetate at pH equal to 3.4 gives separation close to 100% for
phenolics and results in very attractive materials with high antioxidant activity.

Other inhibitors can be metals and SO2. In the case of SEW samples, the measured concentration of
SO2 in the liquors was low because significant SO2 losses to the atmosphere occur during the handling
of the liquors and the solids. It was shown that all free SO2 could be recovered by distillation. The SO2

concentration was 101/87 ppm in the liquor, decreasing to 20/25 ppm in the liquor treated with lime,
and finally decreasing to 10 ppm/non detect levels. In the liquor treated with the last operation,
catalytic oxidation was observed [146]. In addition, other acids such as glucuronic, galacturonic,
and 4-O-Me-glucuronic acid should be taken into account. In these cases, all of the detoxification
treatments carried out by Sklavounos et al. [146] gave removals up to 30% in the case of softwood
biomass and an increase of the concentration of these acids in spruce liquor was shown.

5. Conclusions

Many inhibitors in lignocellulosic materials are obtained from the pretreatment and they can
be grouped into weak acids, furans, phenolics, and others such as SO2, lignosulphonates, metals,
and extractives. The influence of these compounds in fermentation depends not only on the kind
of inhibitor but also on the synergistic or antagonistic effects. However, the removal or separation
of these compounds depends more on the kind of inhibitor and the lignocellulosic material. In this
work, different physico-chemical processes have been analysed in order to separate the main inhibitors.
In addition, most of these components can be used as byproducts for future biorefineries; therefore,
a good separation is of great importance.

Overliming can be used to remove levulinic or formic acids, furans, and phenolics; however,
this method does not remove acetic acids. In all cases, Ca(OH)2 is recommended; however,
an optimisation of the pH, between 10 and 11, and reaction time should be done, depending on
the inhibitor and the raw material, due to the compromise between the removal of inhibitors and
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the losses of sugars. The results of detoxification of furans and phenolics depend strongly on the
lignocellulosic material when overliming is used.

Adsorption is an attractive and simple solution to detoxify lignocellulosic materials. Activated
charcoal is the most used adsorbent; furthermore, other waste materials such as wood charcoal can be
used with very good results. Adsorption can be used to remove furans and phenolics and the kind of
lignocellulosic material does not have a great influence on the process. Cationic and anionic resins are
focused on detoxifying levulinic acid, furans, and phenolics, and maintaining the amount of sugar
substrate in the samples. However, an optimisation of this method in the case of separating acetic or
formic acids is necessary.

Regarding liquid–liquid extraction, both ethyl acetate and trialkylamine are recommended for
furans and phenolics and trialkylamine and trichloroethylene in the case of weak acids, including
acetic acid. In addition, cloud point extraction can be used for phenolics.

Membrane operations can be used as a detoxification step. In this case, filtration methods such
as ultrafiltration, nanofiltration, and reverse osmosis have been used in the literature, especially for
lignin derivatives, giving different results depending on the raw material, with better results in the
case of olive residue hydrolysates and synthetic hydrolysates. However, a high fouling tendency of
the complex structure of lignocellulosic materials might lead to an inefficient process operation and
increased costs. In this case, some pretreatments or other membrane processes such as electrodialysis
or resin-wafer electrodeionisation are recommended.

Other processes such as stream stripping, reducing agents for furans, aqueous two-phase
extraction, supercritical extraction, and polyelectrolytic flocculants can be used when acids and/or
furans are removed and advanced oxidation processes in the case of more recalcitrant inhibitors such as
lignin derivatives or extractives. When the objective is to separate different inhibitors, having several
possibilities of valorisation, a combination of methods is recommended.

Finally, due to the increase in the market of high-purity cellulose products in pulp and paper
mills, acid sulphite process and other novelty processes such as SPORL and SEW are increasing in
research. In addition, the spent liquors obtained in these processes contain not only sugars but also
lignosulphonates with several applications. In these cases, it is more difficult to separate the sugar
substrate from the rest of inhibitors, mainly because the lignosulphonates act as a glue in the mixture.
Depending on the pulping process, overliming, resins, membranes, or a combination of processes
are the best processes. On the other hand, from a valorisation point of view, the use of liquid–liquid
extraction with ethyl acetate at pH equal to 3.4 is recommended in this paper to separate phenolics
with high antioxidant activity in these kinds of materials.

As a future work, techno-economic and environmental analysis of the different detoxification
methods should be carried out in order to point out the feasibility of all of these alternatives in
future biorefineries.
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