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Abstract: In this study a largely available lignocellulose feedstock hemp (Cannabis sativa), obtained
as an industrial waste, was used for cellulose extraction. The extraction of cellulose microfibres from
hemp biomass was conducted by alkaline treatment and an acidification process. The extracted
cellulose microfibres were characterised using Fourier-transformed infrared spectroscopy (FTIR),
Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD).
The viability of the study was determined by growing human fibroblasts on the preparation which
resulted in being non-toxic; indicating its potential in preparing biological scaffolds. Upon enzymatic
hydrolysis of the cellulose microfibre using cellulase from Trichoderma reesei, a maximum of 909 mg/g
of reducing sugars were obtained, which endorses its suitability for biofuel production.
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1. Introduction

Lignocellulose is available abundantly as agricultural and industrial waste, feedstock, and woody
biomass. The complexity in its structure is due to the cross-linkage of different components such as
cellulose, hemicelluloses, lignin and pectin [1]. A large amount of cellulosic waste is generated from
industries such as textile and fibre, paper and pulp. These cellulosic residues can be utilised for the
production of high-value-added products including biofuel and bioproducts.

Cellulosic wastes can also be utilised for extracting microfibres and nanocrystals, which has
good demand in nano/biomaterial due to exceptional mechanical properties, high aspect ratio,
higher crystallinity and thermal stability, and large surface area [2—4]. Their major applications
in nanocomposites include the production of nanocomposite materials, nanotubes and thin films [5,6];
and the properties can be changed to alter its solubility, dispersibility and thermal properties [7].
Studies have reported that bionanocomposites from lignocellulosic residues can find a potential future
in biomedical field due to biocompatibility properties [8]. A recent study has demonstrated the
utilisation of these cellulose and hemicellulose based whiskers for synthesising hydrogels and spun
fibres [9,10].

Research on cellulose microfibre extraction has been done largely but studies on its application
are remotely investigated. Few extractions studies involving microfibres have been conducted earlier
using spruce bark [11], sweet potato [12], rice husk [13] and agro waste biomass [14].

Hemp (Cannabis sativa) biomass is a low-cost softwood, which is mainly grown for the industrial
and medicinal application [15]. Due to the outer bast fibre, it is well known for its mechanical strength,
durability; and therefore has wide industrial application [16]. The inner core of hemp can be utilised
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as a potential source for the extraction of microfibres as it is usually considered as waste [17-19]. Due
to its mechanical properties, hemp cellulose microfibres find potential application for ligament or
tendon substitute, tissue regeneration or small grafting [20]. In a recent study, it was observed that
cellulose extracted from lignocellulosic residues can be utilised for biorefinery application, such as
ethanol production [11].

This study documents the extraction of cellulose microfibres from hemp biomass using alkaline
and acidification method. The extracted cellulose microfibres were characterised using attenuated
total reflectance-infrared absorption spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA),
X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, to our knowledge,
this is the first study where the toxicity of hemp microfibres on human fibroblasts was investigated
for its suitability for biomedical application. An enzymatic hydrolysis of extracted cellulose for the
production of reducing sugars broadened its relevance as a valuable for biorefinery applications.

2. Materials and Methods

2.1. Materials

The raw material used in this study was the cellulosic waste (hemp hurds) obtained from the inner
core of hemp (Cannabis sativa) biomass. The hemp hurds used in the study were grown in New South
Wales, Australia (534°34’, E146°12’) and was harvested in March 2009. The material was dried at 70 °C
to obtain a constant weight and then milled in a Fritsch Pulverisette 19 Universal Cutting Mill using
sieve diameter of 1 mm. The milled hemp was sieved again manually using a mesh size of 300 um to
remove bigger particles and the particle size used for the experiment varied from 300-600 um. The
chemicals used in the extraction process were sodium hydroxide (Sigma-Aldrich, St. Louis, MO, USA),
sulphuric acid (98%, AR grade-Merck, Kenilworth, NJ, USA) and hydrogen peroxide (Chem-supply,
Gillman, South Australia, Australia). The enzyme hydrolysis of isolated cellulose was achieved using
cellulase from Trichoderma reesei (Sigma-Aldrich) [15].

2.2. Cellulose Extraction

The extraction of cellulose microfibres and its acid hydrolysis from cellulosic residue was adapted
from Taixeira et al. [21]. Milled hemp hurd biomass (HHB) (5 g) was sonicated using deionised
water (300 mL) at room temperature. Sonication allowed the breakage of strong bonds in biomass
structure and the supernatant was separated using Whatman No. 1 filter paper (Sigma-Aldrich,
St. Louis, MO, USA). The filtered biomass was made into the slurry at 55 °C using 100 mL solution of
sodium hydroxide (NaOH) (5%, w/v) and hydrogen peroxide (11%, v/v). This biomass slurry was
stirred vigorously for 90 min and then filtered. The alkaline treated /bleached hemp (ATH) biomass
was washed until a neutral pH was attained and then the residue was dried at 50 °C to achieve a
constant weight. The procedure was repeated again to achieve a product with effective bleaching and
discoloration. These cellulose microfibres obtained after bleaching were exposed to acid hydrolysis to
obtain fine microfibres. Acid hydrolysed hemp (AHH) fibres were produced by adding 5 g of bleach
dried biomass in 100 mL of 6 M sulphuric acid under vigorous stirring for 30 min and the reaction was
stopped by adding 500 mL of cold deionised. The slurry was centrifuged at 10,000 rpm for 10 min and
washed with deionised water until neutral pH was achieved.

2.3. Characterisation Studies

2.3.1. Scanning Electron Microscopy (SEM)

The SEM was conducted to study the changes occurred in the structure of hemp after alkaline
and acid hydrolysis. Samples were mounted on an aluminium stub and coated with gold with the
help of sputter coater (BAL-TEC SCD 050, Leica Microsystems, Wetzlar, Germany). The SEM imaging
was conducted using Zeiss Supra 55 VP (Carl Zeiss AG, Oberkochen, Germany) having a secondary



Materials 2016, 9, 562 30f13

electron (SE2) detector with an accelerating voltage of 5 KV under a magnification ranging from 2 to
30 um.

2.3.2. Particle Size Analysis

The particle size analysis was done using Malvern mastersizer particle size analyser (Malvern, UK)
equipped with hydro 2000 S dispersion unit. The samples were dissolved in water before dispensing
into the instrument. The result was analysed using mastersizer 2000 software.

2.3.3. Attenuated Total Reflection—Fourier Transform Infrared (ATR-FTIR)

The ATR-FTIR spectra of raw and extracted cellulose (ATH and AHH) HHB were recorded using
Bruker Optik GmbH (Ettlingen, Germany). The detector used in the instrument was deuterated
triglycine sulfate (DTGS) with a single-reflection diamond ATR sampling module (Platinum ATR
QuickSnap™, Ettlingen, Germany) in a scanning range of 375 to 4000 cm ™! and scan resolution of
4 cm~!. The results were analysed using OPUS 6.0 suite (Bruker) software.

2.3.4. X-ray Diffraction (XRD)

The crystallinity of the samples was measured using Panalytical XRD (Panalytical XPert PRO
MRD XL, Almelo, The Netherlands) at 30 kV and 40 mA. The spectrum consisted of an average of
three individual scans with intensity in the 26 range from 5° to 30°. The crystallinity indices (CrI) of
the samples were calculated using intensities of the amorphous and crystalline regions using the below
formula [22]:

CrI = (Tpo2 — Tam)/Too2 x 100 o

where L, represents the amorphous region at 20 = 15° and Iy, represents the crystallinity area at
20 =22°.

2.3.5. Thermogravimetric Analysis (TGA)

The pyrolytic behaviour of raw and extracted cellulose hemp sample was studied using
thermogravimetry analysis (TGA) under nitrogen atmosphere at a constant flow rate of 10 mL/min and
heating rate of 10 °C/min. The experiment was performed using 5 mg of sample under a temperature
range of 30 °C-700 °C using a Netzsch DSC/TGA (Model STA409PC; NETZSCH-GmbH, New South
Wales, Australia).

2.4. Enzyme Hydrolysis

The enzyme hydrolysis of raw and extracted cellulose (ATH and AHH) HHB was conducted using
cellulase from Trichoderma reesei (EC 3.2.1.4; 700 units). The hydrolysis experiment was conducted for
72 h using substrate (raw, ATH and AHH) concentration of 2% (w/v) and 30 FPU of cellulase in sodium
citrate buffer, pH 4.8 (0.05 M). The reducing sugars were estimated using dinitrosalicylic acid (DNS)
method [23]. The activity of cellulase was determined using filter paper method [24]. One unit of
enzyme activity is defined as 1 pmol of glucose liberated per minute of enzyme assay. All experiments
were conducted in triplicate reported as mean values plus or minus the standard deviation.

2.5. Toxicity Studies

2.5.1. Sterilisation of Cellulose Fibres

The raw and treated (ATH and AHH) cellulose fibres were sterilised prior to use. The fibres were
immersed in filtered 70% ethanol for 30 min on an orbital shaker at 100 rpm, followed by an overnight
incubation in fresh 70% ethanol. The fibres were then rinsed three times in phosphate buffered saline
(PBS, pH 7.4) to remove residual ethanol.
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2.5.2. Cytotoxicity Study

The raw and treated fibres were placed in 96-well plates in triplicates at 5 mg per well and
incubated in 300 uL/well of RPMI media (Life Technologies, Victoria, Australia) for 24 h at 37 °C
in a humidified environment with 5% CO,. Incubated media were transferred to fresh wells and
1 x 10* human fibroblasts/well were seeded into the various extracted media. The cells were then
cultured for 4 d and cell viability was assessed using the trypan blue exclusion method. Trypan blue
(Sigma-Aldrich) stained the dead cells blue while the viable cells remained clear. Cell viability was
calculated by the ratio of live cells to the total number of cells per sample, expressed as a percentage.

3. Results and Discussion

The hemp hurd biomass (HHB) used for this study comprises 85% of total solids that contains
77% of holocellulose, 4%-5% of lignin, and 3% of ash. The moisture content (14%) in the sample
and the composition of hemp hurd were determined using standard National Renewable Energy
Laboratory protocol [25]. The bast fibre (outer covering) of the hemp was taken for industrial purpose
and the inner core or hurd was used for this study. The inner core basically consists of xylem and
phloem. Sonication applied to milled hemp prior to chemical treatment allowed breakage of strong
intermolecular bonds in the structure and partially reduced the biomass size. The exposure of sonicated
biomass to sodium hydroxide and hydrogen peroxide enabled opening of the structure. The presence
of hydrogen peroxide in the solution allows decolouration of the biomass. Earlier studies conducted
using alkaline treatment have reported that the porosity of biomass increases as the lignin is removed
from the structure [26]. In our previous study, we observed HHB structure opening and tracheids
bundles got exposed after alkaline pretreatment [27].

3.1. Scanning Electron Microscopy (SEM) Imaging

The morphology of raw HHB, ATH and AHH was studied using SEM (Figure 1). The raw HHB
appeared to be compact in structure with flakes all over the surface. The alkaline treatment on raw
HHB resulted in the partial removal of amorphous part (hemicellulose, lignin) from the surface. These
components were responsible in holding the structure tight and rigid. Sonication resulted in the
loosening of bonds in the stacked structure and allowed easy penetration of chemicals. The alkaline
extraction method did defibrillation and exposed cellulose microfibre bundle all over the surface. The
sequential bleaching and acid hydrolysis made these features prominent and resulted in the occurrence
of fine cellulose fibres by further removal of amorphous content from the structure. A similar study
has reported the appearance of smooth surface with fine fibre indicating effectiveness of sulphuric acid
hydrolysis during cellulose whisker formation [28]. Earlier studies have reported that these fibres are
a collection of nanofibres linked together with strong hydrogen bonds [29,30]. The strong networking
of hydrogen bond forms chiral phase at a certain concentration and retains the structure. Due to the
presence of ions, flake formation or flocculation takes place, which hinders the proper penetration
creating an uneven distribution of fibres. The formation of such flakes is visible in our studies with
holes at the regular interval [31].



Materials 2016, 9, 562 50f 13

Signal A = SE2

Photo No. = 5035

30 um EHT = 5.00kV Signal A= SE2
WD =158 mm Photo No. = 2411

20 ym EHT = 5,00 kV Signal A = SE2 e
f———1 wo=159mm Photo No. = 2413

Figure 1. SEM images of HHB at different stages of microfibres extraction: (a) raw; (b) ATH and
(c) AHH.

3.2. Particle Size Analysis

The effect of alkaline and acid treatment on the particle size was analysed using Malvern size
particle analyser. The microfibres diameter obtained from the analysis is shown in Table 1. The initial
size of the raw HHB powder varied from 300-600 um. The repeated alkaline treatment reduced the
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particle size and the diameter from 20-368 pm and about 50% of the particle was in the size range
of 114 pm. The diameter further reduced after acid hydrolysis and the particle size ranged between
12-203 pm.

Table 1. Particle size measurement of ATH and AHH microfibres.

Microfibres Diameter (1m)

Samples
d (0.1) d (0.5) d (0.9
Alkaline treatment (ATH) 20.9 114.5 368.7
Acid hydrolysed (AHH) 12.6 64.1 203.0

The diameter of hemp microfibres was reduced to 80% (114 um) after alkaline treatment and
90% (64 um) after acid hydrolysis from its original size (300-600 pm). The extraction method resulted
in loosening of strong bonds. Removal of non-cellulosic content during chemical treatment and
appearance of fibres have been reported earlier [32].

3.3. ATR-FTIR Studies

The FTIR spectra of raw and extracted cellulose microfibres are represented in Figure 2 and the
vibrational attributions are summarised in Table 2. The peak raising around 1731 cm~! in raw hemp
represents the acetyl and uronic ester groups arising from hemicellulose or the ester linkage of the
carboxylic group from lignin or hemicellulose. The significant disappearance of this peak after alkaline
treatment and acid hydrolysis indicates the removal of hemicellulose and lignin [33]. The shouldering
around 1646 cm ™! attributes to the absorption of water which has also reduced after the treatment in
both the samples in comparison to raw biomass [34].

(a) Raw HHB
- (b) Alkaline treated HHB
z
= (¢) Acid hydrolysed HHB
T ‘ T - } T | :l | T I T . | T I T |
2000 1800 160 1400 1200 1000 800 600 400

Wavenumber (cm™)

Figure 2. FTIR spectra of HHB at different stages (a) raw HHB (black); (b) ATH (blue); and
(c) AHH (green).
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Table 2. Attribution of characteristic peaks of HHB.

Attribution of Characteristic Peak Wavenumber (cm~1)
C=0 vibration in hemicellulose and lignin 1731
O-H deformation 1646
Stretching of C=C in aromatic rings of lignin 1589
Deformation of CH; plane in cellulose 1423
CHj; stretching in cellulose 1320
C-O wagging in hemicellulose and lignin 1265
C-O stretching of ether in lignin 1238
C-O stretching of hemicellulose and lignin 1054

The characteristic peak around 1589 cm ™! is due to the C=C stretching vibration of lignin in ATH
and AHH samples [35]. The stretching occurring around 1320 cm ! attributes to CH, stretching from
cellulose indicating the exposure of cellulose crystalline surface due to the elimination of non-cellulosic
components. The significant reduction of peak arising from lignin around 1238 cm~! in extracted
microfibres indicates the removal of lignin [36]. The stretching of a peak around 1054 cm~! and
895 cm ™! attributes to the C=0O stretching and C-H vibration from cellulose. The alkaline treatment
affected the height of peak around 1054 cm~! indicating the chemical alteration in the crystalline

structure. These observations indicated the successful removal of non-cellulosic components and the
opening of cellulose surface.

3.4. X-ray Diffraction (XRD) Analysis

The diffractrogram and crystallinity index (calculated by Segal formula) of raw and cellulose
extracts are represented in Figure 3 and Table 3. Cellulose exhibits crystalline and amorphous peaks in
a X-ray diffractrogram. The amorphous peak occurs around 26 = 15° and the crystallographic plane
representing crystallinity occurs at 20 = 22°. The raw and extracted microfibres of hemp showed three
main peaks at 20 = 15.4°, 20.8° and 22.4° representing amorphous and crystalline peaks [37].

-.ﬁ'\*ql \-'\'m l th‘ e al |

1 A \ ' ‘ \

AH

Intensity

Raw HHB

5 10 15 20
Angle (degree)

[ S
¥ ]

Figure 3. X-ray diffraction pattern of raw HHB (black), ATH (red), and AHH (blue).
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Table 3. Crystallinity index of hemp at different stages of extraction process of HHB.

Samples (Hemp Hurd Biomass) CrI (%)
Raw Biomass 39
ATH 52
AHH 15

Due to the alkaline treatment, hemp exhibited polymorphs I and II of cellulose with increased
intensity [38]. An increase in the crystallographic plane and a decrease in the amorphous region can
be observed after alkaline treatment. The crystallinity index of hemp increased from 39% to 52%
after alkali purification. These results supported the data obtained from FTIR suggesting an effective
treatment, which destroyed the strong cross-linked structure of biomass.

However, the Crl value of purified samples after acid hydrolysis decreased compared to raw
and alkaline treated HHB. As a result of both extraction processes, the chemical structure of biomass
got modified by partial removal of amorphous cellulose and lignin. But during the acid purification
step, the exposure of crystalline cellulose surface to acid reduced its crystallinity. Previous reports
have suggested that the prolonged duration of acid exposure to the purified sample destroys the
crystallinity region of cellulose along with the removal of amorphous content [21,33]. As shown
in Figure 3, the hydrolysis of alkali treated sample with sulphuric acid for 30 min destroyed the
crystallinity of cellulose. Under acidic condition, type II cellulose would have re-precipitated with the
extraction time leading to a lower crystallinity peak intensity [39]. However, from the SEM images
it can be seen that after acid hydrolysis the occurrence of thin fibres increased and rod shaped fibre
bundles have become prominent as seen in Figure 1c. A previously performed crystallinity study on
pea fibre showed the occurrence of increased roughness of biomass surface after each purification step,
coincided with our observations [40].

3.5. Pyrolytic Studies—Thermogravimetric Analysis (TGA)

The pyrolytic behaviour and thermal stability of the raw HHB, ATH and AHH cellulose
microfibres were determined by TGA and DSC curve. The thermal degradation, mass loss and onset
temperature of all the samples are given in Figure 4 and Table 4. The loss of moisture, carbon dioxide
and inorganic compounds initiated after 50 °C and peaked around 100 °C. Peak shift and difference in
the intensity of this peak from raw sample to treated samples suggests the removal of water molecules
and inorganic components. The major degradation of extracted cellulose was observed between
200 °C-350 °C, whereas raw hemp degraded between 275 °C-350 °C. This indicates the thermal
combustion of hemicellulose and cellulose in the raw hemp, which did not occur in purified samples
suggesting the removal of non-cellulosic contents (hemicellulose, amorphous cellulose). Previous
studies have reported that this pyrolytic behaviour occurred due to the condensation of aromatic rings
occurring from lignin and major degradation of cellulose [41]. A shift in the cellulose degradation
temperature was observed between ATH and AHH. It has been reported in previous studies that in
acid hydrolysis, the cellulose chain becomes even shorter and this tends to lower the degradation
temperature [42]. Previous reports have even suggested that such profile can be observed due to the
occurrence of sulphate group which lowers the thermostability of samples which was observed in our
results also [43].
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Figure 4. Thermal degradation of raw and treated HHB. (a) DTG and (b) TG curve.

Table 4. The onset of pyrolytic degradation and decomposition peak of HHB.

S Onset Degradation Peak Degradation
amples
Temperature (T,) Temperature (Tax)
Raw HHB 205 337.5
ATH 205 315
AHH 155 265, 327

3.6. Enzyme Saccharification

Cellulose microfibres obtained from alkaline and acid hydrolysis were enzyme saccharified using
cellulase from Trichoderma reesei. The extraction procedure of cellulose enabled partial removal of
amorphous (lignin, and pectin) content. This cellulose extract can be a potential source for the enzyme
hydrolysis and produce reducing sugars for ethanol fermentation as mentioned in an earlier study [11]
and can be taken as an extension of biorefinery perspective.
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The extracted cellulose was digested for 72 h and the resulted reducing sugars are shown in
Figure 5. The ATH cellulose exhibited the highest amount of reducing sugars (909 + 0.02 mg/g)
compared to acid hydrolysed (395 + 0.006 mg/g) and raw biomass (167 + 0.01 mg/g) in 72 h. This
indicates that alkaline treatment produced pure cellulose microfibre bundles by removing lignin and
hemicellulose from the structure causing easier access to cellulose and resulted in a high yield of
reducing sugars. A suitable method for the use of the hydrolysed sugars for producing omega-3 fatty
acids has been developed in a previous study. Our results indicated that these sugars are suitable for
growing marine microalgae for producing bioactives [44]. The yield of reducing sugars lowered in
samples obtained after sequential alkaline and acid treatment. As mentioned earlier, this could be
due to the presence of sulphate group, which destructed the crystallinity of cellulose and potentially
lowered the hydrolysis yield.

1000 Raw HHB = AHH = ATH
900

800 -

700
600 -
500
400 - =
300
200 B )
100 - -
0 = ;
0 24 48 72

Incubation time (h)

Reducing sugars (mg/g)

Figure 5. Enzyme saccharification of raw, AHH and ATH for 72 h using cellulase from Trichoderma reesei.

3.7. Toxicity Studies with Human Fibroblasts

The cellulose microfibres produced by the two different methods, alkaline and acid hydrolysis,
were assessed for biocompatibility using human fibroblasts. As shown in Figure 6, there was no
difference in cell proliferation (human fibroblasts) between the raw HHB and the treated samples
(ATH and AHH). Cell viability greater than 90% was observed across all of the groups indicating that
the two extraction methods used to produce cellulose microfibres were not toxic to cells. The excellent
biocompatibility of these cellulose extracts lends themselves to be used as biomaterials. Previous
studies have demonstrated that various types of cells such as fibroblasts, smooth muscle cells, glioma
cells and mesenchymal stem cells attached and proliferated better on micro- and nanostructured
surfaces than flat surfaces [45,46]. Studies have demonstrated the usage of cellulose microfibres for
tissue engineering, which included tendon/ligament preparation and drug delivery aspect [47]. The
ability to use wood waste to produce cost effective nanostuctured natural biomaterials has the potential
of generating interest in using cellulosic nanofibres in biomedical applications. Results from this study
demonstrated that the bioprocessing method can produce cellulose microfibres that has excellent
compatibility, expanding its use to biomedical applications, for example, tissue engineering.
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Figure 6. Toxicity study conducted on raw, ATH and AHH for 4 days.

4. Conclusions

The extraction of cellulose microfibres from HHB was achieved using alkaline and acid hydrolysis.
The characterisation techniques demonstrated that the alkaline treatment majorly worked in the
preparation of microfibres and acid hydrolysis tend to shorten the cellulose chain. It produced a
higher content of cellulose extract by increasing the crystallinity index from 39% to 52%. Enzyme
saccharification of extracted cellulose microfibres was in agreement with characterisation techniques,
showing maximum reducing sugar (909 mg/g) yield in alkaline treatment showing its potential
application in biofuel production. The toxicity study on human fibroblasts demonstrated both
extraction methods as non-toxic with cell viability >90%. The investigation produced non-toxic
cellulosic microfibres from hemp biomass, which suggested its possible use in biomedical applications.
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