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Abstract: Corrosion behavior of friction stir processing (FSP) WE43 alloy in a simulated body fluid
(SBF) was investigated. Micro-galvanic corrosion was the dominated corrosion behavior, and the
corrosion resistance of FSP WE43 alloy was improved compared to the cast counterpart. Furthermore,
due to the fine-grained and homogeneous microstructure, uniform corrosion morphology was
observed on FSP WE43 alloy. According to the tensile properties of specimens with different
immersion time intervals, FSP WE43 alloy shows better performance to maintain the mechanical
integrity in SBF as compared to the as-cast alloy.

Keywords: WE43 magnesium alloy; friction stir processing; corrosion behavior; mechanical properties

1. Introduction

Magnesium (Mg) alloys have excellent biocompatibility, which are desirable for medical implant
materials [1–7]. However, due to their fast corrosion rates in the physiological environment, the
corrosion resistance of Mg alloys need be improved to maintain their mechanical integrity before
the tissue has sufficiently healed [8–10]. Rare earth (RE) elements are usually used to improve the
high-temperature strength and creep resistance of Mg alloys, and some RE elements can simultaneously
improve the corrosion resistance of Mg alloys. The addition of Y and Nd elements can enhance the
tensile strength of Mg alloys, and also favor the formation of a protective surface layer, decreasing their
corrosion rate [11–15]. Moreover, WE43 alloy has been successfully used in biomedical applications [16].
Therefore, it is expected that Mg-Y-Nd alloys will be widely used as biomedical implants.

Until present, the relationship between the microstructure and corrosion behavior of Mg alloys
has not been fully understood [17,18]. Due to the different electrode potential between α-Mg matrix
(anode) and secondary phases (cathodes), Mg alloys are highly susceptible to galvanic corrosion, so
localized corrosion is often observed in Mg alloys, resulting in the decreased corrosion resistance of
Mg alloys. For WE43 alloy, the corrosion pits are related to the galvanic coupling between α-Mg matrix
and intermetallic compounds or impurities [19–21]. In some research, microstructure refinement is
demonstrated to be one of the strategies to avoid seriously localized corrosion for Mg alloys [22,23].
For instance, Gu et al. reported that the Mg-3Ca alloy prepared by rapid solidification (RS) exhibited
dramatically reduced degradation rate compared to the as-cast one, and the more uniform corrosion
morphology was shown on the surface of RS specimen [22]. It is well known that ultrafine or
nanocrystalline Mg alloys can be obtained by severe plastic deformation (SPD) techniques, such
as high pressure torsion (HPT) and equal channel angular pressing (ECAP) [18,23,24]. However, both
increased and decreased corrosion resistances are reported in SPD Mg alloys. Song et al. reported that
high dislocation density and more energetic crystalline defects were introduced by SPD, these may
increase the corrosion rate of pure Mg and AZ91D in NaCl solutions [25,26]. Therefore, the corrosion
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resistance of fine-grained Mg alloys need to be examined carefully, and special attention should be
paid to the distribution of second-phase particles or microstructure defects.

As a novel SPD technique for microstructure modification, friction stir processing (FSP) has
been demonstrated effective in fabricating fine-grained and homogeneous microstructure of metallic
materials [27,28]. Compared to the extensive studies on mechanical properties, research on the
corrosion behaviors of FSP materials is still limited. Ni et al. reported that the corrosion resistance
of FSP NiAl bronze was significantly increased compared to the cast counterpart [29]. Argade et al.
prepared different grain sizes of WE43 alloy by multi-pass FSP, and found that the corrosion rates in
3.5 wt % NaCl solutions decreased with the decreasing grain size [30]. After aging treatment, different
corrosion behavior was observed under electrochemical and constant immersion tests for FSP WE43
alloy [31]. However, to the best of the authors’ knowledge, the corrosion behavior of FSP WE43 alloy
in a simulated body fluid (SBF) has not been investigated until present. It is reported that the corrosion
rate of WE43 alloy in SBF was significantly higher than that in simple NaCl solutions [32]. Since the
ion concentrations in SBF are nearly equal to those of human blood plasma, the corrosion behavior in
SBF is helpful to predict the degree of in vivo bone bioactivity of the material [33]. For the purpose of
being a biomedical implant, it is necessary to investigate the corrosion behavior of FSP WE43 alloy in
SBF. In this study, WE43 alloy with fine-grained and homogeneous microstructure was prepared by
FSP, the corrosion behavior of specimens in SBF was investigated, and the aim focuses on the influence
of FSP on corrosion mechanism of WE43 alloy.

2. Results

2.1. Microstructure

Figure 1 shows the microstructure of the base material (BM) specimen. As shown in Figure 1a,
the average size of coarse α-Mg grains is ~53 µm measured by the mean linear intercept method.
Figure 1b shows the back-scattered electron (BSE) image of second phases distributed randomly in
the BM. According to our previous work [34], the main coarse second phases in the BM are Mg12Nd
(coarse eutectic networks mainly located at the grain boundaries) and Mg24Y5 (cubic-shaped particles
mainly decorated in the intragranular region), respectively.
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Figure 1. (a) OM and (b) BSE images of the BM specimen.

Figure 2 shows the microstructure of WE43 alloy after FSP. The cross-section macrograph of FSP
specimen is shown in Figure 2a, no obvious defects can be found in the stirred zone (SZ), indicating
the process is performed successfully. The microstructure in the central region of the SZ are shown
in Figure 2b, in comparison with the BM specimen, the coarse grains are significantly refined after
FSP, which is mainly attributed to the dynamic recrystallization (DRX) behavior during FSP [28]. The
average grain size of FSP specimen is calculated as ~2.7 µm (Figure 2c). Furthermore, due to the
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extensive plastic deformation during FSP [28], the coarse second phases in the BM are broken into fine
particles in the SZ (Figure 2d).
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SZ; and (d) TEM image showing second phase particles in SZ of FSP specimen.

2.2. Corrosion Behavior

2.2.1. Electrochemical Corrosion Test

The electrochemical polarization behavior of the specimens in SBF at 37 ˝C is illustrated in Figure 3.
According to the similar polarization curves, there is no significant difference in the polarization
behavior between the BM and FSP. The electrochemical data are evaluated by Tafel extrapolation from
polarization curves. As shown the inserted table in Figure 3, the corrosion potential (Ecorr) of the FSP
specimen (´1632 ˘ 21 mV vs. Ag/AgCl) is more positive than that of BM specimen (´1665 ˘ 18 mV
vs. Ag/AgCl), the corrosion current density (icorr) of the FSP specimen (198 ˘ 46 µA/cm2) is slightly
lower that of the BM specimen (268 ˘ 63 µA/cm2). Both of the Ecorr and icorr values indicate that the
corrosion resistance of WE43 alloy is improved after FSP. Similar results are shown in [30], in which
the electrolyte is 3.5 wt % NaCl solutions.
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2.2.2. Immersion Corrosion Test

Figure 4 presents the typical overview surface appearances of the BM and FSP specimens after the
immersion corrosion test in SBF. In order to observe the whole corrosion morphologies of the tensile
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test specimens after immersion, the epoxy resin covered on the grip region are removed. Due to the
poor corrosion resistance, the maximum immersion time of BM is six days, in which the gage region of
the tensile specimen and the weight loss specimen are almost dissolved completely in SBF. However,
most areas of the FSP specimens are maintained at the same immersion time interval. This indicates
that the corrosion resistance of FSP specimen is better than the BM specimen.

Materials 2016, 9, 542 4 of 15 

 

gage region of the tensile specimen and the weight loss specimen are almost dissolved completely 
in SBF. However, most areas of the FSP specimens are maintained at the same immersion time 
interval. This indicates that the corrosion resistance of FSP specimen is better than the BM 
specimen. 

 
Figure 4. Typical overview surface appearance of specimens with different immersion time intervals 
in SBF (with corrosion products). 

The weight loss and corrosion rate curves of the specimens during immersion tests are shown 
in Figure 5. The corrosion rates of the specimens are calculated as Equation (1) [10,35]:  

CR = W/Atρ (1)

where CR refers to the corrosion rate; W is the measured weight loss of the specimen; A is the 
exposure area; t is the immersion time; ρ is the standard density. For BM specimens, the weight loss 
significantly increases with increasing test time, and almost completely dissolved in SBF at six days. 
The corrosion rate of BM specimens is calculated to be 38.41 mm/yr. The weight loss for the FSP 
specimen is much lower compared to the BM specimen, and the corrosion rate is calculated to be 
15.12 mm/yr. It demonstrates that FSP can effectively decrease the corrosion rate of as-cast WE43 
alloy. 

 
Figure 5. (a) The weight loss and (b) corrosion rate curves of specimens during immersion test. 

2.2.3. Corrosion Morphology  

Figure 6a shows the serious localized corrosion morphology of the BM specimen after 
immersion test for one day. Both uniform protective film and thick corrosion film can be seen in 
Figure 6b,c, respectively. The main corrosion products of uniform film are reported to be Mg(OH)2 
or perhaps MgO [36–38], and the cracks may be due to the dehydration reaction occurring during 
the drying process. The thick corrosion film correlates with a more serious corrosion behavior, 
indicating a faster corrosion rate [38]. EDS spot analysis shows that the main corrosion products of 
thick film are calcium phosphate and oxides of Mg. 

Figure 4. Typical overview surface appearance of specimens with different immersion time intervals in
SBF (with corrosion products).

The weight loss and corrosion rate curves of the specimens during immersion tests are shown in
Figure 5. The corrosion rates of the specimens are calculated as Equation (1) [10,35]:

CR “ W{Atρ (1)

where CR refers to the corrosion rate; W is the measured weight loss of the specimen; A is the exposure
area; t is the immersion time; ρ is the standard density. For BM specimens, the weight loss significantly
increases with increasing test time, and almost completely dissolved in SBF at six days. The corrosion
rate of BM specimens is calculated to be 38.41 mm/yr. The weight loss for the FSP specimen is much
lower compared to the BM specimen, and the corrosion rate is calculated to be 15.12 mm/yr. It
demonstrates that FSP can effectively decrease the corrosion rate of as-cast WE43 alloy.
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2.2.3. Corrosion Morphology

Figure 6a shows the serious localized corrosion morphology of the BM specimen after immersion
test for one day. Both uniform protective film and thick corrosion film can be seen in Figure 6b,c,
respectively. The main corrosion products of uniform film are reported to be Mg(OH)2 or perhaps
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MgO [36–38], and the cracks may be due to the dehydration reaction occurring during the drying
process. The thick corrosion film correlates with a more serious corrosion behavior, indicating a faster
corrosion rate [38]. EDS spot analysis shows that the main corrosion products of thick film are calcium
phosphate and oxides of Mg.Materials 2016, 9, 542 5 of 15 
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Figure 7a shows the uniform corrosion morphology of the FSP specimen after immersion test for
one day. As shown in Figure 7b, a small pit is located on the surface of film. At a higher magnification,
a uniform film is observed at the bottom of the pit (Figure 7c). This means that a new uniform film can
re-form when localized corrosion occurred during the immersion test for the FSP specimen.
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After removing corrosion products, the surface morphologies of the BM and FSP specimens after
immersion test for one day are presented in Figure 8. Figure 8a shows that the whole surface of the
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BM is seriously corroded, and the deeply corroded area is illustrated in Figure 8b. It can be found
that plenty of deep pits are shown in this area (Figure 8c), which means that the localized corrosion
penetrates deeply into the BM specimen. Figure 8d presents a smooth corroded surface of the FSP
specimen. Although most of the surface areas are corroded after immersion for one day (Figure 8e),
the shallow pits shown in these areas indicate that the localized corrosion do not penetrate deeply into
the FSP specimen. In addition, there are still some original areas (Figure 8f), which suffered slight
corrosion attack.Materials 2016, 9, 542 6 of 15 

 

 
Figure 8. Surface morphologies of (a–c) the BM and (d–f) the FSP specimens after immersion for one 
day (without corrosion products). 

2.3. Tensile Test 

2.3.1. Tensile Properties 

The results of tensile tests of BM and FSP specimens with different immersion time intervals 
are summarized in Figure 9. Since the load area of specimens is changed after immersion tests, only 
maximum tensile load (MTL) are provided for comparing. The original MTL of the BM and FSP 
specimens are 905 and 1378 N, corresponding to the ultimate tensile strengths of 199 and 303 MPa, 
respectively. After the immersion test for five days, the MTL of the BM specimen significantly 
decreases to 184 N, which is only 20% of the original value. Under the same test conditions, the 
MTL of the FSP specimen is 751 N, which is still 54% of the original value. Therefore, the FSP WE43 
alloy shows better performance in maintaining the mechanical integrity in SBF as compared to the 
as-cast alloy. 

 
Figure 9. Tensile properties of the BM and FSP specimens after different immersion time intervals. 

2.3.2. Fracture Morphology 

Figure 10 reveals the fracture appearances (observed along the normal direction (ND)) of the 
BM and FSP specimens after immersion for one day. Thick corrosion products are accumulated 
near the fracture of the BM specimen (Figure 10a), and a large corrosion pit is located at the fracture 
(Figure 10b). It can be concluded that the cracks are nucleated and propagated easily in these areas. 
For the FSP specimen, a relative smooth fracture surface is observed (Figure 10c). Some corrosion 
products are broken and separated during the tensile test, while some residual films are still 
attached on the fracture surface (Figure 10d). 

Figure 8. Surface morphologies of (a–c) the BM and (d–f) the FSP specimens after immersion for one
day (without corrosion products).

2.3. Tensile Test

2.3.1. Tensile Properties

The results of tensile tests of BM and FSP specimens with different immersion time intervals
are summarized in Figure 9. Since the load area of specimens is changed after immersion tests, only
maximum tensile load (MTL) are provided for comparing. The original MTL of the BM and FSP
specimens are 905 and 1378 N, corresponding to the ultimate tensile strengths of 199 and 303 MPa,
respectively. After the immersion test for five days, the MTL of the BM specimen significantly decreases
to 184 N, which is only 20% of the original value. Under the same test conditions, the MTL of the FSP
specimen is 751 N, which is still 54% of the original value. Therefore, the FSP WE43 alloy shows better
performance in maintaining the mechanical integrity in SBF as compared to the as-cast alloy.
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2.3.2. Fracture Morphology

Figure 10 reveals the fracture appearances (observed along the normal direction (ND)) of the BM
and FSP specimens after immersion for one day. Thick corrosion products are accumulated near the
fracture of the BM specimen (Figure 10a), and a large corrosion pit is located at the fracture (Figure 10b).
It can be concluded that the cracks are nucleated and propagated easily in these areas. For the FSP
specimen, a relative smooth fracture surface is observed (Figure 10c). Some corrosion products are
broken and separated during the tensile test, while some residual films are still attached on the fracture
surface (Figure 10d).Materials 2016, 9, 542 7 of 15 

 

 
Figure 10. SEM images of tensile fracture appearance: (a,b) BM specimen; and (c,d) FSP specimen 
(after immersion for one day). 

Figure 11 gives the fracture morphologies (observed along the PD) of the BM specimen after 
immersion for three days. It can be seen that plenty of material is dissolved into SBF during 
immersion test, and the irregular shape fracture surface is exhibited. In addition, a mass of white 
corrosion products are accumulated on the fracture surface, which have suffered serious corrosion 
as shown at locations I, II, and III in Figure 11. Therefore, the localized serious corrosion behavior is 
the main reason for the fracture of the immersed BM specimen. 

 
Figure 11. Fracture surface of the BM specimen after immersion for three days. 

Figure 12 exhibits the TD fracture morphologies of FSP specimen after immersion for three 
days. The fracture surface almost maintains the rectangular shape, and dimples can be observed on 
the surface (location I in Figure 12), which is the typical characteristic of ductile fracture mode. 
However, a small quantity of corrosion products are examined on the side of fracture surface 
(marked in location II), and cleavage facets can be seen around corrosion products. It is speculated 
that the failure mechanism may transform into brittle fracture mode due to the corrosion attack. 
Compared to Figure 11, relatively uniform corrosion behavior can be observed on the FSP 
specimen. 

Figure 10. SEM images of tensile fracture appearance: (a,b) BM specimen; and (c,d) FSP specimen
(after immersion for one day).

Figure 11 gives the fracture morphologies (observed along the PD) of the BM specimen after
immersion for three days. It can be seen that plenty of material is dissolved into SBF during immersion
test, and the irregular shape fracture surface is exhibited. In addition, a mass of white corrosion
products are accumulated on the fracture surface, which have suffered serious corrosion as shown
at locations I, II, and III in Figure 11. Therefore, the localized serious corrosion behavior is the main
reason for the fracture of the immersed BM specimen.

Materials 2016, 9, 542 7 of 15 

 

 
Figure 10. SEM images of tensile fracture appearance: (a,b) BM specimen; and (c,d) FSP specimen 
(after immersion for one day). 

Figure 11 gives the fracture morphologies (observed along the PD) of the BM specimen after 
immersion for three days. It can be seen that plenty of material is dissolved into SBF during 
immersion test, and the irregular shape fracture surface is exhibited. In addition, a mass of white 
corrosion products are accumulated on the fracture surface, which have suffered serious corrosion 
as shown at locations I, II, and III in Figure 11. Therefore, the localized serious corrosion behavior is 
the main reason for the fracture of the immersed BM specimen. 

 
Figure 11. Fracture surface of the BM specimen after immersion for three days. 

Figure 12 exhibits the TD fracture morphologies of FSP specimen after immersion for three 
days. The fracture surface almost maintains the rectangular shape, and dimples can be observed on 
the surface (location I in Figure 12), which is the typical characteristic of ductile fracture mode. 
However, a small quantity of corrosion products are examined on the side of fracture surface 
(marked in location II), and cleavage facets can be seen around corrosion products. It is speculated 
that the failure mechanism may transform into brittle fracture mode due to the corrosion attack. 
Compared to Figure 11, relatively uniform corrosion behavior can be observed on the FSP 
specimen. 

Figure 11. Fracture surface of the BM specimen after immersion for three days.



Materials 2016, 9, 542 8 of 15

Figure 12 exhibits the TD fracture morphologies of FSP specimen after immersion for three days.
The fracture surface almost maintains the rectangular shape, and dimples can be observed on the
surface (location I in Figure 12), which is the typical characteristic of ductile fracture mode. However, a
small quantity of corrosion products are examined on the side of fracture surface (marked in location II),
and cleavage facets can be seen around corrosion products. It is speculated that the failure mechanism
may transform into brittle fracture mode due to the corrosion attack. Compared to Figure 11, relatively
uniform corrosion behavior can be observed on the FSP specimen.Materials 2016, 9, 542 8 of 15 
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3. Discussion

In recent years, a new class of biodegradable metals has attracted great attentions. These kinds
of metals are expected to corrode gradually in vivo, and then dissolved completely upon fulfilling
the mission to assist with tissue healing [10,39]. Mg and its alloys are promising candidates for the
application of biodegradable metals, due to their mechanical and corrosion characteristics in the
physiologic environment [8,40]. In order to predict the corrosion rate of biodegradable implants during
their service period, uniform corrosion behavior of Mg alloys is desirable. In this study, the corrosion
resistance and uniform corrosion ability of WE43 alloy in SBF are both significantly improved after
FSP. In order to summarize the influence of FSP on corrosion behavior of WE43 alloy, the fine-grained
structure and second phase particles are discussed, respectively.

3.1. Influence of Grain Refinement on Uniform Corrosion Behavior

Grain boundaries are high-energy areas in the microstructure, acting as an anode compared to
the grain interior during galvanic corrosion [30]. Therefore, the fine-grained microstructure may be
corroded easily due to the large volume fraction of grain boundaries per unit area. However, there is no
inversely proportional relationship between grain size and corrosion rate, both increase and decrease
corrosion resistances are shown with the grain refinement [18,23,24]. This is due to the physical or
chemical properties of materials may be changed with the grain size modification by any processing
and/or alloy addition, which also influence the corrosion rate of materials [18].

In the present study, the average grain size of BM is about 53 µm, and the surface morphologies of
BM specimens with different immersion time intervals in SBF are shown in Figure 13. After immersion
for 0.5 h, the areas with second phases are slightly corroded, while the grain boundaries without
second phases cannot be observed clearly (as marked by white arrows in Figure 13a), indicating that
the areas near the second phases are corrosion attacked prior to the grain boundaries. After immersion
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for 1 h, the localized corrosion morphology is shown in Figure 13b, and the grain boundaries are
etched seriously. With the increasing of immersion time to 12 h, a much more serious corroded surface
is exhibited (Figure 13c), and some grains are separated from the matrix and/or dissolved into SBF. It
is presumable that when the grain boundaries are seriously corroded, the whole coarse grains with
protective films may be undercut and separated, so that the further corrosion occurs in underneath
microstructure, resulting in the poor corrosion resistance and the seriously-localized corrosion of
BM specimen.
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Figure 13. Surface morphologies of BM specimens after different immersion time intervals in SBF: (a)
0.5 h; (b) 1 h; and (c) 12 h (without corrosion products).

After FSP, the α-Mg grains of BM are significantly refined to about 2.7 µm (Figure 2), and the
surface morphologies of FSP specimens after different immersion time intervals in SBF are shown
in Figure 14. After immersion for 1 h, the grain boundaries are ambiguous (Figure 14a), with the
increasing immersion time to 3 h, the grain boundaries are slightly etched and the shape of grains can
be observed (Figure 14b). It can be noticed that the grain boundaries of FSP specimens are harder to
corrode than that of the BM specimens, which may be attributed to the enhancement of passivation
kinetics of fine-grained microstructure [41]. In addition, the mismatch and disorder between the oxide
layer and metal surface are both reduced for materials with higher grain boundary densities, leading
to better adherence of protective films and, thus, it contributes to the decrease of corrosion rate [31,42].
This is one of the reasons for the formation of uniform protective film on the surface of FSP specimen
(Figure 7). After immersion for 12 h, the fine grains are also separated from the matrix and/or dissolved
into SBF (Figure 14c). Unlike BM specimen, when the finer grains with protective films fall off, the
underneath areas for further corrosion are much smaller. Therefore, the better corrosion resistance and
uniform corrosion behavior are obtained after FSP. This is also confirmed by electrochemical results
shown in Figure 3.
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3.2. Influence of Second Phases on Uniform Corrosion Behavior

The electrical potential, volume fraction, size, and distribution of second phases have pronounced
influences on the corrosion behavior of Mg alloys [2,17]. In our research, the main phases in the
specimens are α-Mg matrix, Zr-rich particles, Mg12Nd, and Mg24Y5 [34,43]. Coy et al. reported that
the Volta potential values of Mg12(Nd,Y) phase, Zr-rich, and Y-rich particles are all higher than the
α-Mg matrix in wrought WE43-T6 alloy [44]. This means that the α-Mg matrix acts as an anode while
the second phases act as a cathode when suffering galvanic corrosion in SBF, resulting in the heavy
localized corrosion of α-Mg matrix adjacent to second phases. The micro-galvanic coupling between
α-Mg matrix and second phases can be expressed as the following partial reactions [17]:

MgÑMg2+ ` 2e- panodic reactionq (2)

2H2O ` 2e-ÑH2 ` 2OH- pcathodic reactionq (3)

Mg2+ ` 2OH-ÑMgpOHq2 pproduct formationq (4)

The influences of coarse second phases on corrosion behavior of BM specimens are shown in
Figure 15. After immersion in SBF for 3 h, the grain interior adjacent to second phases is seriously
corroded, while the Mg12Nd and Mg24Y5 phases are still decorated at grain boundaries (Figure 15a,b).
After immersion in SBF for 6 h, the α-Mg matrix is further corroded (Figure 15c). After immersion in
SBF for 12 h, the coarse second phases are undercut and fall out, leaving the deep holes so that the
electrolyte can be penetrated into the underneath microstructure (Figure 15d). Song et al. found that
if the β-phase is nearly continuous like a net over the fine α-Mg grains in die-cast AZ91D alloy, the
β-phase particles do not easily fall out by undermining [45]. In this study, the grains in BM are coarse
and the volume fraction of second phases is not high enough (Figure 1b), so the corrosion behavior is
not effectively blocked by the second phases. In an even worse case, the separation of second phases
leads to the much more seriously-localized corrosion in BM specimens.
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After FSP, the coarse second phases are broken into fine particles (Figure 2d). The surface
for the FSP specimen suffers serious micro-galvanic corrosion at the early stage of the immersion
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test (Figure 16a), and the corrosion is aggravated with the increased immersion time (Figure 16b,c).
Even so, corrosion pits with smaller size and shallower depth are observed on the surface of FSP
specimen. It means that the FSP specimen suffers slight corrosion attack compared to the as-cast one.
Lunder et al. reported that the uniformly-distributed, fine second-phase particles are the most
detrimental to the corrosion resistance of magnesium-base alloys [46]. However, Chu et al. reported
that the finely-distributed precipitates in a peak-aged specimen decrease the corrosion rate of WE43
alloy [38]. The former one considered that the micro-galvanic couplings between particles and
α-Mg matrix increased with the refined particles, while the later one thought that the precipitates
played a prominent role in slowing down the corrosion reactions underneath. In the present study,
micro-galvanic corrosion is the dominant corrosion mechanism for BM and FSP specimens. The refined
microstructure and homogenous distribution of second phase particles in FSP alloy decrease the
undercut effect during corrosion. This may be the main reason for the corrosion resistance is improved
and the uniform corrosion morphology is exhibited in FSP WE43 alloy.Materials 2016, 9, 542 11 of 15 
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4. Materials and Methods

Cast Mg-Y-Nd alloy was used as BM in this study, and the chemical compositions are listed in
Table 1. Plates with a thickness of 6 mm were cut from cast billets and then subjected to single-pass
FSP at a rotation rate of 600 rpm and a traveling speed of 60 mm¨min–1. A tool with a shoulder of
15 mm in diameter, a threaded conical pin of 4 mm in root diameter and 5 mm in length was used.
The tool tilt angle was 2.5˝. As shown in Figure 17a, tensile specimens with a gauge length of 5 mm,
a thickness of 1.3 mm and a width of 3.5 mm were machined parallel to the processing direction
(PD) with the gauge completely within the stirred zone (SZ). Immersion specimens with a size of
6 ˆ 4 ˆ 2 mm3 cuboids were also cut from SZ (Figure 17b).

Specimens for optical microscopy (OM) and scanning electron microscopy (SEM) observations
were cut perpendicular to the processing direction, and prepared by mechanical polishing, then etching
with a solution of 5 g picric acid +10 mL acetic acid +10 mL distilled water +80 mL ethanol. Thin foils
for transmission electron microscopy (TEM) were ion–milled by a Gatan 691 miller at a voltage of 4 kV.

Potentiodynamic polarization was utilized to evaluate the corrosion behavior. The electrochemical
measurements were conducted in SBF using an electrochemical workstation (IM6ex, Zahner,
Germany). According to the preparation procedure of Ref. [33], the SBF used in this study containing
8.035 g/L NaCl, 0.355 g/L NaHCO3, 0.225 g/L KCl, 0.231 g/L K2HPO4¨ 3H2O, 0.311 g/L MgCl2¨ 6H2O,
0.292 g/L CaCl2, 0.072 g/L Na2SO4, and 6.118 g/L Tris (HOCH2)3CNH2. The experiments were
performed in a three-electrode cell with a platinum electrode as the counter electrode, samples with
an exposed area of 1 cm2 as the working electrode, a saturated Ag/AgCl electrode as the reference
electrode. Specimens were immersed in SBF at 37 ˝C for 30 min to achieve constant potential before
electrochemical experiments. The potentiodynamic polarization was measured at a scanning rate of
5 mV/s. Electrochemical experiments were conducted in triplicate to verify the validity of results.
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Table 1. Chemical compositions of as-cast Mg-Y-Nd alloy (mass fraction, %).

Mg Y Nd Zr Al Ni Si Ca Zn

Bal. 4.27 2.94 0.51 0.07 0.05 0.05 0.04 0.01

The immersion test was carried out according to ASTM-G31-72 in SBF and the temperature
was kept at 37 ˝C by water bath. Figure 18 shows the weight loss specimen (small one) and tensile
test specimen (big one), which are subjected to a multistage grinding process and immersed in SBF
simultaneously. The weight loss specimens are used to measure the corrosion rate of FSP WE43 alloy
in SBF, and the tensile test specimens are used to measure the variation of mechanical properties of FSP
WE43 alloy with the different immersion time intervals. Furthermore, the grip region of tensile test
specimens was covered with epoxy resin, which guaranteed only the gage region of the specimens was
immersed in the SBF throughout the test procedure. In order to ensure the sufficient contact between
specimens and solution, specimens were hung in the middle of SBF. During the corrosion tests, the
electrolyte was changed every 48 h. The ratio of solution volume to specimen area was 0.31 mL/mm2

in this study. An average of three measurements was taken for each group.
After different immersion time intervals, the specimens were ultrasonically cleaned in distilled

water, then immersed in 10 g/L CrO3 solution to clean the corrosion products and ultrasonically
cleaned in distilled water. The surface morphologies of the specimens before and after removing
corrosion products were characterized by SEM, equipped with an energy-dispersive spectrometer (EDS)
attachment. Weight loss and corrosion rate (mm/yr) were measured. Tensile tests were performed
on a SANS CMT5105 machine with a strain rate of 2 ˆ 10´3 s´1. Tensile fracture morphologies
of TD (transverse direction, transverse to the processing direction) and PD were subjected to SEM
examination. The definition of the directions mentioned above is shown in Figure 17.
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subjected to SEM examination. The definition of the directions mentioned above is shown in 
Figure 17. 
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investigate their biodegradable behaviors. The following conclusions can be drawn: 

Figure 18. Image of specimen before immersion.

5. Conclusions

In this study, as-cast and FSP WE43 alloy were immersed in SBF for various time intervals to
investigate their biodegradable behaviors. The following conclusions can be drawn:

1. The Ecorr and icorr values obtained by electrochemical measurements indicate that the corrosion
resistance of as-cast WE43 alloy is improved after FSP. In addition, according to immersion tests,
the corrosion rate of as-cast WE43 alloy is decreased from 38.41 mm/yr to 15.12 mm/yr after FSP.

2. Micro-galvanic corrosion is the dominant corrosion behavior for BM and FSP specimens. Due
to the fine-grained and homogeneous microstructure, the uniform corrosion morphology was
observed on FSP WE43 alloy.

3. After immersion in SBF for five days, the maximum tensile load for as-cast WE43 alloy is
significantly decreased to 20% of the original value, while the maximum tensile load of the
FSP specimen is still 54% of the original value, which is attributed to the improved corrosion
resistance and uniform corrosion behavior after FSP.
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