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Abstract: The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu
(0.002–0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures
(400 ˝C–550 ˝C) and strain rates (0.01–10 s´1). The results demonstrated that flow stress decreased
with increasing deformation temperature and decreasing strain rate, while flow stress increased
with increasing Cu content for all deformation conditions studied due to the solute drag effect.
Based on the experimental data, an artificial neural network (ANN) model was developed to study
the relationship between chemical composition, deformation variables and high-temperature flow
behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in
a hidden layer was established in this study. The input parameters were Cu content, temperature,
strain rate and strain, while the flow stress was the output. The performance of the proposed model
was evaluated using the K-fold cross-validation method. The results showed excellent generalization
capability of the developed model. Sensitivity analysis indicated that the strain rate is the most
important parameter, while the Cu content exhibited a modest but significant influence on the
flow stress.

Keywords: 1xxx aluminum alloys; hot deformation; flow stress prediction; artificial neural network
modeling; sensitivity analysis

1. Introduction

1xxx series wrought aluminum alloys are used in a wide range of applications and product forms,
such as foil and strips for packaging and heat-exchanger tubing, cable sheathing and fin stock, where
excellent formability, corrosion resistance and electrical and thermal conductivity are required [1–3].
Typically, the levels of iron and silicon in a specific alloy are controlled to provide the required
performance characteristics, such as strength, formability or corrosion resistance, which resulting
in many commercial variants within a given AA specification. The effects of iron and silicon levels
on hot workability in 1xxx alloys were reported in our previous work [4]. Increasing both iron and
silicon contents generally increases the high-temperature flow stress, which can negatively impact the
hot workability [4–7]. For example, the extrusion speed and corresponding productivity of thin-wall
tubing can be reduced. Thus, there is a trade-off between room temperature mechanical properties
and hot workability. An alternate approach to increase room temperature strength is to add copper for
solution strengthening, as is the case in the widely utilized AA1100 alloys. In the current work, the
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impact of copper content on hot workability is assessed with the long-term view of optimizing 1xxx
alloy design for both strength and hot processability.

The flow behavior of aluminum alloys during hot deformation is complex. The work hardening
and dynamic softening mechanisms are both significantly affected by a number of factors, such
as chemical composition, forming temperature, strain rate and strain [8,9]. Constitutive models are
extensively employed to describe the correlation between flow stress, strain, strain rate and temperature
during hot deformation. In addition to the deformation parameters, the alloy chemical composition
also has a significant impact on the high temperature flow behavior of aluminum alloys. Therefore, it
is of great interest to develop a model that represents the relationship between chemical compositions,
deformation variables and flow stress. This model can be employed to optimize the chemical
composition of dilute Al-Fe-Si-Cu alloy as well as process parameters to obtain deserved strength
and processability. Constitutive models are either analytical [10–12] or phenomenological [13–15].
Analytical constitutive models are based on the physical aspects of a material’s behavior and require
comprehensive understanding of the underlying mechanisms that control the materials’ deformation.
In addition, there are many independent parameters in analytical constitutive equations that require
experimental determination. These features make this type of model difficult to apply. An alternative
approach would be adapting a phenomenological model based upon empirical observations. However,
these models are typically restricted to certain processing domains where a specific deformation
mechanism operates and the accuracy of the flow stress predicted by these regression methods is low.

In recent years, artificial neural networks (ANNs) have provided a fundamentally different
approach for material modeling and material processing control techniques [16]. The most important
advantage of ANNs is that they do not require postulation of a mathematical model at the outset or the
identification of its parameters. ANNs learn from examples and recognize patterns in a series of input
and output data without the need for any prior assumptions about their nature and interrelations [17,18].
Recently ANNs have been successfully applied to model the high-temperature flow behavior of
stainless steels [18], aluminum alloys [19,20], magnesium alloys [21], titanium alloys [22,23] and Al-base
metal matrix composites [24]. However, to date, no ANN model has been developed to simultaneously
include the effect of both chemical composition and deformation variables in aluminum alloys.

In the present study, the capability of the ANN approach to predict the high-temperature flow
behavior of Al-0.12Fe-0.1Si-Cu alloys was examined as a function of chemical composition and process
parameters. An ANN model has been proposed to predict the flow behavior of Al-0.12Fe-0.1Si
alloys with various levels of Cu addition (0.002–0.31 wt %) under different deformation conditions.
Sensitivity analysis was carried out to quantify the relative importance of Cu addition and individual
deformation variables on the flow stress.

2. Experimental Procedures

Al-0.12Fe-0.1Si alloys with different Cu contents ranging from 0.002% to 0.31% were investigated
(all alloy compositions in this study are given in wt % unless otherwise indicated). Materials were
prepared from commercially pure aluminum (99.7%), Al-50%Si and Al-50%Cu master alloys.
Table 1 provides the chemical compositions of the experimental alloys used. For each composition,
approximately 3 kg of material was melted in an electrical resistance furnace and then cast into a
rectangular permanent steel mold. Prior to casting, the melts were grain-refined by the addition of
0.015% Ti in the form of an Al-5Ti-1B master alloy. The cast ingots of these alloys were homogenized at
550 ˝C for 6 h, and then water quenched to room temperature.

Cylindrical samples (10 mm diameter and 15 mm height) were machined from the homogenized
ingots. Uniaxial hot compression tests were conducted using a Gleeble 3800 thermomechanical testing
unit (Dynamic Systems Inc., Poestenkill, NY, USA) at strain rates of 0.01, 0.1, 1 and 10 s´1 and
temperatures of 400, 450, 500 and 550 ˝C. To minimize the friction between the sample and anvil
during test, thin graphite foils were placed on both ends of the samples. Specimens were deformed
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to a total true strain of 0.8 and then immediately water-quenched to room temperature to retain the
deformed microstructure.

Table 1. Chemical compositions of alloys (wt %).

Alloys Si Fe Cu Mn Cr Ni Ti Co Zr V

Base alloy 0.10 0.12 0.002 0.001 0.001 0.007 0.016 0.0003 0.0015 0.012
Al-0.12Fe-0.1Si-0.05Cu 0.10 0.12 0.051 0.001 0.001 0.007 0.016 0.0003 0.0014 0.012
Al-0.12Fe-0.1Si-0.18Cu 0.11 0.13 0.181 0.001 0.001 0.007 0.015 0.0003 0.0014 0.013
Al-0.12Fe-0.1Si-0.31Cu 0.11 0.13 0.31 0.00 0.001 0.007 0.015 0.0003 0.0014 0.012

3. Results and Discussion

3.1. Effect of Cu Content on Flow Stress Behavior

Hot compression tests of four Al-0.12Fe-0.1Si alloys with various levels of Cu were conducted at
different strain rates (0.01 to 10 s´1) and temperatures (400 to 550 ˝C). Figure 1 illustrates the resulting
series of true stress-true strain curves obtained during hot deformation. In general, the peak flow
stress was followed by a steady state region. However, in some cases, the flow stress continued to
increase until the end of straining. The former case occurs when dynamic softening is in balance with
work hardening, while the latter phenomenon is indicative of work hardening being stronger than
dynamic softening during deformation. Both flow behaviors are normal characteristics of hot working
where dynamic recovery (DRV) is the dominant softening mechanism [25,26]. Flow stress increased
with increasing strain rate and decreasing deformation temperature for all alloys studied, which is in
agreement with previously reported results [9,27,28]. Furthermore, flow stress significantly increased
with increasing Cu content.
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Figure 2 presents the evolution of flow stress with varying amounts of Cu at a true strain of
0.4 as a function of temperature at different strain rates. It is evident that increasing the Cu content
increases the flow stress over the applied range of deformation conditions. For example, at a given
deformation condition (T = 400 ˝C,

.
ε = 1 s´1), increasing the Cu level from 0.002% to 0.05%, 0.18%,

and 0.31% increased the flow stress from 33 to 35.5, 37 and 39 MPa, respectively. These results indicate
that the addition of Cu gradually enhances the deformation resistance of the dilute Al-Fe-Si alloy.
As Cu has a relatively high solid solubility in aluminum (5.7% at 548 ˝C [6]), all of the added Cu
up to 0.31% is expected to be in the solid solution after homogenization and at the deformation
temperature. Microstructural examination of the Cu-containing deformed samples confirmed that Cu
did not form any precipitates or dispersoids and that all of the added Cu remained in solid solution
(Figures not shown here—more detailed information in Ref. 29). The Cu solute atoms interact with
mobile dislocations and retard the dynamic recovery, which leads to significant increases in flow stress
during hot deformation [29–31].
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ε = 0.01 s´1;

(b)
.
ε = 0.1 s´1; (c)

.
ε = 1 s´1 and (d)

.
ε = 10 s´1.

3.2. Development of an Artificial Neural Network Model

A multilayer perceptron (MLP) based feed-forward artificial neural network with a back-propagation
(BP) learning algorithm was employed to study the high-temperature flow behavior of Al-0.12Fe-0.1Si-Cu
alloys. A general scheme of the three layer network with one hidden layer is given in Figure 3.
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A differentiable logistic sigmoid function, given by Equation (1), was employed as the activation
function in the present model:

F pxq “
1

1` exp p´xq
(1)

In this study, the input parameters of the neural network are: Cu content, strain (ε), temperature
(T) and strain rate (

.
ε). The output is flow stress (σ). A total of 960 experimental data points were

selected from the true stress–true strain curves (with an interval of 0.05 between true strains of 0.05
and 0.75) and were employed to train and test the ANN model. To ensure the learning efficiency of
the algorithm and prevent a specific factor from dominating learning for the model, both input and
output data were normalized within the range of 0–1. The following equation is widely utilized for
unification [19,32]:

X1 “ 0.1` 0.8ˆ
ˆ

X´ Xmin

Xmax ´ Xmin

˙

(2)

where X is the original data, Xmin and Xmax are the minimum and maximum value of X, and X’ is
the unified data corresponding to X. In this work, Equation (2) was utilized to unify the Cu level,
temperature and stress values. The strain rate changes greatly from 0.01 to 10 s´1; therefore, the
normalized value of

.
ε is too small to learn by ANN, and the following equation was adopted to unify

its value [19].

.
ε1
“ 0.1` 0.8ˆ

ˆ

log
.
ε ´ log

.
εmin

log
.
εmax ´ log

.
εmin

˙

(3)

The ε values are already in the range of 0 to 1 and therefore do not need further unification.
The three layer network with one hidden layer was found to be fully sufficient for this study. To define
the number of neurons in the hidden layer, mean square error (MSE) values obtained using Equation (4)
were employed as the indices to evaluate the capability of a given network [22]:

MSE “
1
N

N
ÿ

i“1

pEi ´ Piq
2 (4)

where Ei is the experimental value and Pi is the predicted value obtained from the ANN. N is the total
number of data employed in the study. Neurons in the hidden layer were varied from 4 to 26. It was
observed that a network with 20 hidden neurons gives a minimal MSE with very good correlation
(Figure 4).

The datasets obtained from compression tests were randomly divided into two groups: 80% of
the datasets were used to train the network model (training dataset), and the remaining 20% were
applied to test the model performance (test dataset). The work was accomplished by using the neural
network toolbox available with MATLAB 7.6.0.324 software (MathWorks, Natick, MA, USA).
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3.2.1. Effect of Cu Addition

The ANN model was employed to evaluate the effect of Cu content on high-temperature flow
behavior. Figure 5 shows the variations in flow stress at a true strain of 0.4 as a function of Cu
content for various deformation conditions. It is clear that the predicted results agree well with the
experimental data. The increase in flow stress with the addition of Cu is attributed to the solid solution
strengthening effect of Cu, which is a result of interactions between the mobile dislocations and the
solute atoms. The presence of Cu solutes increases the high-temperature flow stress and decreases
the dynamic recovery rate due to the solute drag effect on dislocation movement [6,29–31]. With an
increase in Cu content, the Cu solutes produced a stronger solute-drag effect and further decreased the
dynamic recovery level and subsequently increased flow stress.
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3.2.2. Effect of Temperature

The effects of deformation temperature on high-temperature flow behavior were studied using
the developed ANN model. Representative results are illustrated in Figure 6. The simulated flow
stress values exhibited excellent agreement with the corresponding measured data for a range of
strain rates and Cu contents. The flow stress decreased over the range of tested strain rates with
increasing deformation temperature for all of the alloys investigated. It is well known that dynamic
softening is a thermally activated process [7,33]. Hence, as the temperature increases, the available
thermal activation energy increases, which leads to a higher level of dynamic softening and a reduced
flow stress.
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3.2.3. Effect of Strain Rate

Figure 7 shows plots of σ versus log
.
ε comparing the experimental data with the ANN predicted

values at varied forming temperatures. The trained network is able to accurately predict the influence
of strain rate on flow stress. Increasing the strain rate results in increased flow stress, as expected.
Increasing the strain rate at a given temperature causes an increased dislocation multiplication rate
and increased formation of tangled dislocation structures that act as barriers to dislocation movement.
Consequently, the flow stress is augmented [7,33].
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base alloy; and (b) 0.31% Cu.

3.2.4. Assessment of the Proposed Model

In this study, the K-fold cross-validation has been employed to evaluate the performance of the
designed network. The cross-validation is an evaluation method that estimates generalization error
based on resampling [34–37], and the K-fold cross-validation method is one of the most commonly
used cross-validation techniques to evaluate the architecture and performance of an ANN [34].
In this technique, the dataset is randomly split into K mutually exclusive subsets (the folds) of
approximately equal size. K-1 subsets are employed to train the ANN model, and remaining one
subset is used to evaluate the network performance. However, the training and validation processes
are repeated K times with each subset used once as the validation set [34–37]. In general, five or 10 fold
cross-validations are recommended as a good compromise [34,35].

In the present work, K was set to five and the datasets obtained from the compression tests were
randomly divided into five equal size subsets (each containing 20% of the datasets). Subsequently,
five iterations of training and validation were performed in such way that in each iteration a different
fold of the data was held out for validation while the remaining four folds were used for training
(Figure 8). The performance of the designed network on each validation fold was evaluated using
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mean square error (MSE, Equation (4)), and the average absolute relative error (AARE), expressed
as [22,32]:

AARE p%q “

˜

1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

Ei ´ Pi
Ei

ˇ

ˇ

ˇ

ˇ

¸

ˆ 100 (5)

where Ei and Pi have the same meaning as stated earlier. The obtained results for each validation folds
are given in Table 2. The MSEs and AAREs that obtained for each fold are then averaged to produce
a single value for a network design (Table 2). As can be seen, the average values of the MSE and AARE
show excellent generalization capability of the designed network over the full range of data.
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Table 2. The value of mean square error (MSE) and average absolute relative error (AARE) for different
validation folds.

Validation Fold 1 2 3 4 5 Average

MSE 0.063 0.046 0.052 0.072 0.059 0.058
AARE (%) 1.36 0.94 1.07 1.63 1.28 1.26

Figure 9 illustrates the predicted and experimental flow curves of Al-0.12Fe-0.1Si-Cu alloys for
selected deformation conditions. Excellent agreement between predicted and experimental values
over the full range of data also reveals the capability of the proposed ANN model to predict hot
deformation behavior. Therefore, the model appears to offer significant potential compared to the
phenomenological or analytical approaches, which are typically utilized to predict the flow behavior
of a given chemical composition.
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3.2.5. Sensitivity Analysis

A sensitivity analysis was carried out to statistically assess the contributions of the input variables
in the neural network. Although different methods can be used to quantify the relative importance
of input parameters [38,39], the algorithm proposed by Garson [40] is found to be the most robust
method. This method includes partitioning hidden-output connection weights into components that
are associated with each input neuron using absolute values of connection weights (see Appendix A).

Figure 10 shows the relative importance of Cu content and deformation parameters on the
flow stress of Al-0.12Fe-0.1Si-Cu alloys. The results revealed that both the strain rate and forming
temperature have the most significant effect on the flow stress of the investigated alloys, while strain
has a minimal effect. The contribution of strain arises primarily at high Z conditions where the rate
of work hardening is greater than dynamic softening. At low Z conditions, the flow stress generally
remained constant with changes in strain. The Cu content exhibits a moderate influence on the flow
behavior of Al-0.12Fe-0.1Si-Cu alloys.
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4. Conclusions

A set of uniaxial hot compression tests were carried out on Al-0.12Fe-0.1Si alloys with varied Cu
contents at various temperatures (400 ˝C–550 ˝C) and strain rates (0.01–10 s´1). The results showed
that increasing Cu content increases the flow stress over the applied range of deformation conditions
due to solid solution strengthening. Based on the experimental results, a three-layer feed-forward
artificial neural network model with a back-propagation learning algorithm was developed to predict
the high-temperature flow behavior of the Al-0.12Fe-0.1Si-Cu alloys. It was found that the ANN
model with one hidden layer consisting of 20 neurons gives the best performance. The simulated
results demonstrated excellent agreement with corresponding experimental results. The predictability
of the proposed model was also assessed using the K-fold cross-validation method. It is confirmed
that the ANN model is an accurate and reliable tool to predict the high-temperature flow behavior of
Al-0.12Fe-0.1Si-Cu alloys as a function of alloy composition and deformation variables. Furthermore,
sensitivity analysis indicates that both the strain rate and the temperature have the most significant
impact on the high-temperature flow stress, while the Cu content exhibits a moderate influence.
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Appendix A. Example Illustrating Garson’s Algorithm

This example describes the procedure to determine the relative importance of input parameters
using Garson’s algorithm [38,40].

As an example, consider an ANN with four input neurons, two hidden neurons and one output
neuron with the connection weight as shown in Figure A1.

Materials 2016, 9, 536 10 of 13 

 

Author Contributions: Mohammad Shakiba, Nick Parson and X.-Grant Chen conceived and designed the 
experiments; Mohammad Shakiba performed the experiments, analyzed the data and wrote the paper; Nick 
Parson and X.-Grant Chen were involved in the result analysis and the preparation and revision of the paper.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A. Example Illustrating Garson’s Algorithm 

This example describes the procedure to determine the relative importance of input parameters 
using Garson’s algorithm [38,40]. 

As an example, consider an ANN with four input neurons, two hidden neurons and one output 
neuron with the connection weight as shown in Figure A1. 

 
Figure A1. The structure of a 4-2-1 artificial neural network. 

1. Matrix containing input-hidden and hidden-output neuron connection weights. 

Table A1. Input-hidden and hidden-output neuron connection weights. 

Neurons Hidden A Hidden B
Input 1 WA1 = 1.40 WB1 = 0.82 
Input 2 WA2 = −1.02 WB2 = 0.62 
Input 3 WA3 = −2.98 WB3 = 1.04 
Input 4 WA4 = 3.99 WB4 = −2.26 
Output WOA = −3.17 WOB = −1.21 

2. Contribution of each input neuron to the output via each hidden neuron calculated as the 
product of the input-hidden connection and the hidden-output connection: e.g., CA1 = WA1 × WOA 
= 1.4 × −3.17 = −4.44. 

Table A2. Contribution of each input neuron to the output via each hidden neuron. 

Neurons Hidden A Hidden B
Input 1 CA1 = −4.44 CB1 = −0.99 
Input 2 CA2 = 3.23 CB2 = −0.75 
Input 3 CA3 = 9.45 CB3 = −1.26 
Input 4 CA4 = 12.65 CB4 = 2.73 

3. Relative contribution of each input neuron to the outgoing signal of each hidden neuron: e.g., 
rA1 = |CA1|/(|CA1| + |CA2| + |CA3| + |CA4|) = 4.44/(4.44 + 3.23 + 9.45 + 12.65) = 0.15 and the sum of 
input neuron contributions: e.g., S1 = rA1 + rB1 = 0.15 + 0.17 = 0.14. 

  

Figure A1. The structure of a 4-2-1 artificial neural network.

1. Matrix containing input-hidden and hidden-output neuron connection weights.

Table A1. Input-hidden and hidden-output neuron connection weights.

Neurons Hidden A Hidden B

Input 1 WA1 = 1.40 WB1 = 0.82
Input 2 WA2 = ´1.02 WB2 = 0.62
Input 3 WA3 = ´2.98 WB3 = 1.04
Input 4 WA4 = 3.99 WB4 = ´2.26
Output WOA = ´3.17 WOB = ´1.21

2. Contribution of each input neuron to the output via each hidden neuron calculated as the product
of the input-hidden connection and the hidden-output connection: e.g., CA1 = WA1 ˆWOA = 1.4
ˆ ´3.17 = ´4.44.

Table A2. Contribution of each input neuron to the output via each hidden neuron.

Neurons Hidden A Hidden B

Input 1 CA1 = ´4.44 CB1 = ´0.99
Input 2 CA2 = 3.23 CB2 = ´0.75
Input 3 CA3 = 9.45 CB3 = ´1.26
Input 4 CA4 = 12.65 CB4 = 2.73

3. Relative contribution of each input neuron to the outgoing signal of each hidden neuron:
e.g., rA1 = |CA1|/(|CA1| + |CA2| + |CA3| + |CA4|) = 4.44/(4.44 + 3.23 + 9.45 + 12.65) = 0.15
and the sum of input neuron contributions: e.g., S1 = rA1 + rB1 = 0.15 + 0.17 = 0.14.
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Table A3. Relative contribution of each input neuron to the outgoing signal of each hidden neuron.

Neurons Hidden A Hidden B Sum

Input 1 rA1 = 0.15 rB1 = 0.17 S1 = 0.32
Input 2 rA2 = 0.11 rB2 = 0.13 S2 = 0.24
Input 3 rA3 = 0.32 rB3 = 0.22 S3 = 0.54
Input 4 rA4 = 0.42 rB4 = 0.48 S4 = 0.9

4. Relative importance (RI) of each input variable: e.g., RI1 = S1/(S1 + S2 + S3 + S4)ˆ 100 = 0.32/(0.32
+ 0.24 + 0.54 + 0.9) ˆ 100 = 16%.

Table A4. Relative importance of each input variable.

Neurons Relative Importance (%)

Input 1 16
Input 2 12
Input 3 27
Input 4 45

To determine the relative importance of Cu content and each deformation variable on the flow
stress of Al-Fe-Si-Cu alloys, the same calculation method was used for the developed ANN model
with 20 neurons on its hidden layer.
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