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Abstract: Motivated by a recently predicted structure of diamond-like BC2 with a high claimed
hardness of 56 GPa (J. Phys. Chem. C 2010, 114, 22688–22690), we focus on whether this tetragonal
BC2 (t-BC2) is superhard or not in spite of such an ultrahigh theoretical hardness. The mechanical
properties of t-BC2 were thus further extended by using the first principles in the framework of
density functional theory. Our results suggest that the Young’s and shear moduli of t-BC2 exhibit a
high degree of anisotropy. For the weakest shear direction, t-BC2 undergoes an electronic instability
and structural collapse upon a shear strain of about 0.11, with its theoretically ideal strength of only
36.2 GPa. Specifically, the plastic deformation under shear strain along the (110)[001] direction can be
attributed to the breaking of d1 B–C bonds.
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1. Introduction

Owing to the great demand from mechanical machining and semiconductor industries, the
experimental and theoretical attempts to synthesizing and designing superhard materials have been
performed intensively in recent decades. Although diamond is the hardest material with a Vickers
hardness of 115 GPa along the (111) plane, the shortcoming of its poor resistance to oxidation as well as
the reaction with ferrous metals restrict the applications of diamond. Those limitations have stimulated
the continuous quest for novel superhard compounds with better thermal and chemical stabilities than
pure diamond. In addition to possessing advanced electrical and optical properties as well as high
hardness, the boron–carbon compounds have proven to be more highly resistant to oxygen and ferrous
metals than similar carbon materials, which thus are unexceptionable substitutions for pure diamond.
The typical B–C compound is boron-rich boron carbide (B4C), which is characterized by a unique
combination of properties, prompting it as a choice of engineering material [1]. On the other hand,
the boron-doped diamond lattice, which forms carbon-rich B–C material, changes it from an insulator
into a p-type semiconductor with boron acting as a charge acceptor. Such fascinating electrical and
mechanical properties has spurred researchers on to devote much effort to those carbon-rich B–C
systems (BC2, BC3, BC5, and BC7) [2–9].

Recently, Zinin et al. synthesized a cubic BC3 phase with an sp3 bonding network at a pressure of
39 GPa and a temperature of 2200 K [4]. Solozhenko et al. had reported the synthesis of diamond-like
BC5 with the highest boron content ever achieved under high pressure and high temperature
condition [5]. The synthesized phase exhibits extreme Vickers hardness (71 GPa) and high thermal
stability (up to 1900 K), which makes cubic BC5 an exceptional superabrasive overcoming diamond.
However, the determinations of the synthesized B–C crystal structures are still open questions due to
the similarity in both electronic and nuclear scattering cross sections for boron and carbon [1,10,11].
Theoretically, first-principle calculations combined with a state-of-the-art structure prediction have
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emerged as a powerful approach that complements experiments and achieved great success in
the crystal structure prediction, especially in extreme physical conditions. Based on hypothetical
configurations method and an ab initio evolutionary algorithm, Xu et al. [6] predicted a tetragonal
lattice structure (space group I41/amd, No. 141) for BC2 (t-BC2) whose mechanical and dynamical
stability have been confirmed by the criterions of elastic constants and phonon frequencies. Despite
possessing the high theoretical Vickers hardness (56 GPa), we should carefully debate whether t-BC2 is
superhard. The main reasons can be summarized as follows: (1) the absence of uniform and accurate
hardness formula usually leads to the contradictory results for the same crystal for different models of
hardness; and (2) the hardness is generally measured at finite strains where bonding characteristics of
materials may change significantly [12], whereas the theoretical hardness estimated by the parameters
at the equilibrium structure is thus not suitable to account for the mechanical strength of materials.
Indeed, the ideal tensile and shear strengths of material evaluated when the lattice becomes unstable,
which is the upper bound on the mechanical strength, are therefore more appropriate and stringent for
the reflection of hardness than elastic parameters. In particular, the ideal shear strength describes the
shear resistance of the system at the atomic level where plastic deformation occurs [13], so the ultimate
hardness of a material may be assessed from its ideal shear strength and bonding nature, and this fact
has been verified by a number of previous studies [14–18].

In the present paper, we perform the first-principles calculations to further investigate the
structural and mechanical properties of the recently predicted t-BC2. The obtained orientation
dependences of the Young’s and shear moduli are illustrated to show the mechanical anisotropy
for t-BC2. The ideal tensile and shear strengths of t-BC2 are also estimated to provide a deeper insight
into mechanical behavior and hardness.

2. Computational Methods

The total energy calculations were performed using density functional theory with the
Perdew–Burke–Ernzerhof (PBE) exchange correlation in the framework of the generalized gradient
approximation (GGA) as implemented in the Vienna ab initio simulation package (VASP) [19,20].
The electron and core interactions were described by the projector augmented-wave (PAW) method
combined with the frozen core approximation [21], and the 2s22p1 and 2s22p2 were considered as
valence electrons for B and C, respectively. The plane-wave basis set was truncated with an energy
cutoff of 800 eV, and the Brillouin zone integration was generated using Monkhorst-Pack k point
meshes [22] with a grid of 0.03 Å´1 and 0.025 Å´1 for total-energy and elastic constants calculations,
respectively, which ensure that the enthalpy results were well converged to below 1 meV/f. u. The
elastic constants were calculated by the strain–stress method, which has been successfully utilized
previously [23,24]. The bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio were
estimated via Voigt–Reuss–Hill approximation [25]. To obtain the strain–stress relationships and ideal
strengths, t-BC2 cell was deformed continuously by increasing the displacement in the direction of the
applied strain [15,26]. In addition, the 3D electron localization function distributions are illustrated by
VESTA [27].

3. Results and Discussion

The crystal structure, as well as the dependences of the normalized lattice parameters and volume
on pressure up to 100 GPa for t-BC2, is shown in Figure 1. The equilibrium lattice parameters for
t-BC2 are a = 2.5227 Å and c = 11.9373 Å, which are in excellent agreement with the evaluated results
reported in [6]. The optimized t-BC2 structure holds a tetragonal lattice with 12 atoms, and the
two nonequivalent B and C atoms occupy the Wyckoff 4a (0.0, 0.0, 0.0) and 8e (0.0, 0.0, 0.34085)
positions, respectively. The calculated bond lengths of C–C and B–C bonds are 1.502 Å and 1.663 Å,
which are slightly different from the values (1.500 Å and 1.662 Å) proposed in [6], respectively. The
estimated density is 3.06 g/cm3, which is lower than that of diamond (3.52 g/cm3). The remarkable
consistency between the calculated results and [6] completely confirms the accuracy and reliability
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of the present calculations. The positive formation energy of t-BC2 (0.491 eV/atom), defined as
E f “ Etot pBC2q´E psolid B{atomq´2E pdiamond{atomq, suggests that t-BC2 is meta-stable at ambient
conditions. Compared with the BC3 structures synthesized experimentally, t-BC2 is more stable due
to the greater formation energy of the BC3 (0.580 eV/atom). The calculated total energy of t-BC2

is ´8.133 eV/atom, higher than that of the diamond-like BC3 (´8.351 eV/atom) and graphitic BC3

(´8.402 eV/atom) phases [28].
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Figure 1. The crystal structure and the dependence of normalized lattice constants and cell volume on
pressure for t-BC2. The blue and black spheres denote B and C atoms, respectively.

Table 1. Calculated elastic constants Cij, bulk modulus B, shear modulus G, and Young’s modulus E
(in units of GPa). Also shown is G/B ratio.

Compounds Source C11 C12 C13 C33 C44 C66 B G E G/B

t-BC2 Present 571 173 226 612 395 324 333 282 659 0.847
B4C4 Theory 1 656 191 167 562 311 382 324 285 660 0.879

dl-BC3 Theory 2 720 206 220 788 464 268 391 344 798
d-BC3 Theory 3 658 195 393 349 318 731
dl-BC5 Theory 4 818 156 442 376 394 876

B4C Experiment 5 240 193 456
Theory 6 562 124 70 518 234

c-BN Theory 7 786 172 445 376 390
Diamond Theory 8 1052 122 555 432 517

1 [17]; 2 [29,30]; 3 [31]; 4 [32]; 5 [33]; 6 [34]; 7 [35]; 8 [32,36].

The estimated elastic constants, bulk modulus B, shear modulus G, and Young’s modulus E for
t-BC2 are listed in Table 1 with the theoretical and experimental results of some previous B–C–N
compounds for comparisons. For a stable tetragonal structure, the six independent elastic constants
C11, C12, C13, C33, C44, and C66 should satisfy the necessary and sufficient Born–Huang elastic stability
criteria as follows [37]:

C11 ą |C12| , 2C2
13 ă C33pC11 ` C12q,

C44 ą 0, C66 ą 0.
(1)

Obviously, the calculated elastic constants of t-BC2 meet all the stability criteria, demonstrating
the mechanical stability of t-BC2 at ambient pressure. Furthermore, the dependences of normalized
lattice parameters on pressures up to 100 GPa for t-BC2, shown in Figure 1, indicate that t-BC2 structure
along the c-axis is more incompressible than along the a-axis, which coincides with the result of elastic
constants (C33 > C11). The compressibility of t-BC2 along the x- and z-directions as a function of
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pressure can be fitted by the least square method according to the lattice parameters and pressures,
and the corresponding formulas are listed as follows:

a
a0
“ 0.99958´ 1.00ˆ 10´3P` 2.51ˆ 10´6P2; (2)

c
c0
“ 0.99941´ 7.14ˆ 10´4P` 2.27ˆ 10´6P2. (3)

Typically, the hard material should possess a high bulk modulus to resist the volume deformation
and a high shear modulus to support the shear deformation and thus enhance the resistance ability
of material upon compression load. The calculated bulk modulus of t-BC2 is 333 GPa, much lower
than that of diamond (432 GPa) but comparable to those of c-BN (376 GPa), d-BC3 (349 GPa), dl-BC3

(391 GPa), and dl-BC5 (376 GPa), suggesting that the t-BC2 phase is a greatly incompressible material.
Physically, the shear modulus is more appropriate to evaluate the hardness of a material than the
bulk modulus because the hardness tests measure plastic deformation of the material that appears
to be closely linked to the deformation of a shear character [38]. Clearly, the shear modulus t-BC2 is
285 GPa, which is significantly smaller than that of superhard B–C–N compounds, such as diamond
(517 GPa), c-BN (390 GPa), d-BC3 (318 GPa), dl-BC3 (344 GPa), and dl-BC5 (394 GPa). Compared with
the diamond-like BCx phases of low pressure synthesis (i.e., dllp-B2C3 and dllp-BC4), the shear modulus
of t-BC2 is much larger than those of the two phases (170 GPa and 19.3 GPa, respectively). Note that
the bulk and shear moduli of B–C systems gradually decrease with the increasing concentrations of
boron, which is consistent with the results of [30]. Therefore, we should carefully reappraise whether
t-BC2 with large boron concentrations is superhard. According to Pugh’s criterion, the calculated result
of G/B for t-BC2 is 0.847, larger than 0.571, indicating its brittle mechanical properties.

The mechanical anisotropy is the mechanical property of being directionally dependent, which
can exert great influence on the properties of a physical mechanism. For a tetragonal structure,
Young’s modulus for a tensile stress along an arbitrary [hkl] direction can be expressed as the following
equation [39]:

E´1 “ s11pα
4 ` β4q ` s33γ4 ` 2s12α2β2 ` 2s13pβ

2γ2 ` α2γ2q ` s44pβ
2γ2 ` α2γ2q ` s66α2β2, (4)

where α, β, and γ are the direction cosines of the tensile stress direction deduced from the transformed
coordinate system with respect to the original coordinate system, and s11, s12, s13, s33, s44, and s66 are
the independent elastic compliance constants given by Kelly et al. [39], which can be determined from
the calculated elastic constants Cij. The shear modulus G on the (hkl) shear plane with shear stress
applied along the [uvw] direction is given by

G´1 “ 4s11
`

α2
1α2

2 ` β2
1β2

2
˘

` 4s33γ2
1γ2

2 ` 8s12α1α2β1β2 ` s66 pα1β2 ` α2β1q
2

` 8s13 pβ1β2γ1γ2 ` α1α2γ1γ2q ` s44

”

pβ1γ2 ` β2γ1q
2
` pα1γ2 ` α2γ1q

2
ı , (5)

where (α1, β1, γ1) and (α2, β2, γ2) are the direction cosines of the [uvw] and [HKL] directions in the
primitive coordinate system, respectively, and [HKL] directions denote the vector normal to the (hkl)
shear plane. To gain deeper insight into the mechanical anisotropy of t-BC2, the three-dimension
plots of the Young’s modulus as a function of the crystal orientation and its projections onto the
(ab), (bc), and (ac) crystal planes are shown in Figure 2a,b, respectively. The distance between the
origin of the coordinate and the surface or profile of the graph denotes the value of Young’s modulus
along a certain direction. The large difference between the obtained shape and the sphere of a perfect
isotropic crystal for the three-dimensional plots of Young’s modulus reveals that t-BC2 presents a high
degree of anisotropy and hence is easily deformed along a certain direction under strain. Figure 2c,d
illustrate the orientation dependence of Young’s modulus and shear modulus, respectively. From
Figure 2c, we can clearly see that the maximum Young’s modulus (816 GPa) is 73.2% larger than the
minimum Young’s modulus (471 GPa), further suggesting the high degree of anisotropy for t-BC2.
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The sequence of Young’s modulus along principle crystal orientations is summarized as follows:
E[010] < E[001] < E[011] < E[111] < E[110]. As plotted in Figure 2d, the shear modulus along the (001) plane
is independent of shear stress directions since the analytical result of shear modulus along this plane is
described as G = 1/s44 = C44 = 395 GPa. The shear moduli along the (100) and (110) planes decrease
gradually with the increase in the angle of orientation, and the minimum shear modulus (199 GPa)
distributes along the [110] direction within the (110) basal plane.
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Despite possessing ultrahigh elastic modulus, the feature of superhard for t-BC2 needs further
confirmation, because the high values of elastic moduli can only represent high elastic stiffness—not
a high degree of plastic harness [13]. Physically, the ideal strength, which is the ability to withstand
an applied load up to yield, is more suitable to measure the hardness than the elastic modulus. The
main reason is that the elastic modulus is a measure of elastic response that is non-permanent, and the
material will return to its original shape when the applied load is removed, but the measurement of
hardness is accompanied with plastic deformation involving the breaking of atomic bonds. To evaluate
the strength determined by bond strength and the breaking nature under strain and essentially explore
the atomistic origin of the structural deformation mechanisms, we calculated the ideal tensile and shear
strengths of t-BC2 by means of applying a series of continuous strains along a specified direction, the
calculated results are illustrated in Figure 3a,b. The ideal tensile strengths along the [001], [100], [110],
and [111] directions are 139.9, 152.1, 70.1, and 41.6 GPa, respectively. Note that all the tensile strengths
are larger than 40 GPa, and the minimum tensile strength occur in the body-diagonal [111] direction,
which can be attributed to the absence of B–C and C–C bonds along the body-diagonal direction.
Compared with the typical cubic BC3 (d-BC3) [31], the ideal tensile strength of t-BC2 along the [110]
and [111] directions are slightly lower than those of the d-BC3 (σ[110] = 77.6 GPa, σ[111] = 52.5 GPa).
Strikingly, the ideal tensile strength of t-BC2 along the [001] directions is even larger than that of the
superhard d-BC3 (σ[001] = 107.6 GPa).
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Figure 3. Calculated strain–stress relations for t-BC2 in various tensile (a) and shear (b) directions.

The shear stress responses in the (001), (100), and (110) planes were evaluated to search the easy
cleavage plane of t-BC2. From Figure 3b, we can conclude that the ideal shear strengths show a high
degree of anisotropy along the different shear directions, and the largest ideal shear strength in the
p110qr110s shear direction (98.6 GPa) is 2.7 times larger than the lowest ideal shear strength in the
(110)[001] shear direction (36.2 GPa). The minimum of the ideal shear strength is 13.0% lower than
the tensile strength along the [111] direction, suggesting that the failure mode in t-BC2 is dominated
by the shear type. To obtain the fundamental mechanism of plastic deformation along the weakest
shear direction, the bond lengths of d1 and d2 B–C bonds as a function of the shear strains in the
(110)[001] direction are plotted in Figure 4. The development of the structure for t-BC2 under shear
deformation along this direction and the local bonding structure are also sketched by the inset a, b, and
c in Figure 4. Clearly, the d1 and d2 B–C bonds are identical at equilibrium (shear strain γ = 0). Then,
with the increase of shear strain, the d1 B–C bond declines slightly but the d2 B–C bond rises rapidly.
Once the shear strain goes beyond the critical strain (γ = 0.11279), the d2 bond increases to 2.061 Å
abruptly, indicating the breaking of the d2 bond and the instability of the t-BC2 structure. In addition,
the behavior of the covalent d2 bond breaking can be observed from the selected crystal structures
before (inset a) and after (inset b) shear instability in Figure 4.
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first occurrence.
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Note that the lowest ideal strength (36.2 GPa) is much lower than the calculated hardness
(56.0 GPa [6]) estimated by Guo’s hardness formula [40]. Compared with typical boron oxide, the
experimental Vickers’ hardness of superhard boron suboxide B6O (i.e., 38 GPa), harder than other boron
oxides [41], is in excellent agreement with ab initio density functional theory of strain–stress curves for
B6O (the lowest ideal shear strength of 38 GPa) [13,41,42], suggesting that the ideal shear strength is the
most appropriate mechanical property for reflecting the hardness of materials. However, the calculated
lowest ideal strength of t-BC2 shows a large discrepancy with the estimated hardness according
to Guo’s hardness formula. The main reason for this discrepancy is that this hardness formula is
correlated with bulk B and shear G moduli, which are estimated by the equilibrium structure, but
the ideal shear strength focuses on the maximum shear stress at the atomic level where the crystal
is far from equilibrium structure. To further clarify this disparity, the three-dimensional isosurfaces
of the electron localization function (ELF) before and after the shear instability with an isovalue of
0.75 (a typical good number for characterization of covalent bondings) are plotted in Figure 5a,b,
respectively. Apparently, the high electron localization appears between all adjacent B and C atoms
when the shear strain is lower than the critical value of 0.11279. However, once the shear strain
exceeds the critical value, the electron localization of B1–C1 and B2–C2 bonds vanish (denoted by
red arrows), as illustrated in Figure 5b. The chemical bond defined by Bader is characterized by the
bond critical point (BCP) whose charge density and Laplacian value reflect the type of chemical bond
and the bond strength. Thus, we performed the Bader charge analysis, and the corresponding results
are summarized in Table 2. Due to the ultrahigh bond strength, the C–C bond of t-BC2 exhibit large
values of the electron density ρ and a relatively negative Laplacian value, ∇2ρ, at the bond critical
point, characteristic of primarily covalent bonding, which are comparable with those of diamond
(ρ “ 1.60 eÅ´3 and ∇2ρ “ ´15.24 eÅ´5 [43]), suggesting the high bond strength of the C–C bond
in t-BC2 and hence hardly producing shear failure. However, the charge density at the d1 B–C bond
critical point decrease significantly as the increase of shear strain, the Laplacian value of the d1 B–C
bond critical point changes from ´4.717 to ´0.606, indicating the weakening covalent d1 bond under
the shear strain and thus breaking beyond the critical shear strain. It can be concluded that the
structural failure under shear deformation along the (110)[001] shear direction is rationalized by the
breaking of the d1 bond. Furthermore, the minimum ideal strength of 36.2 GPa, lower than 40 GPa
(the criterion of superhard material), indicates that the plastic deformation would take place along the
crystal plane (110), leading to electronic instability and the structural collapse after a shear stress of
36.2 GPa.Materials 2016, 9, 514 8 of 10 

 

 
Figure 5. Developments of ELF for t-BC2 during shear in the (110)[001] slip before (a) and after (b) 
shear instability. 

4. Conclusions 

In summary, we have investigated the mechanical anisotropy and strengths of t-BC2 by using 
first-principles calculations. The calculated Young’s and shear moduli of t-BC2 present a high degree 
of anisotropy and hence easily lead to structural failure. The shear strength for the slip system 
(110)[001] is the lowest among all the six-slip system, and this slip system leads to the breaking of the 
d1 B–C bonds in t-BC2, supported by the results of ELF and BCP calculations. These results 
demonstrate that t-BC2 tends to undergo an electronic instability with a shear stress lower than 40 
GPa for the (110)[001] slip system. It should be stressed that the simplified models of hardness by 
either semi-empirical or ab initio methods are not appropriate for measuring the hardness of 
materials, because these theories usually introduce some parameters (such as bond energetics and 
electron density) that are based on the equilibrium structure, whereas plastic deformation in crystals 
occurs far from equilibrium upon bond breaking in the practical measurement of hardness. Thus, the 
ideal shear strength derived from the strain–stress curve, which is relevant for plastic deformation, 
is most appropriate for measuring the hardness of materials. The present work provides fundamental 
information for a better understanding of the structural stability and mechanical performance of this 
interesting material. 

Acknowledgments: The work was supported partly by NSFC (Grant No. 11404008), the Natural Science 
Foundation of Shaanxi province of China (Grant No. 2016JM1016), the Education Committee Natural Science 
Foundation in Shaanxi Province of China (Grant No. 16JK1049), and the Baoji University of Arts and Sciences 
Key Research (Grant No. ZK16067). 

Author Contributions: Baobing Zheng designed the project and performed the calculations; Baobing Zheng and 
Meiguang Zhang analyzed the results; Baobing Zheng, Meiguang Zhang, and Shaomei Chang wrote the paper. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron Carbide: Structure, Properties, and Stability 
under Stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. 

2. Ming, L.C.; Zinin, P.V.; Liu, X.R.; Nakamoto, Y.; Jia, R. Synthesis of dense BCx phases under high-pressure 
and high-temperature. J. Phys. Conf. Ser. 2010, 215, 012135, doi:10.1088/1742-6596/215/1/012135. 

3. Cermignani, W.; Paulson, T.E.; Onneby, C.; Pantano, C.G. Synthesis and characterization of boron-doped 
carbons. Carbon 1995, 33, 367–374. 

Figure 5. Developments of ELF for t-BC2 during shear in the (110)[001] slip before (a) and after
(b) shear instability.



Materials 2016, 9, 514 8 of 10

Table 2. Bond critical point data of t-BC2 structure before and after shear instability. L is the bond length.
ρ prCPq and ∇2ρ prCPq are the charge density and its Laplacian at the corresponding critical points.

Bond
γ = 0.10288 γ = 0.12336

L pAq æ prCPq ∇2æ prCPq L pAq æ prCPq ∇2æ prCPq

B1–C1(d1) 1.821 0.733 ´4.717 2.061 0.461 ´0.606
B2–C1(d2) 1.579 1.128 ´1.800 1.540 1.254 ´1.906
C1–C2(d3) 1.500 1.731 ´16.179 1.485 1.791 ´17.796
B2–C2(d4) 1.821 0.733 ´4.746 2.061 0.461 ´0.606

4. Conclusions

In summary, we have investigated the mechanical anisotropy and strengths of t-BC2 by using
first-principles calculations. The calculated Young’s and shear moduli of t-BC2 present a high degree of
anisotropy and hence easily lead to structural failure. The shear strength for the slip system (110)[001]
is the lowest among all the six-slip system, and this slip system leads to the breaking of the d1 B–C
bonds in t-BC2, supported by the results of ELF and BCP calculations. These results demonstrate that
t-BC2 tends to undergo an electronic instability with a shear stress lower than 40 GPa for the (110)[001]
slip system. It should be stressed that the simplified models of hardness by either semi-empirical or ab
initio methods are not appropriate for measuring the hardness of materials, because these theories
usually introduce some parameters (such as bond energetics and electron density) that are based on
the equilibrium structure, whereas plastic deformation in crystals occurs far from equilibrium upon
bond breaking in the practical measurement of hardness. Thus, the ideal shear strength derived from
the strain–stress curve, which is relevant for plastic deformation, is most appropriate for measuring the
hardness of materials. The present work provides fundamental information for a better understanding
of the structural stability and mechanical performance of this interesting material.
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