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Abstract: Zirconia as a restoration dental material are gaining attention because of their high
mechanical properties and good biocompatibility. Therefore, investigation of the flexural strength of
zirconia is of great interest. For this purpose, Weibull statistics for description of the material reliability
are frequently used. The aim of this work was to present a blinded data set to two independent
statisticians for two parallel statistical analyses in order to find an optimal statistical approach for
analysis of in-vitro measured flexural strength data of zirconia materials. A prospectively planned
independent blinded statistical analysis implementing three quality control actions “blinded data
set”, “independent statistical analyses” and “parallel manuscript writing” was designed. Statistical
analysis paths taken by both biostatisticians differed. They arrived at complementary results. The
major difference was caused by two alternative distributional assumptions (Weibull/Normal) and
alternative fitting methods (LS/ML). The parallel statistical analysis and manuscript writing approach
on a blinded data set greatly supported our choice of statistical methods for analysis of flexural
strength results of zirconia materials.
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1. Introduction

Monolithic zirconia was introduced to avoid the risk of dental restoration failure due to
veneer-chipping fractures. To improve the esthetic appearance of zirconia restorations, attempts
were made to improve translucency. One way was to increase the sintering temperature leading to
microstructural changes in the material. As literature shows this method has a significant drawback.
Grain growth and a non-homogenous structure influences the flexural-strength negatively [1]. Hence
the Al2O3 percentage was reduced from 0.25 to 0.05 wt % and the smaller Al2O3 grains were positioned
on the boundaries of the zirconia grains, which also results in a higher translucency of the material.
At this moment, insufficient information is available about the flexural strength of second generation
zirconia. The reliability of these flexural strength findings gives further insight to the performance and
is an indicator of a zirconia material’s quality. For this purpose, Weibull statistics are used. However,
Weibull statistics can lead to minimal deviations depending on the estimation method [2]. The aim of
this work was to present the blinded data to two statisticians in order to see how and if the further
statistical investigation leads to a consensus view of the quality of the zirconia materials. The blinded
data set provided for the parallel statistical analysis contained 240 measurements from a previous
study [3] on biaxial flexural strength for three monolithic zirconia materials (ZM) Ceramill Zolid,
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Zenostar ZrTranslucent and DD Bio zx2 for which two different specimen preparation (SP) methods:
either dry polishing before sintering or wet polishing after sintering were applied.

1.1. Motivation for a Weibull Analysis

In dentistry, brittle materials are well characterized using Weibull statistics [4,5]. Ceramics,
especially the high-performance ceramics such as zirconia or alumina are standardly tested for the
reliability and homogeneity of the structure of the material by Weibull modulus (m).

For statistical analysis of flexural strength data [2,6–8] both the two-parameter Weibull (s, m)
and the two-parameter Normal (mean, sd2) distributional assumptions are frequently used. Weibull
modulus m describes the reliability of the measurements with higher values corresponding to better
reliability of the material. Normal mean corresponds to the characteristic strength (scale, s) of the
Weibull distribution. Weibull modulus (m) is approximately inverse proportional to the Normal
standard deviation (sd) (m = 1/sd). A reliable material with a high Weibull modulus (m) has low
values of standard deviation (sd) for Normal distributional assumption as sd = 1/m. When analyzing
data both differences of s (mean) and m (sd) estimates between the different groups for Weibull
(Normal) distributional assumption are of interest.

Application of Normal and Weibull distributional assumptions implies a different perception
of the underlying truth. First, the Normal distribution emerges when each observation is a sum of
a possibly large number of independent random fluctuations [9]. In contrast, the stochastic process
governing the Weibull distribution follows the “weakest link” concept [10–12]. Internal independent
flaws propagate under external stress and eventually a specimen breaks at the weakest place. This way
a single flaw dictates the strength of the whole system. Second, the support of the Normal distribution
comprises the whole real line. Consequently, it is not perfectly suitable for modelling positive flexural
strength observations. In this respect the Weibull distribution is more appropriate as it is defined on
the positive real line. The third argument in favour of the Weibull distribution is its shape flexibility.
Weibull distribution is capable of modelling symmetric as well as negatively and positively skewed
data. In contrast, the Normal distribution is only acceptable for symmetric data.

Although the probabilistic basis for application of the Weibull distribution for brittle materials
was quite strong its utilization in practice was hampered by a fairly cumbersome parameter
estimation [4,10]. Recently, much progress has been made with respect to the availability of the
Weibull distribution. There are flexible general-purpose statistical programs for estimation of the
two-parameter Weibull distribution applying either the maximum likelihood (ML) or the least squares
(LS) methodologies or both [6]. Many of them provide 95% confidence intervals for the Weibull
parameters, convenient probability plots and conduct tests for parameter differences between factor
levels. There is also a free available open source Excel-calculator facilitating an automatic LS estimation
of Weibull parameters together with the corresponding 95% CI (Appendix C in [13]). Aside of this
eminent progress there is still an uncertainty caused by a data analyst [14].

1.2. Motivation for a Prospectively Planned Independent/Parallel Blinded Statistical Analysis

A typical study passes through three work phases consisting of data generation, statistical analysis
and manuscript writing (Table 1, study phases a–c). Each phase can be afflicted by several sources
of uncertainty [14], which can be intentional or unconscious. Various problems in design, conduct,
analysis and reporting of research may lead to biases toward findings that can distort the perception of
the research progress [15].
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Table 1. Sources of Uncertainty.

Study Phase Uncertainty Source

Data generation (a)

Specimens/Subjects
Investigators

Data collectors and managers
Precision of measuring devices

Outcome assessors

Statistical data analysis (b)

Sample size
Data analyst

Descriptive statistics
Assumption on the sampling distribution (model uncertainty)

Outliers (data uncertainty)
Choice of the statistical approach (frequentist or Bayesian)

If Bayesian, then prior elicitation (prior uncertainty)
Transformation of variables

Parametric or non-parametric analysis
Tests/Confidence intervals

Choice of the estimation technique within the approach chosen
Interpretation of the results

Missing data handling
Subgroup analysis

Covariates selection

Writing of the manuscript (c)
Choice of the findings to report on
Choice of the graphs to be shown

Manuscript writer

Several authors [14,16,17] warn that an objectivity of statistical data analysis (Table 1, study
phase b) is a clear misperception. The pretended objectivity of data analysts can be affected
adversely [17] by many factors. For example, a statistician’s bias is caused by differences in available
statistical tools, techniques, programs and personal experience. In the course of statistical data analysis
numerous semi-subjective decisions (Table 1, study phase b) have to be made that can have major
effects on the results of the study [14,16]. Such semi-subjective decisions include assumptions to be
made and models to be applicable [14], finally leading to the choice of a particular statistical method.
Subjectivity is also involved in performing the analysis and interpreting the results. Perception of the
data and the choice of the analysis can considerably vary across statisticians. A bias in direction of
preferred methods, prior theoretical expectations or some other preconceptions is possible and very
likely [14].

Usually, the size of the statistician’s bias cannot be estimated. Therefore, it is beneficial to use
methodology that suppresses, prevents or indicates it clearly. One possible resort is the use of the
blinded design [18–20]. Blinding is a research strategy that involves the deliberate withholding of
information from people who play a role in a study [16,21,22]. In principle, blinding of subjects,
investigators, outcome assessors, data managers, biostatisticians and manuscript writers or any
combination of them is possible [16,21–23]. The idea of blinding is a well-known scientific method
frequently used in many fields of research and notably in the context of clinical trials [18,19,23,24]. The
wide ranging applicability of the blinding technique guarantees its validity not only in in-vivo but also
in in-vitro studies. For example, it is extensively used in modern statistical analysis of particle physics
experiments [25], where measurements and conducted experiment are completely unknown to the
involved analysts.

Whereas single- and double-blinded study designs concentrate mainly on reduction of
uncertainties at the data generation step (Table 1, study phase a), by blinding the subjects only
and both subjects and investigators, respectively, the statistical data analysis phase (Table 1, study
phase b) has been perceived as an objective one, especially if the statistician is not involved in the
experimental process [18]. This belief, however, clearly disagrees with observation that both statistical
analysis and writing of the manuscript are potential sources of bias that persist even in double-blinded
trials [17].
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To counteract these problems a triple-blinded design has been suggested [23,24]. The
triple-blinded design—a double-blind trial that also maintains a blind data analysis—aims for reduction
of a potential bias introduced by the statistical data analysis [23,24] by keeping the involved analysts
in dark about the meaning of the treatment groups specification during data analysis. In such a case
the analyst is blinded to the meaning of the data. Ideally, data entry is done independently of the
analyst and codes for treatment group assignments are allocated randomly [16]. The “blinded data set”
approach aims for objective and straight decisions during the conduct of statistical analysis.

Unfortunately, an analysis of a blinded data set can be still insufficient for the bias reduction
induced by the statistician. Therefore, Polit [16] and Miller & Stewart [23] suggest different strategies
for broadening of the blinding technique within the statistical analysis phase (Table 1, study phase b).
They claim that a blinded data analysis is most efficiently achieved by an “independent statistical
analysis” when two independent data analysts are involved and both are blinded to the treatment
group status. In a scenario when two statisticians are analyzing the same data set, free communication
between them could promote convergence towards a consensus and important clues might be missed.
The respective final analyses might be distorted and the results biased. Hence, in order to fully profit
from a parallel data analysis, statisticians should analyze the data independently and provide their
stand-alone description of the outcomes. Keeping this in mind Gøtzsche [17] suggests application
of independent investigation not only within statistical data analysis phase (Table 1, study phase b)
but also during the process of manuscript writing (Table 1, study phase c). In particular, “Results”,
“Summary”, “Conclusion” and “Rationale for the choice of the statistical methods” sections should
be drafted in two independent versions [17] leading to a “parallel manuscript writing” approach.
Moreover, any additional analyses, performed after code breaking, should be identifiable as such.
Hence, any independent blinded statistical analysis which joins both “independent statistical analyses”
and “parallel manuscript writing” techniques and applies them to a “blinded data set” aims for
diminishing not only the outcome reporting bias but also the risk that the conclusion and treatment
recommendation are influenced by irrelevant factors [17].

Blinding of the data analyst has been identified as an easy way to minimize bias and to enhance
credibility of the results [16]. The blinded data strategy initiated by Gøtzsche [17] has been applied in
an increasing amount of studies. Depending on the field of research data analysts are blinded in as
much as 2.5%–15% of research projects [16]. In each case, a blinded design seeks to achieve a higher
standard of scientific rigor than a conventional non-blinded one.

Although over the years blinded analysis strategy has been steadily gaining in importance in
numerous fields of research, its application in the context of dental materials research is still lacking.
Therefore, we prospectively designed an independent blinded statistical analysis which could be
conveniently applied for dental material projects. The aim of this study was to investigate by means of
two independent prospectively planned blinded analyses if there is an agreement in Weibull statistics
of flexural strength data of different zirconia ceramics analyzed independently by two statisticians
using differing statistical approaches. We applied a random allocation of coding to tested groups in the
data set and kept the analysts in dark about their meaning. What is more, any communication between
statisticians during this time period was forbidden. Two independent drafts describing findings and
statistical methods were written before code breaking.

The first hypothesis for the dental material research states that monolithic zirconia specimen
preparation (SP) has no impact on the flexural strength. The second hypothesis states that all three
tested zirconia materials (ZM) show similar flexural strength results. Additionally, two hypotheses
with respect to two independent prospectively planned blinded Weibull statistical analyses were
formulated. First, there is an agreement in statistical analysis paths chosen by both biostatisticians
for Weibull analysis. Second, the three quality control actions: “blinded data set”, “independent
statistical analyses” and “parallel manuscript writing” conducted by two independent biostatisticians
(implemented within our prospectively planned parallel blinded statistical analysis) have no influence
on findings for flexural strength data.
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2. Material and Methods

2.1. Experimental Data Description

Data for blinded analysis were a subset of a larger data collection in [3]. Data provided to the
statisticians by the study supervisor A consisted of 240 biaxial flexural strength measurements divided
randomly into six groups G1–G6. Each group was defined by a factor zirconia material (ZM with
three levels C = Ceramill Zolid, Z = Zenostar ZrTranslucent and D = DD Bio zx2) and specimen
preparation (SP with two levels before = dry polishing before sintering, after = wet polishing after
sintering) and contained 40 specimens (Table 2). The specimen preparation process consisted of the
following steps. The specimens were cut out of zirconia cylinders with a low speed diamond saw
(Well, Diamantdrahtsägen, Mannheim, Germany). Manual dry polishing was conducted with SiC
discs (Struers, Ballerup, Denmark) and machine wet polishing after sintering was executed with a
water-cooled polishing machine (Struers Abramin, Struers, Ballerup, Denmark). For the sintering
process a universal sintering oven (Nabertherm, Lilienthal/Bremen, Germany) was used. Only
one operator handled the specimens. The final dimension DIN EN ISO 6872:2008 [26] of all disc
shaped specimens was 16 mm ˆ 1.2 mm (˘0.05 mm). For biaxial flexural strength measurement, the
specimen were put on to a sample holder, which consisted of three tempered steel balls (diameter
3.2 mm) forming an equilateral triangle (edge length 10 mm and ball support circle 120˝). The plunger
(diameter 1.4 mm) of the Universal Testing Machine (Zwick, Ulm, Germany) loaded the specimens
with a crosshead speed of 1 mm/min until failure.

Table 2. Data summary for Normal assumption. n: number of observations; q1: first quartile; q2:
third quartile.

Tested Groups ZM SP n Min q1 Mean Median q2 Max sd

G1 C before 40 575 719 757 765 804 884 79
G2 C after 40 890 997 1077 1050 1143 1340 113
G3 Z before 40 551 842 891 878 966 1090 115
G4 Z after 40 962 1030 1126 1100 1203 1370 114
G5 D before 40 615 764 835 869 908 969 102
G6 D after 40 915 1180 1322 1390 1490 1630 214

2.2. A prospectively Planned Independent Blinded Statistical Analysis

The independent blinded statistical analysis technique was devised prior to the data analysis.
Figure 1 depicts the details of our plan, which consisted of five stages. For sake of clarity of presentation,
the contributors in the sequel are identified by capital letters A, B, C and D. In the planning stage of
our study the contributor A was designated to be the supervisor of the project and had an unlimited
insight in all phases of the study.

In the first stage contributors A and B were responsible for conduction and execution of
experiments and recording of the measurements in an Excel file. In the second stage A randomly
assigned coding numbers to the tested groups, kept the key identifying the meaning of the factors in
the data set and was not allowed to reveal it to both statisticians’ C and D until the statistical analysis of
the measurements was accomplished. In addition, contributor A checked graphically the plausibility
of recorded measurements and correctness of factors coding.

Beginning of the third stage was marked by the release of the blinded data set to statisticians
by contributor A. Both statisticians’ C and D were not allowed to communicate and interact with
each other during this stage. In case of any questions they might, however, address the supervisor A
directly. They were given 3 weeks to accomplish statistical analysis of the data and to describe their
findings and statistical methods applied with all tables, graphs and references necessary to back up
their conclusions. During this time, they wrote two independent drafts of “Results”, “Summary”,
“Conclusion” and “Rationale for the choice of the statistical methods” sections. Apart of that the time
amount needed for accomplishing every step of the statistical analysis and draft writing was recorded.
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The statisticians were blinded to the meaning of data coding and their knowledge about the goal of
statistical analysis was limited to a short note provided by A accompanying the data set.
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Figure 1. Plan of the independent blinded statistical analysis.

Only after all data had been analyzed and two independent drafts had been written the fourth
stage consisting of a meeting attended by all involved contributors (A, B, C, D) was scheduled. During
this meeting not only written exposition of the results provided independently by C and D and applied
statistical methods were compared with each other but also possible reasons for the discrepancies in
findings were discussed. The amount of time invested in analysis and draft writing was compared.
Eventually, A resolved the key for the meaning of the factor levels and the primary outcome in the data
making the results interpretable. In case of major differences in results the following procedure would
have been applied: statistical analysis paths would be compared and the reason for the differences
would be sought. In case of an error in one of the analyses the more accurate analysis would have
been reported.

In the fifth stage all authors (A, B, C, D) were involved in the process of report writing. It was
intended that in the final report the identical findings provided by both statisticians (C and D) would be
presented only once. In contrast the findings, which disagreed or complemented each other would be
described separately. No additional statistical analyses were permitted after the fourth stage. However,
an appropriate reformatting (adjustment) of graphs and tables was allowed. The data and the source
code used can be obtained under request from the authors.
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In the original final study report both statistical contributors wrote their own statistical methods
sections, two results sections and two separate discussions concluding by a conjoint discussion. For
the sake of compactness only a concise summary of the original final report is provided below.

2.3. Statistical Methods

Data were visualized in two different ways. Statistician C preferred boxplots whereas statistician
D favored histograms with superimposed density functions. As far as the distributional assumption is
concerned statistician D considered only the Weibull distribution. In contrast, statistician C computed
adjusted Anderson–Darling (AD) goodness-of-fit estimates and probability plots in order to clarify the
true sampling distribution [11]. Finally, statistician C concentrated on the two-parameter Weibull and
the Normal distributions.

Estimation techniques applied by both statisticians differed as well. Statistician C fitted the
parameters of the Weibull and Normal distributions by both Least Squares (LS) and Maximum
Likelihood (ML) techniques [6,13]. For LS fit the median rank (Benard) default assumption in Minitab
was used [6]. The corresponding 95% confidence intervals (95% CI) were computed. In contrast,
statistician D provided Weibull parameters LS estimates according to the suggestions in [13] for
n = 40. Statistician D applied two competing methods: regression of XonY together with median ranks
(XonY/median) and regression of YonX with hazen ranks (YonX/hazen). 95% CI were calculated for
all estimates according to the procedure suggested in [13] (termed Menon 95% CI).

Statistician C tested Weibull parameters for differences with permutation tests programmed
in R [27]. A permutation test generates a reference distribution under the null hypothesis (H0, no
difference between groups) by randomly rearranging group labels and computing the value of the test
statistic for a lot of such rearrangements. The reference distribution represents values that are plausible
under H0. The value of the test statistic actually observed is compared to the reference distribution
and p-values are calculated as the fraction of cases in the reference distribution that show a value at
least as extreme as the one actually observed. In this study R = 10,000 permutations were performed
and the test statistic was the difference of estimated Weibull parameters between different groups
(mi ´mj and si ´ sj). It is zero under H0 (parameters are the same) and larger differences provide more
evidence against H0. The test for m was always done first since the test for s requires homogeneity in
m and was only performed if no significant difference in m was found. In order to compare Weibull
parameters among more than two groups a global test was developed. The mean absolute differences
between Weibull parameters estimated in all groups under comparison were used as test statistic
(mean|mi ´mj| and mean|si ´ sj|). If significant differences were found in the global test, pairwise
comparisons between all groups were performed, including correction for multiple comparisons.
Under H0 the probability of at least one significant result in multiple comparisons (family-wise error
rate, FWER) will be larger than the nominal type I error rate α (typically α = 5%). A simple method
to control FWER is the Bonferroni-Holm [28] method in which the smallest p-value is multiplied by
the number of individual tests (k), the second smallest by k-1 and so on (with the restrictions that the
initial order of p-values is kept and all p-values < 1), and evaluated at the initial level α:

ordered p-values: p1 ď p2 ď ... ď pk

adjusted p-values: pi
adj = maxjďi [(k-j + 1) pj]1

where [x]1 = min(x,1) and i = 1, 2, ..., k

Such Bonferroni-Holm adjusted p-values are reported when multiple comparisons are performed.
In contrast, statistician C conducted equal shape (standard deviation) and equal scale (mean)

Bartlett’s modified likelihood ratio tests together with the appropriate Bonferroni post-hoc confidence
interval [6,8] with Minitab Version 14 [29]. The impact of SP and ZM factors was evaluated by a general
test looking for differences in parameters between all six tested G groups. Results of statistical analyses
with p < 0.05 were interpreted as statistically significant.
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3. Results

Figure 2 shows the distributions of the biaxial flexural strength observations in each tested group.
Probability plots for Weibull and Normal assumptions are depicted in Figure 3.

Materials 2016, 9, 512 8 of 17 

 

 
Figure 2. Boxplots for the biaxial flexural strength in each tested group G and ZM/SP levels. 

 

Figure 2. Boxplots for the biaxial flexural strength in each tested group G and ZM/SP levels.

Materials 2016, 9, 512 8 of 17 

 

 
Figure 2. Boxplots for the biaxial flexural strength in each tested group G and ZM/SP levels. 

 

Figure 3. Cont.



Materials 2016, 9, 512 9 of 17

Materials 2016, 9, 512 9 of 17 

 

 
Figure 3. Probability plots for biaxial flexural strength in each tested group G for Weibull LS (A) and 
Normal LS (B). 

The Anderson-Darling goodness-of-fit estimates for the two-parameter Weibull and Normal 
distributions showed that the Weibull assumption was better than the Normal one for all groups with 
exception of C/after and Z/after (see [3] Table 4). Although Anderson-Darling estimates for Weibull 
and Normal distributions differed between LS and ML fitting methodologies, their suggestions for 
the better fit were consistent. While probability plots in Figure 3 indicated discrepancies from straight 
lines it was impossible to find any alternative uniformly optimal fitting sampling distribution in all 
tested groups. 

Generally, biaxial flexural strength observations appeared to be larger in groups G2, G4 and G6 
within SP = “after” condition. Variance of strength values was small in G1, at a medium level in G2 
to G5, and large in G6 (Table 2, Figure 2). 

Table 2. Data summary for Normal assumption. n: number of observations; q1: first quartile;  
q2: third quartile. 

Tested Groups ZM SP n Min q1 Mean Median q2 Max sd
G1 C before 40 575 719 757 765 804 884 79 
G2 C after 40 890 997 1077 1050 1143 1340 113 
G3 Z before 40 551 842 891 878 966 1090 115 
G4 Z after 40 962 1030 1126 1100 1203 1370 114 
G5 D before 40 615 764 835 869 908 969 102 
G6 D after 40 915 1180 1322 1390 1490 1630 214 

The descriptive statistics for the Weibull distribution are shown in Table 3. As the Weibull 
parameters estimates obtained by the XonY/median and Benard LS approaches were comparable to 
the YonX/hazen one, only the later results are reported. For completeness the ML estimates are 
provided. 
  

Figure 3. Probability plots for biaxial flexural strength in each tested group G for Weibull LS (A) and
Normal LS (B).

The Anderson-Darling goodness-of-fit estimates for the two-parameter Weibull and Normal
distributions showed that the Weibull assumption was better than the Normal one for all groups with
exception of C/after and Z/after (see [3] Table 4). Although Anderson-Darling estimates for Weibull
and Normal distributions differed between LS and ML fitting methodologies, their suggestions for the
better fit were consistent. While probability plots in Figure 3 indicated discrepancies from straight
lines it was impossible to find any alternative uniformly optimal fitting sampling distribution in all
tested groups.

Generally, biaxial flexural strength observations appeared to be larger in groups G2, G4 and G6
within SP = “after” condition. Variance of strength values was small in G1, at a medium level in G2 to
G5, and large in G6 (Table 2, Figure 2).

The descriptive statistics for the Weibull distribution are shown in Table 3. As the Weibull
parameters estimates obtained by the XonY/median and Benard LS approaches were comparable
to the YonX/hazen one, only the later results are reported. For completeness the ML estimates
are provided.

Results obtained by Weibull and Normal estimation methods were comparable. Generally, larger
mean biaxial flexural strength values resulted in larger estimates for s and lower variance of the biaxial
flexural strength in larger estimates for m. Estimates for s were e.g., higher in the groups with rather
large outcomes (G2, G4, G6). The large variance in G6 resulted in small m, the low variance in G1 in a
rather large m. Generally, G2 and G4 appeared to be very similar, characterized by large s and m. G3
and G5, in contrast, were characterized by both small s and m. Taking 95% CI into account, differences
in s compared to m were more prominent. In particular, s appeared to be much higher in groups G2,
G4 and G6 (with after SP).

There were differences in Weibull estimates obtained by the ML and LS (YonX/hazen) approaches
(Table 3). Their relevance is visualized in histograms with superimposed Weibull and Normal density
functions in Figure 4.
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Table 3. Point and interval estimates of the Weibull parameters modulus (m) and scale (s) based on ML
or YonX/hazen, respectively.

Tested Groups ZM SP Method m 95% CI (m) s 95% CI (s)

G1 C before ML
YonX/hazen

11.4
11.4

[8.9, 14.6]
[8.2, 15.9]

791
791

[768, 814]
[768, 814]

G2 C after ML
YonX/hazen

9.6
11.4

[7.6, 12.0]
[8.2, 15.9]

1129
1126

[1090, 1168]
[1093, 1159]

G3 Z before ML
YonX/hazen

9.4
8.9

[7.3, 11.9]
[6.4, 12.4]

939
942

[906, 972]
[907, 977]

G4 Z after ML
YonX/hazen

10.3
11.8

[8.1, 13.0]
[8.5, 16.3]

1178
1176

[1141, 1217]
[1143, 1210]

G5 D before ML
YonX/hazen

10.9
9.5

[8.3, 14.1]
[6.8, 13.2]

877
880

[851, 904]
[849, 911]

G6 D after ML
YonX/hazen

7.9
7.0

[6.1, 10.3]
[5.0, 9.7]

1409
1414

[1352, 1468]
[1348, 1484]
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[906, 972]  
[907, 977] 

G4 Z after 
ML  

YonX/hazen 
10.3 
11.8 

[8.1, 13.0] 
[8.5, 16.3] 

1178  
1176 

[1141, 1217] 
[1143, 1210] 

G5 D before 
ML  

YonX/hazen 
10.9 
9.5 

[8.3, 14.1] 
[6.8, 13.2] 

877  
880 

[851, 904]  
[849, 911] 

G6 D after 
ML  

YonX/hazen 
7.9 
7.0 

[6.1, 10.3] 
[5.0, 9.7] 

1409  
1414 

[1352, 1468] 
[1348, 1484] 

Results obtained by Weibull and Normal estimation methods were comparable. Generally, 
larger mean biaxial flexural strength values resulted in larger estimates for s and lower variance of 
the biaxial flexural strength in larger estimates for m. Estimates for s were e.g., higher in the groups 
with rather large outcomes (G2, G4, G6). The large variance in G6 resulted in small m, the low 
variance in G1 in a rather large m. Generally, G2 and G4 appeared to be very similar, characterized 
by large s and m. G3 and G5, in contrast, were characterized by both small s and m. Taking 95% CI 
into account, differences in s compared to m were more prominent. In particular, s appeared to be 
much higher in groups G2, G4 and G6 (with after SP). 

There were differences in Weibull estimates obtained by the ML and LS (YonX/hazen) 
approaches (Table 3). Their relevance is visualized in histograms with superimposed Weibull and 
Normal density functions in Figure 4. 

 
Figure 4. Histogram of biaxial flexural strength with superimposed densities: Weibull estimated by 
ML (blue) and YonX/hazen (red) and Normal (black). Factor G and levels of ZM/SP are indicated on 
top of each plot. 

Figure 4. Histogram of biaxial flexural strength with superimposed densities: Weibull estimated by
ML (blue) and YonX/hazen (red) and Normal (black). Factor G and levels of ZM/SP are indicated on
top of each plot.

Permutation tests were applied to test for H0 that there are no differences between Weibull
parameters in the groups of interest. Tests for differences in s were only made if no differences in m
were found, since they rely on homogeneity in m. As the results of the permutation tests applied to
XonY/median and YonX/hazen estimates were comparable, only the latter are reported in Table 4.
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Table 4. Permutation tests for differences in Weibull parameters estimated by YonX/hazen.
(a) Differences between two levels of SP within each level of ZM. Test statistic: mi ´ mj and si ´ sj;
(b) Global test for differences between the three levels of ZM within each level of SP. Test statistic:
mean|mi ´ mj| and mean|si ´ sj|; (c) Pairwise tests to B for differences between three levels
of ZM within each level of SP. Test statistic: mi ´ mj and si ´ sj. p-values were adjusted by the
Bonferroni-Holm method.

Comparison Condition Test Statistic p-Values

m s m s

(a)
before-after (G1-G2) C 0.014 ´334.9 0.9830 <0.0001
before-after (G3-G4) Z ´2.831 ´234.4 0.0370 NA
before-after (G5-G6) D 2.494 ´534.7 <0.0001 NA

(b)
C-Z-D (G1-G3-G5) before 1.664 100.4 0.2010 <0.0001
C-Z-D (G2-G4-G6) after 3.186 192.4 <0.0001 NA

(c)

C-Z (G1-G3) before 2.496 ´150.6 NA <0.0001
C-D (G1-G5) before 1.948 ´88.8 NA <0.0001
Z-D (G3-G5) before ´0.547 61.8 NA 0.0080
C-Z (G2-G4) after ´0.350 ´50.2 0.8210 0.0840
C-D (G2-G6) after 4.428 ´288.7 <0.0001 NA
Z-D (G4-G6) after 4.778 ´238.5 <0.0001 NA

With respect to the impact of SP significant differences were found for zirconia Z between G3 and
G4 (p = 0.037) as well as for zirconia D between G5 and G6 (p < 0.0001) (Table 4a). As there was no
evidence against homogeneity in m for zirconia C, s was analyzed and found to differ significantly
(p < 0.0001).

In order to analyze the effect of ZM comparisons of groups with constant SP were made
(Table 4b). Significant differences in m were found between groups G2-G4-G6 (C-Z-D/after) (p < 0.0001).
Accordingly, s was only tested for G1-G3-G5 (C-Z-D/before) and found to differ significantly
(p < 0.0001).

As the global test for m was significant for G2-G4-G6 (C-Z-D/after), all pairwise comparisons
G2-G4, G2-G6, G4-G6 were computed (Table 4c). Significant differences after Bonferroni-Holm
correction for multiple testing were found for G2-G6 and G4-G6. The non-significant G2-G4 comparison
for m (p = 0.821) was tested for differences in s and did also not reach significance (p = 0.084). Pairwise
comparisons for s were also made in the groups G1-G3-G5 (C-Z-D/before), as the global test for s
was significant. All of the possible pairwise tests were significant after Bonferroni-Holm correction
(Table 4c).

Alternatively, the general analysis comparing all six tested G groups found that for Weibull (LS)
modulus m6 < (m2, m4) but (m1, m3, m5, m6) and (m1, m3, m5, m2, m4) (p = 0.006) and characteristic
strength s1 < (s3, s5) < (s2, s4) < s6 (p < 0.001). In contrast, for Weibull (ML) modulus no differences
between moduli in all six factor levels were found (m1, m3, m5, m2, m4, m6) (p = 0.409) and the
findings for the characteristic strength agreed with those for LS fitting technique leading to s1 < (s3, s5)
< (s2, s4) < s6 with p < 0.001.

The results of the tests for LS and ML fitting techniques conducted under Normal sampling
distribution assumption agreed perfectly well leading to sd6 > (sd1, sd3, sd5, sd2, sd4) (p < 0.001) and
mean1 < (mean3, mean5) < (mean2, mean4) < mean6 (p < 0.001).

4. Discussion

Strictly speaking the Weibull distributional assumption is only a special case of a more general
approach to strength distributions [5]. Weibull assumption is preferred in practice due to its flexibility.
It provides nice fits to strength data [5,6]. It has also strong probabilistic foundations for strength
measurements. Although the Weibull distribution is more appropriate to analyze strength data of
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brittle materials than the Normal one [5], the Normal one is frequently used due to its convenience
and availability in general-purpose statistical programs. It is difficult to discern the appropriateness
and implications of Weibull and Normal assumptions in practice, notably, for small sample sizes [5].

As a rule of thumb at least 30 measurements in each tested group are necessary to be able to
recognize the true sampling distribution at all [11]. Estimation of the scale (s) of the two-parameter
Weibull distribution and mean of the Normal one requires fewer observations than the estimation of
modulus (m) and sd, respectively [9]. Although Nohut [7] shows that for sample sizes below 150 per
group no clear discrimination between Weibull and Normal sampling distributions is possible.

Abernethy [11] suggested a conservative approach to Weibull analysis. He recommended
application of a two-parameter Weibull distribution as a working assumption irrespective of curvature
in the probability plots. Given the respectable number of 40 observations in each group statistician
C investigated the true underlying sampling distribution and found that no uniformly optimal
fitting distribution could be suggested. The two-parameter Weibull distributional assumption was in
4 out of 6 tested groups better than the Normal one for the data at hand. Therefore, we considered
both Weibull and Normal distributional sampling distributions for data analysis. We think that the
dilemma of discerning Weibull and Normal distributions will stay an unsolved problem. As neither
Weibull nor Normal distributional assumptions fit the data in all tested groups perfectly well, the
truth seems to lie somewhere in between. In this respect our approach is an extension of the
Abernethy’s [11] conservative approach to two different distributional assumptions. The use of
two different distributional assumptions protects us from being over-optimistic.

Our analysis indicated a strong evidence for the relevance of both ZM and SP on the biaxial
flexural strength values. Generally, SP compared to ZM had more impact on mean biaxial flexural
strength and estimated scale s than ZM. Wet polishing after sintering appears to generally increase s.
Within this group, C and Z zirconia materials were not distinguishable and D reduced modulus m.
However, a clear pattern for m was not observed and it seems to be influenced by the combination
of ZM and SP. In particular, the combination in the group G6 (D/after) results in small m and a high
variance in biaxial flexural strength. Assuming large values for both s and m would be beneficial, the
combination in groups G2 (C/after) and G4 (Z/after) performed best.

After unblinding the project, we realized that the treatment of the specimens preparation in
clusters might actually led to problems for group G6 (D/after). We were unable to identify the
real cause. However, probability plots (Figure 3) and histograms (Figure 4) clearly indicate that the
distribution in G6 (D/after) is bi- rather than uni-modal suggesting that possibly a cluster of specimens
in this group had different properties. Interestingly, this cluster led to higher sd (lower m) estimates in
G6 (D/after) provoking our recommendation not to use this technique in practice.

Moreover, the following additional potential uncertainties for Table 1a have been identified in the
main experiment [3]: material (manufacturer, lot number), sintering temperature inaccuracy (unequal
temperature inside the oven, too early opening of the oven’s door), measurement error (micrometer
screw precision), positioning within the testing device (splinters), measurement error of the testing
machine for biaxial flexural strength measurements. Due to the oven or the polishing machine capacity
specimens were frequently handled in clusters. If an inaccuracy occurred then all of the specimens in a
cluster were possibly affected by it.

We obtained discordant decisions from the global Weibull test depending on the estimation
method. LS indicated that there is a difference in moduli between the six tested groups. In contrast,
ML found no evidence for any differences. One possible approach to dissolve this discrepancy would
be to look closer at the relevance of the differences. According to Nelson [9] the sample size of
40 observations in each tested group implies that if the true modulus equals 10, then with probability
99.5% the modulus estimates should be found in interval (6.2, 16.0). Interestingly, modulus estimates
in Table 3 can actually be found in this interval. This argument suggests that there are no genuine
differences in moduli between the six tested G groups supporting the Weibull/ML finding. A second
argument trying to dissolve the LS/ML discrepancy would be to apply a more stringent significance
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level 0.005 instead of the inappropriately high but common 0.05 one as suggested by Johnson [30].
Johnson’s suggestion aims for increasing reproducibility of the reported findings in the scientific
literature. Application of a lower α = 0.005 level for testing would imply an agreement of the global
conclusions from LS/ML estimation techniques for the Weibull distributional assumption: there would
be no evidence for differences in moduli between the six groups and the characteristic strengths would
be ordered G1 < (G3, G5) < (G2, G4) < G6. For the Normal assumption the ordering of the means
would agree with that for Weibull characteristic strengths. However, the standard deviation in G6
would be larger than standard deviations in all other tested groups. In this respect Weibull and Normal
findings would still disagree.

Perhaps it is a misperception that the results of a statistical analysis have to be unique. We
suggested two independent blinded statistical analyses by two statisticians who were unaware of the
factor level’s assignment and the meaning of the primary outcome. Our primary goal was not to obtain
identical results but rather to get a better picture of the underlying truth. Therefore, we deliberately
decided not to apply any rigid pre-specified guidelines for statistical analysis, any detailed analysis
plan including rigorously predefined objectives and any inflexible specifications of the statistical
methods for the primary endpoint prior to the study.

Gøtzsche [17] apprehends data analysis as a highly subjective process vulnerable to bias and
suggests that actually two manuscripts should be written and both manuscripts must be completed
and approved by the authors before the code is broken. We rather aimed for a single final report
containing the identical results with additional sections describing explicitly possible discrepancies.
We found that it is easier for a reader to concentrate on the main findings and grasp the differences.

It was the first time we applied “independent statistical analyses” and “parallel manuscript
writing” to a “blinded data set”. The “blinding of the data set” was very unfamiliar to both study
supervisor A, as well as to the statisticians C, D. Usually, A would supply a statistician with unlimited
information about the measurements and the experiment properties prior to the statistical analysis.
On the other hand, both statisticians would ask for as much background information as possible about
the meaning of the variables and the expected effects prior to the data analysis in order to correctly
understand the data and to provide optimal statistical analysis for the project at hand. “Blinding of
the data set” technique was clearly in conflict with our daily statistical consultation experience. Our
experiment forced us, however, into an unusual situation and possibly inspired a more impartial
statistical analysis.

The “independent statistical analyses” had definitely a considerable influence on both statisticians.
They provided a more watchful analysis, tended to spontaneous self-verification and an increased
alertness by the simple fact that the results would be verified and critically discussed by an independent
statistician. We experienced that “independent statistical analysis” is a very powerful tool to ensure
good statistical analysis. It is even stronger than a simple correctness check of the reasoning path
provided by a statistician. It was a very inspiring experience. It led to a deeper and more thorough
analysis. To our surprise both independently working statisticians went through two differing analysis
paths for data visualization, estimation and testing and arrived at complementary results.

The “parallel manuscript writing” technique was also new for us. It forced both statisticians to
be clear about their final conclusions, to tie themselves down to one explicit ultimate interpretation
and to present concisely their findings in tables and figures. Both independently written manuscripts
could be conveniently merged into one final report at the fifth stage of our study (Figure 1).

Given two parallel drafts the final writing of the report concentrated on collation of both abstract,
results and discussion sections, notation unification and consolidation of tables and figures. We had to
shorten the exposition and to counteract repetitions. For a similar future study, it would be beneficial
to agree on the notation beforehand. Furthermore, it would be advantageous to put a limit on the
length of paragraphs written independently by biostatisticians.

One possible limitation of a blinded statistical analysis is its inefficiency [17]. There is extra
work needed to conduct statistical analysis twice and to produce two independent drafts. Miller
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& Stewart [23] point out that a requirement for the biostatistician to remain blinded adds a level of
complexity to the study implementation. When planning the amount of time for data analysis we
followed suggestions by Pocock [18,31] who stressed that one should allow enough time for analyzing
the measurements as good-quality statistical analysis cannot be achieved overnight so that an adequate
provision of time for the analysis and interpretation of trial data should be recognized when planning a
study. Therefore, we warranted both data analysts 3 weeks for the data analysis and their independent
writing of “Results”, “Summary”, “Conclusions” and “Rationale for the choice of statistical methods”
sections. In fact, each of the statisticians spent at least 25 h for analysis and draft writing. We feel that
the time interval of 3 weeks provided an appropriate amount of time for a deepened statistical analysis.
We admit that the expenditure of time was much increased as compared with a common non-parallel
statistical analysis. In our case, however, such an effort was justified.

The statistical analysis paths took by the statisticians differed. Statistician D preferred the
permutation tests approach for Weibull statistics. This innovative idea is motivated by the fact
that permutation tests are non-parametric, allow for any arbitrary test statistic and do not make any
assumptions about the distribution of this test statistic under the null hypothesis (H0, no difference
between groups). It can be programmed in R and is independent from sophisticated statistical
software [6,11,12]. One deficiency of the approach was that the permutation tests for post-hoc tests in
Table 4c had to be programmed separately and the application of the Bonferroni-Holm correction for
the pairwise tests (Table 4c) was necessary. Interestingly, statistician D arrived at different conclusions
mainly by not applying any global analysis. Separate comparisons in each factor level suffered from
several drawbacks such as multiple comparisons, difficult interpretation and complicated design. An
ANOVA framework including both factors would be better suited for the specific problem. However,
normally distributed variables with equal variances would be required. Methods form transformation
of Weibull distributed into normally distributed variables are available and could be a promising
alternative [32].

The analysis path suggested by statistician C considered both Weibull and Normal distributions
using the graphical and statistical facilities available in Minitab. It applied global likelihood ratio tests
together with integrated post-hoc confidence intervals. No additional programming was required.
Finally, this approach was considered for the analysis of the larger data set with a greater number of
tested groups in [3].

Table 5 contains the final workflow for a pragmatic statistical analysis of flexural strength
data developed in our study and successfully applied in [3]. It consists of seven steps starting
with visualization of the measurements (Step 1), choice of at least one reasonable distributional
assumption (Step 2), estimation of the parameters of a distribution (Step 3), check of the goodness-of-fit
(Step 4) and estimation of 95%CI (Step 5). In order to understand which tested groups are better
than others in terms of location and spread we have to apply appropriate statistical tests (Step 6).
These tests require a specification of a single distribution applicable to all tested groups. In practice,
however, it is quite impossible to find a single distributional assumption fitting all groups equally
well. Therefore, we extended Abernethy’s [11] conservative approach to two different reasonable
distributional assumptions (Weibull and Normal in our case) as a working hypothesis (Step 2). As
a consequence, we have to compare the results obtained under differing distributional assumptions
(Step 7).
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Table 5. A recommended statistical analysis workflow for flexural strength measurements. If not
otherwise indicated [29] can be used (path: Stat/Reliability-Survival/Distribution Analysis (Right
Censoring)/Parametric Distribution Analysis/).

Step Decision/Action

Step 1

Data visualization in each tested group (see Figures 2 and 4):
Check data visually by histograms, scatterplots and/or boxplots.
Are there any outlying observations? If yes, check if they are possibly typing errors and
correct them.
Are histograms approximately symmetric in each tested group?
If no, you may try to transform the measurements.

Step 2

Distributional assumption for measurements (see Section 1.1):
Do you think that each measurement consists of a possibly large number of independent
random fluctuations? If yes, go for a Normality assumption directly (for approximately
symmetrical histograms) or after a (logarithmic) transformation of measurements.
Do you believe in the “weakest link” process generating your data? If yes, go for a Weibull
assumption.
If both assumptions seem to be reasonable use both Normal and Weibull distributional
assumptions for your working hypothesis.

Step 3

Descriptive statistics: Estimation of parameters in each tested group:
Under Normality assumption: compute mean and standard deviation (sd).
Under Weibull assumption: compute the characteristic strength (s) and modulus (m).
See the open source Excel-calculator (Appendix C in [13]).
Remember: (s “=” mean) and (m “=” 1/sd) (see Section 1.1)

Step 4

Check the goodness-of-fit in each tested group:
Compute the goodness-of-fit estimates.
Generate probability plots (see Figure 3) and check if they are linear.
In case of approximate linearity the assumed distribution fits the data well.
In case of clear non-linearity interpret the results with caution.

Step 5

Estimation of 95%CI for parameters in each tested group:
Under Normality assumption: 95% CI (mean) and 95% CI (sd).
Under Weibull assumption: 95% CI (s) and 95% CI (m). See the open source
Excel-calculator (Appendix C in [13]).

Step 6

Are there any differences between tested groups?
Normal mean: Apply an Analysis of Variance (ANOVA).
Normal sd: Apply a Levene-Test.
Weibull s and m: Apply the Bartlett’s modified likelihood ratio tests.

Step 7

Check the results:
Critically check if the results obtained in Step 6 agree with the graphs generated in Step 1.
If you applied both the Normal and the Weibull assumptions critically check if the results
obtained in Step 6 are comparable.
Remember: (s “=” mean) and (m “=” 1/sd) (See Section 1.1).

We did not intend to cover the whole range of possible statistical approaches for the analysis of
the strength data. We admit that the true range of the varying inter-personal statistical approaches is
not well reflected by just two participating statisticians. For example, some researchers might opt for
an equivalent volume approach within the Weibull analysis [5,10]. Others might consider a log-normal
distributional assumption for the data analysis instead of Weibull or Normal ones. They would argue
that the log-normal distribution may be a useful alternative for stabilizing and reducing variance as
well as giving a sensible linearization of probability plots. An ordinary ANOVA applied to lognormal
data may be robust enough to answer the questions in a very rapid and straightforward manner.

Despite these possible shortcomings, our blinded approach was a very helpful tool at the stage
of finding a practicable statistical method for the final data analysis in [3]. It complements the
recommendations by Hannigan and Lynch [33] and should definitely be taken into consideration.
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5. Conclusions

Within the limitations of this investigation it can be concluded that:

‚ Zirconia specimen preparation method has an impact on characteristic strength (s) and mean of
the biaxial flexural strength but in majority of tested groups practically no relevant impact on
modulus (m) and standard deviation (sd) of the results.

‚ All three tested zirconia materials showed different characteristics strengths and mean flexural
strength results. Group G6 (D/after) showed higher spread leading to smaller modulus and
increased sd estimates.

‚ The “blinded data set”, “independent statistical analyses” and “parallel manuscript writing”
techniques had an influence on the findings for strength data. The impact of “independent
statistical analyses” was most pronounced.

‚ Statistical analysis paths taken by both independently working biostatisticians differed.
‚ The major difference in the findings was caused by two alternative distributional assumptions

(Weibull/Normal) and alternative estimation methods (LS/ML).
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