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Abstract: The effects of lithium doping on the sintering and grain growth of non-stoichiometric
nano-sized magnesium aluminate spinel were studied using a spark plasma sintering (SPS) apparatus.
Li-doped nano-MgO¨ nAl2O3 spinel (n = 1.06 and 1.21) powders containing 0, 0.20, 0.50 or 1.00 at. %
Li were synthesized by the solution combustion method and dense specimens were processed
using a SPS apparatus at 1200 ˝C and under an applied pressure of 150 MPa. The SPS-processed
samples showed mutual dependency on the lithium concentration and the alumina-to-magnesia
ratio. For example, the density and hardness values of near-stoichiometry samples (n = 1.06) showed
an incline up to 0.51 at. % Li, while in the alumina rich samples (n = 1.21), these values remained
constant up to 0.53 at. % Li. Studying grain growth revealed that in the Li-MgO¨nAl2O3 system,
grain growth is limited by Zener pining. The activation energies of undoped, 0.2 and 0.53 at. %
Li-MgO¨ 1.21Al2O3 samples were 288 ˘ 40, 670 ˘ 45 and 543 ˘ 40 kJ¨mol´1, respectively.
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1. Introduction

Magnesium aluminate spinel (MgO¨nAl2O3) is an attractive ceramic material for many
technological applications, owing to its combination of excellent mechanical and optical
properties [1–3]. To realize and maximize its qualities, the spinel must be sintered to full density.
Sintering to full density is usually a difficult goal to achieve, given the requirements of high pressure
and elevated temperatures. Yet, even then, variations in powder quality and densification processes
can cause optical defects [4–6]. To overcome these issues, the use of sintering additives, such as
Na3AlF6 [7], AlF3 [3], B2O3 [8], AlCl3 [3], CaO [2], LiF [9–11] and CaCO3 + LiF [4], has been proposed.
Of these, it was established that LiF consistently allowed for the sintering of transparent spinel [6,9–12].
As such, the effect of LiF on the sintering behavior of MgAl2O4 has been extensively studied [6,9–14],
including by Meir et al. [10] and Rosenburg et al. [11].

Two mechanisms were proposed to explain the enhanced sintering kinetics and improved
transparency attained by the sintered parts. The first involves the formation of a liquid phase
(LiF, melting point (m.p.) ~847 ˝C) at relatively low temperature that wets the MgAl2O4 particles and
likely aids densification by particle rearrangement and liquid-phase sintering. The second mechanism
was proposed to act at higher temperatures. Here, LiF decomposes and the highly reactive F´

ions react with impurities (e.g., C and S), thereby cleaning/activating particle surfaces. In turn, the
Li+ cations react with the spinel, resulting in accelerated mass transport due to the formation of
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oxygen vacancies. Recently, we studied the effects of lithium on the energetics, thermal stability, and
coarsening of MgO¨ nAl2O3, as well as its solubility in two-alumina-rich spinel compositions (n = 1.06
and n = 1.21). It was established that the phase stability of Li-doped, near-stoichiometry (n = 1.06)
spinels is size-dependent. The spinel structure was able to hold up to 1 at. % lithium at grain sizes
smaller than 30 nm, whereas for larger crystallite sizes, Mg(Li,Al)O and γ-LiAlO2 phases precipitated.
The aluminum-rich samples (n = 1.21) showed greater phase stability, with decomposition occurring
only above 1 at. % lithium, independent of crystallite size. The measured surface (and interface)
enthalpies of MgO¨ 1.06Al2O3, MgO¨ 1.21Al2O3 and 0.20 at. % Li-MgO¨ 1.21Al2O3 were 1.51 ˘ 0.15
(0.42 ˘ 0.20) Jm´2, 1.17 ˘ 0.15 (0.32 ˘ 0.21) and 1.05 ˘ 0.12 (0.24 ˘ 0.18) Jm´2, respectively [15].
These values are in agreement with the lower coarsening tendency of aluminum-rich spinels [15].
Spark plasma sintering is a well-established method for sintering transparent magnesium aluminate
spinel [10,16–24] which combines axial pressure with heating via an electrical current passing through
a die containing the powder body. A LiF sintering additive (~1 wt. %) is typically required
for transparency.

In the present work, dense bodies from various lithium-doped nano-MgO¨ 1.06Al2O3 and
MgO¨ 1.21Al2O3 spinels were SPS-processed and their microstructure and phase composition were
analyzed. The cardinal role of the Li additive is emphasized and discussed.

2. Materials and Experimental Procedures

Li-doped nano-MgO¨nAl2O3 spinel (n = 1.06 and 1.21) powders containing 0, 0.20, 0.50 or
1.00 at. % Li were synthesized by the solution combustion method [25], as described in detail by
Mordekovitz and Hayun [15]. A 100 mL water-based solution was prepared with the appropriate
amount of magnesium nitrate (Mg(NO3)2¨ 6H2O, 96% metal basis, Fluka Analytical, St. Louis, MO,
USA), aluminum nitrate (Al(NO3)3¨ 9H2O, 96% metal basis, Fluka Analytical) and lithium acetate
(LiCH3CO2¨ 2H2O, reagent grade, metal basis, Alfa Aesar, Haverhill, MA, USA). Thirty-seven grams of
citric acid (ACS reagent ě99.5) and 6 mL ethylene glycol (anhydrous, 99.8%, Sigma Aldrich, St. Louis,
MO, USA) were added to the solution. The resulting mixtures were evaporated at 120 ˝C under
agitation by magnetic stirring until high-viscosity foam-like colloids had formed. Finally, the dried gel
precursor was calcined at 850 ˝C for 72 h to obtain a fine powder. Sintering was conducted in a Spark
Plasma Sintering Machine (FCT Systems GmbH, Rauenstein, Germany) using a modified elevated
pressure set-up capable of delivering uniaxial pressures greater than 500 MPa. Ten millimeter disks
were sintered using a graphite die (20 mm outer diameter) with silicon carbide (SiC) plungers placed
inside a conventional 20 mm graphite die-and-plunger set. All SPS experiments were conducted
in a low vacuum (1.3 hPa), with a K-type control thermocouple in contact with the outer wall of
the ø10 mm die. The sintering procedure was conducted at 1200 ˝C under 150–300 MPa of uniaxial
pressure. The heating rate was 50 ˝C/min and the holding time at the highest temperature was
15 min. Grain growth heat treatments were performed in air for 8, 24 and 72 h at a temperature
range of 1300–1450 ˝C. X-ray powder diffraction (XRD) was performed using a Rigaku RINT 2100
diffractometer with Cu Kα radiation (Tokyo, Japan). The operating parameters were 40 KV and 40 mA
with a 2θ step of 0.02˝. Cell parameters were calculated from the diffractions obtained using the MDI
Jade 2010 software package (version 2.8.1, 2014, Materials Data, Livermore, CA, USA).

Microstructure was studied using high-resolution scanning electron microscopy (HRSEM,
JEOL-7400F, Tokyo, Japan) and by transmission electron microscopy (TEM) using a JEOL 2100
(Tokyo, Japan) microscope equipped with a high-angle annular dark-field (HAADF) GATAN detector.
Samples for scanning electron microscope (SEM) characterization were prepared using a standard
metallographic procedure, finalized by polishing with a 1 µm diamond paste. Polished specimens
were thermally etched at the same heat treatment temperature for 6 min.

TEM and STEM (scanning transmission electron microscope) samples were prepared from
a copper-matrix composite with the spinel samples being embedded in the soft copper matrix,
as described in detail by Halabi et al. [26] this technique was used in order to overcome charge-related



Materials 2016, 9, 481 3 of 12

issues encountered during the TEM work. The spinel samples were ground and mixed with pure
copper powder (~10 µm). Disks 3 mm in diameter and 70 µm thick were pressed and sintered at
700 ˝C in an N2 atmosphere. The perforation stage was carried out using a Gatan Dimpler and
Precision Ion Polishing System. Grain size was estimated using Thixomet software [27] for image
analysis. The density of the specimens was measured by the Archimedes method (ASTM Standard
B-311 [28]), while Vickers hardness was measured using a Buehler–Micromet 2100 hardness tester (2 kg
load, ASTM Standard C-1327 [29]). The samples were polished to an optical level for transmission
measurements at 500 and 1000 nm wavelengths (Spectrophotometer V-1100D, MRC, Holon, Israel).

3. Results and Discussion

3.1. Phase Composition

Figure 1 shows XRD patterns for Li-doped and undoped nano-crystalline MgO¨ 1.06Al2O3 and
MgO¨ 1.21Al2O3 samples synthesized by the combustion synthesis technique. The patterns indicate
the presence of a spinel phase with relatively broad reflection peaks, suggesting small crystallite sizes
calculated to range between 9.2 ˘ 0.2 and 32.5 ˘ 0.6 nm in the pure and doped samples (Table 1).
Detailed characterization of the nano-powders prepared by this method can be found elsewhere [15].
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Figure 1. XRD patterns of as-synthesized powder samples.

Typical SPS-processed specimens from as-synthesized MgO¨ 1.06Al2O3 powders containing
different amounts of lithium are shown in Figure 2. The effect of lithium on the translucency of
the MgO¨ 1.06Al2O3 specimens is very apparent. In the present study, no attempts to determine
optimal sintering conditions were made, with all of the compositions being sintered under the
same conditions. The density, transmittance and hardness values (Table 1) of the samples prepared
from near-stoichiometric powders (n = 1.06) all show maxima in the 0.51 at. % Li-MgO¨ 1.06Al2O3

composition. Alumina-rich powders (n = 1.21) containing up to 0.53 at. % Li only reached about 95%
of the theoretical density under these sintering conditions. Moreover, the samples showed no change
in density, transmittance or hardness up to 0.53 at. % Li. At a higher lithium content (i.e., 1.04 at. %),
enhanced sinterability was observed.

Materials 2016, 9, 481 3 of 12 

in an N2 atmosphere. The perforation stage was carried out using a Gatan Dimpler and Precision Ion 
Polishing System. Grain size was estimated using Thixomet software [27] for image analysis. The 
density of the specimens was measured by the Archimedes method (ASTM Standard B-311 [28]), 
while Vickers hardness was measured using a Buehler–Micromet 2100 hardness tester (2 kg load, 
ASTM Standard C-1327 [29]). The samples were polished to an optical level for transmission 
measurements at 500 and 1000 nm wavelengths (Spectrophotometer V-1100D, MRC, Holon, Israel). 

3. Results and Discussion 

3.1. Phase Composition 

Figure 1 shows XRD patterns for Li-doped and undoped nano-crystalline MgO·1.06Al2O3 and 
MgO·1.21Al2O3 samples synthesized by the combustion synthesis technique. The patterns indicate 
the presence of a spinel phase with relatively broad reflection peaks, suggesting small crystallite sizes 
calculated to range between 9.2 ± 0.2 and 32.5 ± 0.6 nm in the pure and doped samples (Table 1). 
Detailed characterization of the nano-powders prepared by this method can be found elsewhere [15]. 

 
Figure 1. XRD patterns of as-synthesized powder samples. 

Typical SPS-processed specimens from as-synthesized MgO·1.06Al2O3 powders containing 
different amounts of lithium are shown in Figure 2. The effect of lithium on the translucency of the 
MgO·1.06Al2O3 specimens is very apparent. In the present study, no attempts to determine optimal 
sintering conditions were made, with all of the compositions being sintered under the same 
conditions. The density, transmittance and hardness values (Table 1) of the samples prepared from 
near-stoichiometric powders (n = 1.06) all show maxima in the 0.51 at. % Li-MgO·1.06Al2O3 
composition. Alumina-rich powders (n = 1.21) containing up to 0.53 at. % Li only reached about 95% 
of the theoretical density under these sintering conditions. Moreover, the samples showed no change 
in density, transmittance or hardness up to 0.53 at. % Li. At a higher lithium content (i.e., 1.04 at. %), 
enhanced sinterability was observed.  

 
Figure 2. Photograph of Li-MgO·1.06Al2O3 SPS-processed samples. The polished specimens are 10 mm 
in diameter and ~1.5 mm thick. The effect of lithium on transparency is visible. Figure 2. Photograph of Li-MgO¨ 1.06Al2O3 SPS-processed samples. The polished specimens are

10 mm in diameter and ~1.5 mm thick. The effect of lithium on transparency is visible.



Materials 2016, 9, 481 4 of 12

Table 1. Cell parameter grain size, density, transmittence, hardness and MgO s.s. amount for SPS-processed Li-doped MgO¨ nAl2O3 (n = 1.06 and 1.21) samples.

Li
(at. %)

A
(Å)

D
(nm)

ρ

(g/cm3)
Trans. (500 nm)

(%)
Trans. (1000 nm)

(%)
Hardness

(GPa)

Mgx(Al,Li)1–xO

Wt. %
a

(Å)
Composition *

Mg (Al, Li)

Li-MgO¨ 1.06Al2O3

- 8.0810 (1) 102 ˘ 3 3.49 ˘ 0.01 - - 14.3 ˘ 0.2 - - - -
0.28 ˘ 0.02 8.0815 (1) 160 ˘ 5 3.54 ˘ 0.01 3.5 ˘ 0.1 14.4 ˘ 0.1 14.7 ˘ 0.3 0.9 ˘ 0.1 4.180 (9) 0.86 0.14
0.51 ˘ 0.05 8.0784 (1) 171 ˘ 3 3.56 ˘ 0.01 25.0 ˘ 0.1 45.3 ˘ 0.1 15.3 ˘ 0.4 1.8 ˘ 0.1 4.141 (9) 0.68 0.32
1.03 ˘ 0.10 8.0773 (1) 150 ˘ 8 3.54 ˘ 0.01 7.4 ˘ 0.1 22.9 ˘ 0.1 14.6 ˘ 0.5 2.9 ˘ 0.2 4.127 (9) 0.63 0.37

Li-MgO¨ 1.21Al2O3

- 8.0647 (1) 81 ˘ 1 3.48 ˘ 0.01 - - 14.4 ˘ 0.5 - - - -
0.20 ˘ 0.02 8.0654 (1) 86 ˘ 2 3.49 ˘ 0.01 - - 14.2 ˘ 0.2 - - - -
0.53 ˘ 0.06 8.0656 (4) 94 ˘ 2 3.48 ˘ 0.01 - - 14.1 ˘ 0.4 - - - -
1.04 ˘ 0.10 8.0779 (2) 138 ˘ 4 3.61 ˘ 0.01 2.0 ˘ 0.1 10 ˘ 0.1 13.9 ˘ 0.3 2.3 ˘ 0.3 4.117 (9) 0.6 0.4

* Calculated using the Vegard rule and data from Doman’s work [30].
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The microstructures of the different SPS-processed specimens are presented in Figure 3. While the
microstructure of the undoped MgO¨ 1.06Al2O3 sample displayed a homogeneous nano-structure
with equiaxed grains (Figure 3), the Li-doped samples consisted of two grain size populations.
The doped and undoped MgO¨ 1.21Al2O3 samples with lithium doping lower than 1.04 at. % seemed
to be unaffected by the lithium addition and displayed similar equiaxed microstructures (Figure 3).
The 1.04 at. % Li-MgO¨ 1.21Al2O3 sample, however, showed a similar microstructure to the 1.03 at. %
Li-MgO¨ 1.06Al2O3 sample. The corresponding grain size distribution (an example is shown in Figure 4)
exhibited a log-normal characteristic for all samples, with the calculated values summarized in Table 1.
The grain size of near-stoichiometric specimens (n = 1.06) increased monotonically with the addition
of lithium. However, this value appeared constant in alumina-rich powders (n = 1.21) containing up to
0.53 at. % Li. At higher lithium content (1.04 at. %), this value increased.
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The XRD patterns of the SPS-processed specimens are shown in Figure 5. The SPS-processed
MgO¨ 1.06Al2O3 and 0.00–0.51 at. % Li-MgO¨ 1.21Al2O3 samples remained as a solid solution, while in
the case of the 1.04 at. % Li-MgO¨ 1.21Al2O3 and 0.28 through 1.03 at. % Li-MgO¨ 1.06Al2O3 samples,
Mg(Al,Li)O solid solution (MgO s.s.) and γ-LiAlO2 [30,31] precipitated. The amounts of MgO s.s.
precipitation were calculated using the Vegard rule and data from Reference [30] and are listed in
Table 1. It should be noted that the γ-LiAlO2 reflections were barely within the detection limit level of
the XRD and were estimated to account for less than 1 wt. %. Similar behavior was found for the same
powders after annealing at 1350 ˝C for 8 min in air [15].
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In general, for samples containing up to 53.0 at. % Li, the cell parameters were 8.0810 ˘ 0.0005 Å
and 8.0652 ˘ 0.0005 Å for n = 1.06 and 1.21, respectively. At higher Li content, both 1.03 at. %
Li-MgO¨ 1.06Al2O3 and 1.04 at. % Li-MgO¨ 1.21Al2O3 samples displayed the same cell parameter
(8.0776 ˘ 0.0004 Å).

3.2. Grain Growth

The undoped, 0.28 and 0.53 at. % Li-doped MgO¨ 1.21Al2O3 SPS-processed samples remained as a
solid solution, all the while exhibiting homogeneous microstructures with equiaxed polyhedral-shaped
grains. To reveal the effect of lithium on grain growth mechanisms, the grain sizes resulting from a set
of heat treatments at various temperatures and times were measured (Table 2, Figure 6).

Table 2. Grain sizes of heat-treated, undoped and 0.28 and 0.53 at. % Li-doped MgO¨1.21Al2O3 samples.

Temperature (˝C)/Time (h)
Grain Size (nm)

8 24 72

MgO¨ 1.21Al2O3
1300 105 ˘ 8 125 ˘ 10 229 ˘ 6
1375 131 ˘ 10 200 ˘ 19 272 ˘ 26
1450 181 ˘ 12 292 ˘ 26 513 ˘ 22

0.28-MgO¨ 1.21Al2O3
1300 111 ˘ 5 147 ˘ 10 157 ˘ 7
1375 154 ˘ 5 242 ˘ 18 249 ˘ 18
1450 306 ˘ 11 438 ˘ 9 991 ˘ 115

0.53-MgO¨ 1.21Al2O3
1300 113 ˘ 8 116 ˘ 5 201 ˘ 7
1375 149 ˘ 8 237 ˘ 53 280 ˘ 8
1450 197 ˘ 18 300 ˘ 6 948 ˘ 47
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Figure 6. Micrographs of the undoped, 0.2 and 0.53 at. % Li-doped MgO¨ 1.21Al2O3 samples after
heat-treatment at 1375 and 1450 ˝C for 24 h. The presence of the fine grain clusters is marked by
red circles.

The undoped MgO¨ 1.21Al2O3 sample showed monotonic grain growth with temperature and
time. The lithium-doped samples, however, presented a more complex behavior. At low temperatures
and short holding times, the lithium-doped samples showed a monotonic-like behavior similar
to the undoped samples. At higher temperatures (i.e., 1450 ˝C, 8 h) or longer dwelling periods
(i.e., 1300 ˝C, 24 h), the 0.53 at. % Li-MgO¨ 1.21Al2O3 sample displayed lesser growth than the 0.20 at. %
Li-MgO¨ 1.21Al2O3 sample (Figure 6). After a longer thermal exposure, namely 72 h at 1450 ˝C
(Figure 6), the doped samples showed enhanced grain growth, reaching a size double that of the
undoped sample.

Closer examination of the SEM images of the samples after heat treatment for 24 h at 1375 and
1450 ˝C (Figure 6) revealed the presence of small clusters of fine grains between larger grains in the
doped samples. This finding suggests that lithium-rich phases may have precipitated during the heat
treatments, which could explain the growth behavior of the doped samples.

Unfortunately, XRD analysis of these samples indicated only the presence of a spinel phase
(Figure 7). Although no second phase was found, it might still be present, but it would remain
undetected by the XRD technique if the phase only had a minor vol % and nano-sized dimensions [32].
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To identify the nature of these fine grains, TEM analysis was performed on 0.20 at. %
Li-MgO¨ 1.21Al2O3 before and after heat treatment at 1450 ˝C for 24 and 72 h (Figure 8). The TEM
image of the SPS-processed 0.20 at. % Li-MgO¨ 1.21Al2O3 sample (Figure 8a) showed only spinel grains
and confirmed the results of the XRD investigation regarding phase composition. After heat treatment
at 1450 ˝C for 24 h, the presence of nano-particles of γ-lithium aluminate at the grain boundaries was
detected (Figures 8b and 9).
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Figure 9. BF-TEM image of SPS spinel samples doped with 0.20 at. % Li after heat treatment at 1450 ˝C
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spinel samples doped with 0.20 at. % Li after heat treatment at 1450 ˝C for 72 h (c); the selected area
diffraction patterns indicate the reflection of (1 1 0) of the γ-LiAlO2 phase.

In a previous study, we showed that the solubility limit of lithium in a spinel structure is controlled
both by the Al-to-Mg ratio and by grain size [15]. Thus, even though no signs of second phase
precipitation were present in the as-sintered 0.20 and 0.53 at. % Li-MgO¨ 1.21Al2O3 samples, additional
grain growth would promote lithium segregation to the grain boundaries and precipitation of a second
phase. The segregation of lithium to the grain boundary increases the grain growth rate by reducing
the grain boundary energy [15]. On the other hand, second phase precipitation impedes grain growth
via the Zener pinning mechanism [33–36]. Such behavior can be seen in Figure 10. The 0.2 at. %
Li-MgO¨ 1.21Al2O3 spinel shows enhanced grain growth up to 24 h (<D> ~140 nm), after which time
the growth is inhibited for a prolonged period of annealing due to second phase precipitation. In the
more Li-rich samples (i.e., 0.53 at. % Li), grain growth was inhibited at an early stage due to earlier
second phase appearance. Further coarsening was related to precipitate coarsening followed by the
grain coarsening [36].
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Activation energy analysis of undoped, 0.2 and 0.53 at. % Li-doped MgO¨ 1.21Al2O3 grain growth
was performed using the phenomenological kinetic grain growth equation:

Gn
t ´ Gn

0 “ K0texp
ˆ

´
Q
RT

˙

where Gt and G0 are the grain sizes at times t and t = 0, respectively, n is the grain growth exponent,
K0 is the pre-exponential constant of the diffusion coefficient, Q is the activation energy for grain
growth, T is the absolute temperature, and R is the gas constant.

The grain growth exponent or n value is readily determined as the inverse of the slope of a log G
vs. log t plot. Using the original particle size as G0, the grain size data can be fitted to linear lines with
similar correlation factors (R = 0.998 and 0.937) for both the grain growth exponents of n = 2 (grain
boundary–controlled diffusion) and n = 3 (lattice-controlled diffusion). This is in agreement with other
works using either n = 2 or 3 [37,38]. Using n = 2, the activation energy and kinetic constant (K0) for
undoped MgO¨ 1.21Al2O3 were found to be 288 ˘ 40 kJ¨mol´1 and 2.09 ˆ 106 µm2/h. These values
are in agreement with other data and are found between the values for MgAl2O4 and MgO¨ 1.56Al2O3

(Table 3). The activation energies and K0 for 0.2 and 0.53 at. % Li-MgO¨ 1.21Al2O3 were found to
be 670 ˘ 45, 543 ˘ 40 kJ¨mol´1 and 3.41 ˆ 1018, 3.78 ˆ 1014 µm2/h, respectively; these values are
significantly higher than those of the undoped sample. These findings are in line with the effect of
the Zener pining mechanism, where grain growth is impeded at early stages by the secondary phase.
Once the secondary phase has grown and the impediment is lifted, the spinel grains show enhanced
growth (see data in Table 2) that can be attributed to the effect of lithium on the diffusion, by way of
imposing oxygen vacancies [9–11,15].

Table 3. Grain growth parameters for 0–0.53 at. % Li-MgO¨ 1.21Al2O3.

MgO¨ nAl2O3 Activation Energy for Grain Growth (kJ/mol) ln(K0)

Undoped

1.56 (Chiang [39]) 248 ˘ 29 16.35
1.21 (This study) 288 ˘ 40 14.55

1.013 (Chiang [39]) 422 ˘ 10 28.23
~1.00 (Bratton [40]) 462 30.54

at. % Li Lithium doped n = 1.21 (This study)

0.20 670 ˘ 45 42.67
0.53 543 ˘ 40 33.56



Materials 2016, 9, 481 10 of 12

4. Summary

The effects of lithium doping on the sintering and grain growth kinetics of non-stoichiometric
nano-MgO¨ nAl2O3 spinel with n = 1.06 and 1.21 were studied using a spark plasma sintering apparatus.
The near-stoichiometry (n = 1.06) Li-doped samples showed higher sinterability in comparison with the
aluminum-rich samples (n = 1.21) but also lower phase stability, with Mg(Li,Al)O and γ-LiAlO2 phases
precipitating during the course of the sintering process. Still, the aluminum-rich system (n = 1.21)
showed greater phase stability up to 1 at. % of lithium for samples with grain sizes lower than 100 nm.
The grain growth study indicated that in the Li-MgO¨ nAl2O3 system, grain growth was controlled by
the Zener pining mechanism, where γ-LiAlO2 precipitated at the grains boundaries. The activation
energies of the undoped, 0.20 and 0.53 at. % Li-MgO¨ 1.21Al2O3 samples were 288 ˘ 40, 670 ˘ 45 and
543 ˘ 40 kJ¨mol´1, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

SPS spark plasma sintering
HRSEM high resolution scanning electron microscope
HRTEM high resolution transmission electron microscope
HAADF high angle annular dark field
STEM scanning transmission electron microscope
XRD X-ray powder diffraction
MgO s.s. Mg(Al,Li)O solid solution
BF-TEM bright field transmission electron microscope
DF-TEM dark field transmission electron microscope
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