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Abstract: In this study, bulk ultrafine-grained and micro-crystalline cobalt was prepared using a
combination of high-energy ball milling and subsequent spark plasma sintering. The average grain
sizes of the ultrafine-grained and micro-crystalline materials were 200 nm and 1 µm, respectively.
Mechanical properties such as the compressive yield strength, the ultimate compressive strength,
the maximum compressive deformation and the Vickers hardness were studied and compared with
those of a coarse-grained as-cast cobalt reference sample. The bulk ultrafine-grained sample showed
an ultra-high compressive yield strength that was greater than 1 GPa, which is discussed with respect
to the preparation technique and a structural investigation.
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1. Introduction

Research on nano-crystalline (with grain sizes between 10 and 100 nm) and ultrafine-grained
(with grain sizes up to 500 nm) polycrystalline metals and alloys has evolved considerably over the last
few decades [1–3]. These materials exhibit unique properties that are lacking in their coarse-grained
counterparts. Such properties predispose them to use in a wide range of magnetic, optical and
structural applications. It is well known that these properties are related to morphology, crystallite size
and inter-crystallite interactions [4–6]. There are two basic methods of producing these materials; one is
top-down, and the other is bottom-up. The top-down approach includes the structural disintegration
of bulk materials by means of severe plastic deformation (SPD) techniques such as high-pressure
torsion (HPT) [7], equal channel angular pressing (ECAP) [8], surface mechanical attrition treatment
(SMAT) [9] and high-energy ball milling (BM). In contrast, the bottom-up method involves either
one-step processes such as electrodeposition or two-step preparation, which consists of nanoparticle
synthesis followed by consolidation [10]. In this study, we used a combination of these two approaches.
High-energy ball milling was used to prepare the nano-crystalline powder; it was followed by
consolidation using spark plasma sintering.

During high-energy ball milling, particles are subjected to repeated flattening, cold welding,
fracturing and rewelding. When two milling balls collide, a certain amount of powder is trapped
between them, and the force of the impact plastically deforms the powder, which leads to strain
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hardening and fracture. The processes that lead to formation of nano-crystalline structures during
milling have been described in a few reports [11–13]. It has been reported that in the early stages
of milling, shear bands result from the high deformation rates. These shear bands contain a large
number of dislocations and have approximate widths of 0.5–1.0 µm. Further milling increases the
dislocation density, which increases the average atomic strain. At a certain dislocation density, a crystal
disintegrates into subgrains that are separated by low-angle grain boundaries, and the lattice strain
decreases. As processing continues, the grain size tends to decrease steadily, and the shear bands
merge. The low-angle grain boundaries are replaced by high-angle boundaries and, grain rotation
occurs. This has been shown by the absence of texture in electron diffraction patterns and random
orientations of the grains. As a result, dislocation-free nano-crystalline grains are formed [14,15]. Other
studies model the minimum grain size achievable by ball milling. Some of them say that reducibility is
the result of competition between the plastic deformation that results from the motion of dislocations
and the recovery and recrystallization behaviour of the material [16–18]. It has also been reported that
the minimum grain size is inversely related to the melting point and stacking fault energy of fcc Cu,
Ni, Ag and Al [17]. However, the minimum grain sizes of other fcc metals and all bcc and hcp metals
showed almost no dependence on the melting point [19,20]. Nevertheless, further investigations are
needed before serious explanations can be made.

In the field of powder metallurgy, many methods of compacting have been proposed. As an
example, hot pressing, hot isostatic pressing or hot extrusion can be mentioned [21–23]. However,
these techniques require relatively high temperatures and long sintering times, which significantly
limit their usability for processing nano-crystalline bulk materials. Spark plasma sintering (SPS) is
a novel technique that allows bulk materials to be fabricated from nano-crystalline powders. SPS
is a pressure-driven consolidation method that operates with a pulsed direct current that passes
through the powder sample, which is placed in a graphite die. The current pulses cause very quick
heating of the sample (up to 1000 ˝C/min) and, in combination with the applied pressure, cause fast
consolidation of the powder, which effectively hinders the undesirable coarsening of the grains. One of
the other benefits of this method is the possibility of producing bulk materials with densities close to
their theoretical values. Such materials exhibit significantly improved mechanical properties [24–33].
For example, studies focusing on Al-based alloys prepared by this technique reporting a compressive
strength of 1200 MPa have been published [25,29].

2. Results

In this study, bulk cobalt prepared using various techniques, including high-energy ball milling
and spark plasma sintering, was investigated. In Figure 1, optical microscopy micrographs show the
microstructures of the prepared samples. In Figure 1a, the structure of the cobalt sample prepared
using a combination of ball milling and subsequent spark plasma sintering is visible. It consists of
particles with an average size of approximately 100 µm and residual pores, which are shown as black
spots and dots. The average porosity of this sample was obtained using image analysis and reached
approximately 9.6%. Alternating brighter and darker stripes inside the particles denote its internal
lamellar structure (shown in Figure 1a) which is a typical result of ball milling. These particles were
expected to have ultrafine-grained internal structure on the scale of nanometres and therefore, further
investigation was performed by means of transmission electron microscopy. The microstructure of the
micro-crystalline bulk sample is shown in Figure 1b. It contains a visible homogenous structure
consisting of bonded powder particles. In this case, no internal structure of the particles was
observed, which leads to the assumption that the grain size corresponds to the particle size (approx.
1 µm). The average porosity of this sample reached 0.3%. Figure 1c shows the microstructure of the
coarse-grained as-cast cobalt sample. It was found that the average grain size of this material reached
190 µm and the average porosity was 1.2%. Relative densities of the samples were determined from
their dimensions and weight and summarized in Table 1. All calculated density values were in a good
agreement with the average porosity of the samples obtained by image analysis.
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Table 1. Vickers hardness (HV), compressive yield strength (CYS), ultimate compressive strength
(UCS), maximum deformation and relative density (ρrel) of bulk samples.

Sample HV CYS (MPa) UCS (MPa) Max Deformation (%) ρrel (%)

Ultrafine-grained 310 ˘ 4 1030 1200 10 88.8 ˘ 0.6
Micro-crystalline 190 ˘ 5 640 1450 30 98.9 ˘ 0.4

As-cast 100 ˘ 3 340 980 31 97.8 ˘ 0.4
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Figure 1. Microstructures of the bulk cobalt samples (OM): (a) ultrafine-grained cobalt prepared by ball
milling and spark plasma sintering; (b) micro-crystalline cobalt prepared by spark plasma sintering;
and (c) coarse-grained as-cast cobalt.

A TEM micrograph of the ultrafine-grained cobalt sample and a selected area diffraction pattern
(SAED) are shown in Figure 2a. It can be observed that the microstructure is composed of equi-axed
grains that have an average size of approximately 200 nm. The holes in the sample come from
preparation by the Gatan precision ion polishing system (PIPS) and they cannot be considered as pores.
The SAED pattern taken from marked area comprises diffraction maxima indicating the hexagonal
structure in this area. The detailed view of the microstructure shown in Figure 2b reveals also the
presence of deformation twins in appropriately oriented grains that originate from ball milling (dark
stripes across the grain).
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Figure 3 represents XRD diffraction patterns of bulk materials and powder precursors.
The reference as-cast cobalt sample only contained hcp structures, while the initial powders and
the prepared compacts contained a mixture of hcp and metastable fcc structure. The percentage
amount of fcc and hcp phases was determined by X’Pert HighScore Plus program (PANalytical
B.V., Almelo, The Netherlands). The raw commercial micro-crystalline powder contained 70% of fcc
phase and 30% of hcp phase. Ball-milled powder was 60% composed of the hcp and 40% of the fcc
structure. Bulk micro-crystalline and bulk ultrafine-grained samples contained 61% of fcc and 39%
of hcp, and 59% of fcc and 41% of hcp structure, respectively. Comparing the diffraction patterns of
powders clearly shows that pattern of conventional micro-crystalline cobalt contains relatively sharp
peaks, whereas the pattern of the ball-milled powder contains very broad peaks. The observed peak
broadening can be attributed to significant grain refinement, internal stress and lattice defects in the
cobalt powder that were induced by the ball-milling process. In contrast, the diffraction pattern of the
bulk ultrafine-grained cobalt exhibits peaks that are narrower than those of ultrafine-grained powder.
An explanation can be found in the partial recrystallization and grain coarsening that occurs during
SPS, even though these processes are strongly limited by the short sintering time. Average crystallite
size was determined using Scherrer’s calculator and reached approximately 40 ˘ 9 nm for hcp and
108 ˘ 17 nm for fcc. These results are in good agreement with lamella size observed in grains by TEM.
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The compressive stress-strain curves of the bulk materials are shown in Figure 4, and the
mechanical properties are summarized in Table 1. The ultrafine-grained cobalt prepared by ball
milling and SPS reached a very high compressive yield strength (CYS) of 1030 MPa. This value is more
than three times that of conventional coarse-grained as-cast cobalt (340 MPa) and almost 400 MPa
higher than that of the micro-crystalline cobalt consolidated by SPS (640 MPa). Similar trends are
observed for the hardness. The hardness of the ultrafine-grained, micro-crystalline and as-cast samples
reached 310 HV, 190 HV and 100 HV, respectively. Figure 4 and Table 1 also show that the ultimate
compressive strength (UCS) of the ultrafine-grained cobalt sample was only approximately 170 MPa
higher than that of CYS, and the maximum compressive deformation reached approximately 10%.
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In the case of the micro-crystalline cobalt, in contrast, the UCS is very high (1450 MPa), which is more
than twice the CYS. A similar situation was observed for the coarse-grained as-cast sample, which has
a UCS that is almost three times as large as CYS. The micro-crystalline and the as-cast samples showed
maximum compressive deformations of approximately 30%. The shapes of the compressive curves for
the micro-crystalline and coarse-grained as-cast cobalt samples differ from that of the ultrafine-grained
cobalt sample (see Figure 4). The first two exhibit typical strain hardening across the entire region of
plastic deformation. In contrast, the ultrafine-grained cobalt sample has very short region of strain
hardening that is followed by macroscopic rupture.
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3. Discussion

In this study, it is shown that high-energy ball milling combined with subsequent spark plasma
sintering seems to be a suitable method of producing bulk materials with ultrafine structures and
high yield strengths. Pure cobalt powder refined in a high-energy ball mill during the first step of
the fabrication process was then compacted at 700 ˝C for 10 min with a heating rate of 100 ˝C/min.
This operation resulted in slight grain growth, as shown by the XRD diffraction pattern (as sharpening
of the peaks), because nano-crystalline and ultrafine-grained materials are generally susceptible to
grain coarsening at elevated temperatures due to the high energy of the grain boundaries. However,
grain coarsening is significantly reduced considering the short sintering time and high efficiency of
SPS [28,34,35] (compared with other consolidation methods). The electric current running through
the powder causes a rapid temperature increase at the contact points, which can even lead to partial
melting. Nevertheless, in this study, areas with the coarsened structures that indicate previous melting
were not observed. Ye et al. also reported that the flow of an electric current through the powder
ameliorates and accelerates the diffusion bonding of powder particles [28].

The XRD phase analysis showed that the materials studied, except for the as-cast cobalt reference
sample, consisted of mixture of hcp and fcc phases. Hcp and fcc structures can be formed from
disordered polytypic structures by divergent arrangement mechanisms, and the variation between
these two types of structure includes the transition from one close-packed structure to another [36,37].
The fcc-to-hcp allotropic transformation in cobalt has been identified as martensitic [38–40] even though
its enthalpy and chemical driving force are low (´489 J/mol and ´16 J/mol, respectively) [41,42],
and the transformation is very gradual. That is why a certain amount of the fcc phase can be found
in the cobalt even after cooling from the sintering temperature (700 ˝C) to room temperature [43].
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The presence of fcc modifications in the initial (commercial and ball-milled) powders can be explained
on the basis of interface energy, which is responsible for the stabilization of the fcc structure. It is
known that decreasing the grain/particle size results in an increase of the volume of interfaces in the
material. The consequence is excess energy (∆GInt) because of the Gibbs-Thomson effect [44],

∆GInt “ 2γVm{R (1)

where γ is the interface energy; Vm is the molar volume; and R is the grain radius (provided that the
grains are spherical). Conventional coarse-grained materials have little excess energy, and its effect
on the transformation is negligible. Therefore, excess energy considerably influences the stability of
fine-grained materials [45]. If we consider the excess energy, the critical activation energy (∆G) for
martensitic transformation can be expressed as [42,46]:

∆G “
K

p∆g` ∆GIntq
4 (2)

where K is a constant connected with the elastic and interfacial energy between the martensitic and
initial phases, and ∆g is the chemical driving force for martensitic transformation. Assuming that ∆g
is negative and ∆GInt is positive, the total critical activation energy increases with increasing ∆GInt

(the grain size is reduced). Due to the small driving energy required for fcc-to-hcp transformation,
the transformation is sluggish, as was stated above, and even a slight increase of excess energy can
considerably affect the transformation behavior. It has been reported that for cobalt with an average
grain size of 10 µm the critical activation energy for martensitic transformation is 5 times higher than it
is for conventional coarse-grained cobalt [47].

The mechanical properties were investigated using compressive tests. The bulk ultrafine-grained
sample showed a compressive yield strength of 1030 MPa and a plasticity of 10%, which is
relatively good, considering the generally low ductility or even brittleness of ultrafine-grained and
nano-crystalline materials. Values of compressive yield strength of ultrafine-grained or nano-crystalline
cobalt reported in other studies [10,36,48] are higher, even more than 1500 MPa [49]. However, plasticity
of such materials reached only up to 6%. Obtained average values of the grain size were substituted
into the well-known Hall-Petch relationship

CYS “ σ0 ` ky ˆ d´1{2 (3)

where σ0 is the friction stress; and ky is a constant referred to as the Hall-Petch slope. Multiple values of
these constants for pure cobalt were found in literature, however, they differ significantly (σ0 = 82 MPa,
ky = 0.29 MN/m3/2 [50]; σ0 = 432 MPa, ky = 0.19 MN/m3/2 [51]). The calculated values of the CYS of
the ultrafine-grained sample, using the above relation and constants, are 730 and 860 MPa; they do not
match the value obtained from compressive test. The same situation was observed for microcrystalline
and as-cast reference samples. These differences may result from various fabrication techniques used
for bulk sample preparation and grain size ranges.

It is obvious from the stress-strain curves that both the micro-crystalline sample and the
coarse-grained as-cast sample show significant strain hardening. Because of presence of the fcc
phase in the micro-crystalline sample, the strain hardening is expected to be the result of interactions
of dislocations with grain boundaries, interaction between moving dislocations and the formation of
new dislocations. Strain hardening of this sample can also be a result of increasing amount of the hcp
phase in the structure as reported in [52]. It is known that cobalt with an hcp structure (in our study,
the coarse-grained as-cast sample) deforms by twinning because it lacks the slip systems for dislocation
movement [51,53]. The deformation twins contain relatively large numbers of non-equilibrium basal
stacking faults, and the dislocations must cross-slip to other slip planes to bypass these fault-filled
regions, which leads to strain hardening [54]. This mechanism probably also occurs in the hcp phase
of the micro-crystalline sample. Results obtained from synchrotron X-ray diffraction reported by
Wang et al. [55] indicate that also interfacial defects can support strain hardening. Not only the fine
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structure but also presence of residual pores in the ultrafine-grained sample (Figure 3a) can cause the
sample to elongate less than its micro-crystalline and as-cast counterparts. The origin of the pores can be
attributed to less consolidation during SPS (despite its high sintering efficiency) due to the significant work
hardening experienced by the powder during ball milling, which can also lead to weaker particle-to-particle
bonding. The slope of the stress-strain curve of the as-cast sample differs from those of micro-crystalline
and ultrafine-grained samples. This can be ascribed to the absence of the fcc phase and lower amount
of defects in the as-cast material compared with SPS processed samples. On the basis of results of the
XRD phase analysis that reveal the presence of both crystallographic modifications in the ultrafine-grained
specimen, it is assumed that deformation occurs by means of a combination of dislocation slipping in the
fcc phase and twinning in the hcp phase, as it does in the micro-crystalline sample.

4. Materials and Methods

In this study, two bulk cobalt samples were prepared by means of powder metallurgy (PM). As an
initial material, commercially available pure micro-crystalline cobalt powder prepared by carbonyl
decomposition (MERCK, Darmstadt, Germany, 99.9%, average particle size 1 µm, Figure 5a) was used.
The preparation process of the first set of ultrafine-grained samples consisted of high-energy ball
milling in a planetary ball mill (Retsch PM 100, Haan, Germany) followed by consolidation using the
perspective method of spark plasma sintering (Thermal Technology SPS 10-4, Santa Rosa, CA, USA).
High-energy ball milling was performed in a milling vessel that contained milling balls (all made of
AISI 420 stainless steel). The metallic powder was milled for 2 h at a rotation speed of 400 RPM in an
argon protective atmosphere. The direction of rotation was changed every 30 min. The morphology and
internal structure of the ball-milled powder are shown in Figure 5b,c, respectively. The spark plasma
sintering process was performed in a high-strength graphite die with an inner diameter of 20 mm at
700 ˝C at a heating rate of 100 ˝C/min. This temperature was maintained for 10 min. The pressure
between the graphite rams was 80 MPa. A second set of micro-crystalline samples was prepared by
SPS under the same conditions as the first set, but the initial powder was not subjected to ball milling.
Coarse-grained as-cast cobalt prepared by conventional melting in an induction furnace under an argon
protective atmosphere was used as a reference material. The experimental materials were investigated
by means of optical microscopy (OM, Olympus PME-3, Shinjuku, Tokyo, Japan), scanning electron
microscopy (SEM, TESCAN Vega, Brno, Czech Republic, LMU, W cathode, equipped with an energy
dispersive spectrometer (EDS) Oxford Instruments, Abingdon, UK, Inca 350), transmission electron
microscopy (TEM, Jeol JEM 3010, Akishima, Tokyo, Japan, LaB6 cathode, EDS Oxford Instruments, Inca
350) and XRD phase analysis (PANalytical X’Pert Pro, Almelo, The Netherlands, Co anode, HighScore
Plus). The mechanical properties of the bulk samples were studied by means of compressive tests.
For this purpose, cubic specimens with an edge length of 4 mm were prepared and pressed at a strain
rate of 0.24 mm/min at room temperature using a universal testing machine (LabTest 5.250SP1-VM,
LaborTech, Opava, Czech Republic). Vickers hardness measurements were made for a load of 30 kg.
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in Figure 5b,c, respectively. The spark plasma sintering process was performed in a high-strength 
graphite die with an inner diameter of 20 mm at 700 °C at a heating rate of 100 °C/min. This 
temperature was maintained for 10 min. The pressure between the graphite rams was 80 MPa. A 
second set of micro-crystalline samples was prepared by SPS under the same conditions as the first 
set, but the initial powder was not subjected to ball milling. Coarse-grained as-cast cobalt prepared 
by conventional melting in an induction furnace under an argon protective atmosphere was used as 
a reference material. The experimental materials were investigated by means of optical microscopy 
(OM, Olympus PME-3, Shinjuku, Tokyo, Japan), scanning electron microscopy (SEM, TESCAN 
Vega, Brno, Czech Republic, LMU, W cathode, equipped with an energy dispersive spectrometer 
(EDS) Oxford Instruments, Abingdon, UK, Inca 350), transmission electron microscopy (TEM, Jeol 
JEM 3010, Akishima, Tokyo, Japan, LaB6 cathode, EDS Oxford Instruments, Inca 350) and XRD phase 
analysis (PANalytical X’Pert Pro, Almelo, The Netherlands, Co anode, HighScore Plus). The 
mechanical properties of the bulk samples were studied by means of compressive tests. For this 
purpose, cubic specimens with an edge length of 4 mm were prepared and pressed at a strain rate of 
0.24 mm/min at room temperature using a universal testing machine (LabTest 5.250SP1-VM, 
LaborTech, Opava, Czech Republic). Vickers hardness measurements were made for a load of 30 kg. 

 
Figure 5. (a) Morphology of the conventional micro-crystalline powder; (b) morphology of the 
ball-milled powder; and (c) internal structure of the ball-milled powder. Figure 5. (a) Morphology of the conventional micro-crystalline powder; (b) morphology of the

ball-milled powder; and (c) internal structure of the ball-milled powder.
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5. Conclusions

In summary, bulk ultrafine-grained cobalt was successfully prepared using a combination of
high-energy ball milling and subsequent spark plasma sintering, which ensured satisfactory diffusion
bonding of powder particles. The prepared bulk sample exhibited compressive yield strength of 1030 MPa,
which is more than three times higher that of conventional coarse-grained as-cast cobalt, but the plasticity
reached only 10%. The bulk ultrafine-grained sample did not show work hardening during plastic
deformation, which is the general drawback of ultrafine-grained and nano-crystalline materials.
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The following abbreviations are used in this manuscript:

SPD Severe plastic deformation
HPT High pressure torsion
ECAP Equal channel angular pressing
SMAT Surface mechanical attrition treatment
BM Ball milling
SPS Spark plasma sintering
SAED Selected area electron diffraction
PIPS Precision ion polishing system
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