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Abstract: Mesenchymal stem cells (MSCs) seeded on specific carrier materials are a promising source
for the repair of traumatic cartilage injuries. The best supportive carrier material has not yet been
determined. As natural components of cartilage’s extracellular matrix, hyaluronic acid and collagen
are the focus of biomaterial research. In order to optimize chondrogenic support, we investigated three
different scaffold compositions of a hyaluronic acid (HA)-gelatin based biomaterial. Methods: Human
MSCs (hMSCs) were seeded under vacuum on composite scaffolds of three different HA-gelatin
ratios and cultured in chondrogenic medium for 21 days. Cell-scaffold constructs were assessed
at different time points for cell viability, gene expression patterns, production of cartilage-specific
extracellular matrix (ECM) and for (immuno-)histological appearance. The intrinsic transforming
growth factor beta (TGF-beta) uptake of empty scaffolds was evaluated by determination of the
TGF-beta concentrations in the medium over time. Results: No significant differences were found for
cell seeding densities and cell viability. hMSCs seeded on scaffolds with higher ratios of HA showed
better cartilage-like differentiation in all evaluated parameters. TGF-beta uptake did not differ
between empty scaffolds. Conclusion: Higher ratios of HA support the chondrogenic differentiation
of hMSCs seeded on a HA-gelatin composite scaffold.

Keywords: composite scaffold; hyaluronic acid; gelatin; chondrogenesis; human mesenchymal
stem cells

1. Introduction

Treatment techniques for acute cartilage injuries range from debridement to microfracture to
autologous cartilage transplantation. The choice of treatment is lesion-dependent, and it has been
shown that larger lesions (>3.0 cm?) benefit from autologous cartilage implantation (ACI) especially
in the long term [1,2], while smaller lesions can be treated by bone marrow stimulation techniques
such as microfracture [3]. As the introduction of ACI [4] was a major step towards regenerative
treatment of large chondral defects, it also revealed potential complications, such as hypertrophy
of the periosteum, which is used to cover the injected autologous chondrocytes [5]. To overcome
these problems, scaffolds have been developed to serve as a carrier for the autologous chondrocytes
after in vitro expansion. The matrix-based ACI (MACI) could improve treatment and leave common
complications behind [6,7]. However, there are still several disadvantages of the MACI therapy.
The two most impactful of these are a two-step procedure that requires two operation time points
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and harvest of viable chondrocytes, thereby creating donor-site morbidity. Additionally, chondrocytes
tend to dedifferentiate during monolayer culture prior to implantation [8]. In order to overcome
these drawbacks, the call for alternative cell sources such as mesenchymal stem cells (MSCs) and
smart biomaterials [9] is on the rise. Both have been under investigation by several working groups,
and while chondrogenic differentiation of MSCs was established already in the late 90 s [10], clinical
applications are still not well established. Recent studies show promising results of clinical application
of MSCs for the cure of cartilage defects [11].

In order to further improve MSC-based repair of chondral defects, different materials have been
employed for scaffold production. Hyaluronic acid (HA) is an important component of cartilage
extracellular matrix, linking aggrecan molecules to large proteoglycans, and acts as a lubricant in
diarthrodial joints. In clinical application, intra-articularly injected HA is used as a lubricant in
degenerative osteoarthritis [12]. In tissue engineering, multiple working groups have shown that HA
stimulates chondrogenesis of MSCs in vitro [13,14] mainly through interactions with cell receptors
expressed by MSCs including CD 44 and CD168 [15,16]. Recent developments could generate native
cartilage like properties of in vitro engineered constructs based on chondrogenic differentiation of
MSCs in HA-based scaffolds [17]. As HA also promotes cell viability and migration, natural or
synthetic biomaterials are combined with HA to improve the biocompatibility of the carrier [18].
Furthermore, HA can be modified in several ways. For example methacrylation allows for crosslinking
by photopolymerization [19,20] or connection of additional extracellular, pro-chondrogenic signaling
molecules such as N-cadherin [21]. This possibility functionalizes the HA-based scaffold towards the
idea of a smart biomaterial. In order to achieve suitable primary biomechanical properties, HA needs
to be crosslinked. However, chemically altered HA, e.g., crosslinked HA, first needs to prove its
prochondrogenic capability as well as its advantages for cell migration.

The second major component of cartilage extracellular matrix (ECM) is collagen type 2,
representing 95% of all collagens incorporated in cartilage ECM [22]. Therefore the addition of
gelatin—a hydrolyzed derivative of collagen 1—to the scaffold matrix suggests more native-like
properties for non-seeded scaffolds. However, gelatin is not capable of mimicking the function of
native cartilage ECM as its structure and biological function differs from that of human collagen 2.
Angele et al. [23] reported decreased biomechanical properties for tensile strength and Young’s modulus
upon addition of gelatin to the composite scaffold. Additionally, cell adhesion was improved within
scaffolds with higher ratios of gelatin. Gelatin is also metabolized to non-toxic degradation products.

The aim of the present study is to investigate the potential of composite scaffolds with three
different HA / gelatin ratios to support chondrogenic differentiation of human MSCs (hMSCs) in order
to improve the scaffold composition. Therefore we investigated the viability, gene expression patterns
and production of cartilage-specific ECM of seeded hMSCs at different time points.

2. Results

2.1. Production of Hyaluronic Acid (HA)-Based Composite Scaffolds

In order to optimize chondrogenic differentiation of hMSCs for cartilage repair, we investigated
three different compositions of a hyaluronic acid (HA)-based scaffold: 100% HA (0/100),
5% gelatin/95% HA (5/95) and 30% gelatin/70% HA (30/70). Scaffold production yielded
macroscopically similar scaffolds with equal primary and secondary pore size between different
scaffold compositions (Figure 1A) as reported previously [23]. Primary pores were approximately
250-300 pm in diameter, while secondary pores reached 50-100 pm in diameter (Figure A1l). Scaffold
dimensions were 5 mm in diameter and 2 mm in height, yielding a total volume of 50-60 pL.
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Figure 1. (A) Macroscopic imaging of scaffolds of different composition before seeding; primary and
secondary pores show equal sizes. Stars indicate primary pores (250-300 um in diameter), arrows point
towards smaller secondary pores (50-100 um); (scale bars = 1 mm); (B) Schematic of seeding of the
scaffolds under vacuum conditions with hMSCs. The cell suspension is injected through the sterile

filter before application of the vacuum.

2.2. Seeding, Adhesion and Viability of MSCs

Harvested hMSCs showed donor-dependent growth and were confluent within 10-12 days after
plating. After one freeze-thaw cycle, MSCs again showed high viability and growth. At passage two
scaffold seeding was successfully performed (Figure 1B) and viable MSCs could be detected within
48 h by resazurin staining (Figure 2A). Cell seeding density was approximately 20 x 10° cells per mL.
For long term assessment of cell viability, resazurin staining was performed on day 2, 4, 7, 10, 14, 18
and day 21. Cell viability did not differ significantly between groups and/or timepoints (Figure 2A).
However 5/95 scaffolds showed the highest viability from day 10 on, while 30/70 scaffolds showed
the highest viability in the beginning. Determination of DNA content revealed a significant increase
from day 1 to day 21 within each scaffold composition. DNA content compared between scaffold
compositions were not significantly different at day 1 and day 21 respectively, suggesting that the
number of cells that adhere to or proliferate within the scaffold were not significantly different between

groups (Figure 2B).
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Figure 2. (A) Resazurin staining for viability of seeded MSCs; 5 scaffolds per donor and 3 donors per
time point were evaluated; (B) DNA content of different scaffolds at day 1 and 21 shows no significant
difference between scaffolds at the same time points (# p < 0.05 for all groups compared to day 21),
3 different donors per time point were evaluated; (C) Collagen 2 content per scaffold (ug/mL), primary
hMSCs of three donors were analyzed at day 21; (D) Ratio of collagen 2 content per DNA, with higher
ratios suggesting better chondrogenic differentiation. Primary hMSCs of three donors were analyzed
at day 21.

Additionally confocal microscopy after Calcein staining for living cells was performed to allow
for visualization of cell distribution within the scaffold (Figure 3). Again, no major differences were
detectable between different scaffold compositions in terms of seeding density, cell distribution and
viability. Interestingly, at day 7 some of the pores did not show any cell infiltration at all. This might be
due to a complete occlusion of these pores. At day 21, these pores are not clearly demarcated when the
scaffold is already partially degrading, allowing cells to infiltrate the initially occluded pores.

0/100 5 30/70

Figure 3. Confocal imaging after Calcein staining at day 7 and day 21 after cell seeding (upper rows
x4 magnification, lower rows x10 magnification) depicting three dimensional adhesion of cells in
primary and secondary pores in the center of the scaffolds. Visually, no differences between adhesion
patterns and cell densities are detected. Green = Calcein-labeled cells; red = scaffold. (White scale
bars = 500 um, red scale bars = 250 um).
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2.3. Chondrogenic Differentiation of Seeded MSC—Gene Expression Analysis and Extracellualar
Matrix Production

The main aim of this study was to determine which scaffold material will best support
chondrogenic differentiation of hMSCs. To answer this question, all three different scaffold
compositions were seeded with the same hMSCs (three different donors, not pooled) and evaluated
for chondrogenic differentiation and production of cartilage specific ECM.

In order to evaluate for ECM production, scaffolds were harvested after 21 days of culture in
chondrogenic medium and analyzed for DNA and collagen 2 content. No significant differences were
observed for DNA content (Figure 2B). For all three primary hMSC cell lines differences could be
detected for collagen 2 content per matrix (Figure 2C) as well as for collagen 2 per DNA (Figure 2D).
In all three hMSC cell lines 0/100 scaffolds yielded best collagen 2 production. hMSCs in 5/95
scaffolds also showed higher collagen 2 production than in 30/70 scaffolds with exemption for donor
2, while 30/70 scaffolds showed the lowest cartilage-specific ECM production.

In order to evaluate for chondrogenic differentiation, expression of cartilage-specific genes was
evaluated (Figure 4). Again, collagen 2 expression levels were highest in 0/100 scaffolds followed by
5/95 scaffolds, while 30/70 scaffolds showed lower expression levels at all time points. No statistical
significant differences were observed between scaffolds within one time point. Melanoma inhibitory
activity protein (MIA) as a marker of chondrogenic differentiation [24] showed higher levels in
0/100 scaffolds compared to 5/95 and 30/70 scaffolds. However, at day 1, MIA reached its highest
levels in 30/70 scaffolds and differences between the scaffolds were not as clear as for collagen 2
expression levels. We further analyzed Sox 9 gene expression levels as a third marker of chondrogenic
differentiation and found similar results as for collagen 2 and MIA. Again, expression levels of the
chondrogenic marker Sox 9 were not as clearly different between higher proportions of HA scaffolds
as for collagen 2 expression, but were still higher than for hMSCs seeded on 30/70 scaffold, and again
at day 1 Sox 9 was highest in 30/70 scaffolds (Figure 4).
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Figure 4. Gene expression analysis during chondrogenic differentiation for chondrogenic differentiation
markers (upper row) and markers of hypertrophy (Collagen 10) and fibrous differentiation (Collagen 1)
(#p < 0.05 for all groups compared to day 21, * p < 0.05 for all groups compared to day 14). Rel. gene
expression = compared to mean gene expression of housekeeping genes.

In order to crosscheck for hypertrophy in chondrogenic differentiated MSCs, we evaluated the
gene expression of collagen 10, a well known marker of chondrocyte hypertrophy [25]. Here we
found similar expression levels for all three scaffolds up to day 4, while 0/100 and 5/95 scaffolds
showed more hypertrophic expression at day 7 and 14. 5/95 and 30/70 scaffolds showed the highest
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expression levels of collagen 10 at day 21. To characterize gene expression of fibrous markers we
evaluated collagen 1 expression levels. Here we could detect more fibrous differentiation of hMSCs in
30/70 scaffolds at day 1 through 7 while at day 14 collagen 1 expression was highest in 0/100 scaffolds
and at day 21 in 5/95 scaffolds. No statistically significant differences were found.

Taking the results of the gene expression analysis and evaluation of cartilage specific ECM
production together, hMSCs are more likely to differentiate towards a chondrogenic geno- and
phenotype when seeded on scaffolds with higher proportions of HA.

2.4. Histomorphometric Appearance

At days 1, 7, 14 and 21 scaffolds were stained by dimethylmethylene blue (DMMB) to detect
glycosaminoglycans (GAG), a major composite of cartilage-specific ECM. Scaffolds showed primary
and secondary pores due to the two-step scaffold production using porogenic grains and air insufflation
(Figure 5, top row). At day 1 some pores seem to be filled by cells that line up in chains, while others
show hardly any cells. Day 7, 14 and 21 samples show equal cell distribution throughout the lumen of
all primary and secondary pores (see Figure 5). Cell-free pores at day 1 might be due to missing cell
attachment, missing ECM and wash-out of cells during slide preparation.

0/100 5/95 30/70

Figure 5. Dimethylmethylene blue (DMMB) staining for glycosaminoglycan content of MSC seeded
scaffolds of different ratios of hyaluronic acid and gelatin throughout chondrogenic differentiation:
first row day 1, second row day 7, third row day 14 and fourth row day 21 (scale bar = 1 mm). Arrows
indicate ECM in the lumen of the scaffold pores, located pericellular to intraluminal MSCs.

As expected, GAG content increased over time within every scaffold composition. While on
day 1, strong blue staining of the scaffold material is visible due to the high content of HA as source
material of the scaffolds, overall staining further increased over time and is found to be more and more
pericellular, and in the lumen of the scaffolds’ pores rather than at the wall of the pores as ECM is
produced by invaded MSCs (Figure 5). It is notable that 0/100 and 5/95 scaffolds show more intense
staining at day 14 and 21 than 30/70 scaffolds, suggesting poorer chondrogenic differentiation of
hMSCs in 30/70 scaffolds (Figure 5).
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2.5. Immunohistochemistry

To evaluate differences in collagen 2 amount—the main collagen type in cartilage specific
ECM-—samples were subjected to immunohistochemistry at day 21. Again, primary and secondary
pores were filled by ECM-producing chondrogenic differentiated MSCs, but homogenous deposition
of collagen 2 was only to be found in 0/100 and 5/95 scaffolds (Figure 6A). Scaffolds consisting of 30%
gelatin and 70% HA only showed staining for collagen 2 at the periphery of the scaffold (Figure 6A,
right hand column). At higher magnifications, chondrocyte-like phenotypes could be seen in all
collagen 2 positive areas.

0/100 5/95 30/70

Figure 6. Immunohistochemistry of MSC-seeded scaffolds of different composition (columns)
after 21 days of culture in chondrogenic medium. (A) Immunohistochemistry for collagen 2 at
x4 magnification (upper row, black scale bar = 1 mm) and x10 magnification reveals more collagen 2
deposition in 0/100 scaffolds than in 30/70 scaffolds (red scale bar = 500 pum). Best samples are shown;
(B) Immunohistochemistry for collagen 1 at x4 magnification (upper row, black scale bar = 1 mm)
and x10 magnification reveals no major differences of collagen 1 deposition between the three tested
scaffold compositions; best samples are shown (red scale bar = 500 pum).

Additionally, immunohistochemistry for collagen 1 was performed at day 21 to detect possible
de-differentiation of seeded MSCs towards a more fibrous phenotype. Collagen 1 could be detected in
all scaffold compositions at peripheral areas, while the centers of the scaffolds did not show major
collagen 1 deposition (Figure 6B). Again, chondrocyte-like phenotypes were detected in all collagen 1
positive areas at higher magnifications, suggesting enhanced Col 1 production in areas of increased
chondrogenic differentiation.
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2.6. TGF-Beta Concentrations in Supernatant under Cell Free Scaffold Conditions

As one possible reason for differences in chondrogenic differentiation is different availability
of TGF-beta, the most potent contributor to chondrogenic differentiation in vitro. We tested whether
different scaffold compositions would alter the availability of TGF-beta. The performed enzyme-linked
immunosorbent assay (ELISA) for TGF-beta 1 did not show significant differences between scaffolds
(Figure 7), while concentrations in the scaffold free control were higher. This firstly suggests no
differences of TGF-beta binding or inactivation by different scaffold compositions and secondly
shows that already cell free scaffolds lower the amount of free TGF-beta compared to medium only.
The time-dependent loss of active TGF-beta is already well known with different half-life times of the
protein reported in vitro and in vivo.

10,000+

TGFR [pg/ml]
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to 0/100 5/95 30/70  wl/o scaffold

Figure 7. TGF-beta concentrations in medium containing empty scaffolds of different compositions and
without any scaffold (w/o scaffold); red bar time zero; no significant differences were seen between
scaffolds at same time points.

3. Discussion

A HA-gelatin composite scaffold was used in this study to chondrogenically differentiate attached
hMSCs and thus grow cartilage tissue constructs in vitro. It was shown that not only can cartilage and
osteochondral repair tissue be grown on this composite matrix [26], but also recently fibrocartilaginous
meniscus repair tissue was generated for in vivo applications [27,28]. Characterization of matrix
properties showed that addition of gelatin to HA-based scaffolds would enhance cell adhesion
but decrease mechanical properties [23], while scaffolds containing larger pores showed better
mechanical properties in terms of maximum stress at rupture and Young’s modulus [29]. Most
recently, Matsiko et al. [30] showed that scaffolds containing pore sizes up to 300 pum support
chondrogenic differentiation better than scaffolds containing smaller pore sizes. According to this
finding, our scaffold with an average primary pore size of 250-300 um diameter will stimulate
chondrogenic differentiation by means of the scaffold microarchitecture. However, it was not clear
which ratio of the scaffold components will reinforce chondrogenic differentiation of hMSCs best.
The three different scaffold compositions investigated to that end in the current study showed better
chondrogenic differentiation in all evaluated outcomes for higher ratios of HA, e.g., 100% HA compared
to 30% gelatin/70% HA scaffolds. Similar results were obtained for all three scaffold compositions
for appearance under confocal microscopy, cell viability and DNA content at early time points,
suggesting that there were no major differences in primary cell adhesion between gelatin containing
scaffolds—30/70 or 5/95—and HA only scaffolds. The estimated overall seeding density of hMSCs
reached 20 x 10° cells/mL within each scaffold composition. Studies investigating the optimized
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seeding density in HA hydrogels found that hydrogels seeded with 60 x 10° cells/mL reached close to
native cartilage biomechanical and biochemical properties [17]. Therefore, we think that increase of cell
seeding density might result in more homogenous ECM production. However, the same study showed
significant differences only for mid-term culture duration (e.g., 56 days) while short term culture
(e.g., 28 days) revealed no significant difference between 60 x 10° cells/mL and 20 x 10 cells/mL.

As revealed by confocal microscopy (Figure 3) some pores were not infiltrated at all by cells at
day 7 in all three investigated scaffold compositions. We think that in these cases the pores were
perfectly closed off from the surrounding environment and therefore did not allow for MSC infiltration.
This finding was revised towards longer culture time with pore walls being gradually degraded
allowing cells to migrate into the empty space and therefore building more homogenous ECM and
more homogenous cell distribution. This finding was also observed in histology of DMMB stained
slides, where the time dependency of the improvement of ECM distribution is even better visualized
(Figure 5). DMMB staining also showed higher proportions of GAG (sulfated and non-sulfated),
providing evidence for increased, cartilage-specific ECM production. Interestingly, staining intensity
decreases for 5/95 and 30/70 scaffolds from day 14 to day 21. One possible explanation for this
phenomenon is beginning hypertrophic conversion of chondrogenically differentiated MSCs with
concomitant ECM degradation. However, DMMB stains have to be interpreted carefully as HA
incorporated in the scaffold will also be stained by DMMB.

Former studies reported on in vitro degradation times of derivatized hyaluronic ester of
2 months [31] and more rapid degradation of gelatin [32]. Both studies did not investigate degradation
of HA and gelatin in the used combination, so that a concrete degradation profile of both components
within the scaffold needs to be investigated in further studies. The substitution of scaffold material by
extracellular matrix as evidenced in our study is in accordance to previous reports and beneficial for
restoration of native tissue.

Besides these favorable features, cell-produced ECM was mainly detected at the edge of the
scaffold. A possible reason for this might be critical shortage of nutrients in the center of the scaffolds.
A recent study found decreased oxygen supply as a main cause and was able to improve nutrient
supply by higher perfusion rates in tantalum-based scaffolds for bone tissue engineering [33]. We think
that an additional solution will be improved 3-D architecture of the scaffolds. As one of our previous
observations using SEM [23] as well as our confocal images suggest that some of the pores are entirely
closed preventing cell invasion. One solution to open up all pores might be to use different grain sizes
to produce some larger primary pores or to introduce drainage channels to enable access for cells and
nutrients to the scaffold’s center. These approaches have to be tested in future investigations.

Furthermore, it was shown nearly three decades ago that HA stimulates chondrogenic
differentiation of MSCs [13]. Therefore, HA was used in multiple tissue engineering approaches
ranging from HA based polymers (e.g., Hyaff 11) [34] to hydrogel [20,35] to fibrous scaffolds [36].
Whether used in vitro or in vivo, HA based cartilage tissue engineering was capable of restoring
cartilage-like tissue. The prochondrogenic effect of HA [14] is mainly mediated by cell receptors
expressed by MSCs including CD 44 and CD168 [15,16]. Therefore the superiority of higher HA
ratios for chondrogenic differentiation in the investigated composite scaffolds is not too surprising,
but nevertheless other effects must not be neglected. For instance absorption or inactivation of
TGF-beta—one of the main pro-chondrogenic stimulators [10]—might be different within different
scaffold compositions. Testing for the amount of available TGF-beta in culture medium revealed no
differences between different scaffolds, but was definitely showing TGF-beta loss over time. This is
contributed to the short half life time of TGF-beta, but also contributed to TGF-beta absorption
of the polystyrene dish as similar absorption/inactivation kinetics were observed for scaffold-free
medium (Figure 7).

In clinical application, different microarchitectural scaffold designs and scaffold compositions are
used ranging from collagen-based fleeces to collagen-based sponges or HA based webs. In a recent
descriptive study of four clinically used scaffolds, it was shown that cell distribution is impacted by
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fiber density (especially inter-fiber space smaller 100 pm impact cell distribution), cell phenotype
is determined by fiber size and cell adhesion is mainly influenced by material composition and its
structure [37].

Additional investigations need to be performed in order to fully characterize biophysical
and biochemical properties of the proposed cartilage constructs, optimize culture conditions,
e.g., mechanical stimulation, and evaluate optimal time of implantation for further translational
in vivo evaluation.

4. Materials and Methods

4.1. Isolation and Culture of MISCs

Bone marrow derived hMSCs were obtained from patients undergoing surgery with bone harvest
from the iliac crest after preoperative informed consent and approval by the local ethical committee.
MSCs were aspirated with a heparinized syringe. After addition of Dulbecco’s modified Eagle’s
medium (DMEM), low glucose concentration (5%), with 10% fetal bovine serum, 1% penicillin, and 1%
Hepes buffer nucleated cells were plated in culture dishes at a density of 2 x 10° cells/75 cm? styrene
coated culture dish. After adhesion, medium was changed twice a week and cells were trypsinized
and deep frozen after 80% confluence was reached.

4.2. Production of Scaffolds

For producing the porous scaffolds we used solvent casting and particulated leaching as described
previously [23]: As source material we used derivatized hyaluronic acid commercially available as
wound dressing film Jaloskin (Fidia Advanced Biopolymers, Abano Terme, Italy). Hereby hyaluronic
acid (HA) is highly esterified by benzylalcohol on its free carboxyl groups of the glucuronic acid along
the backbone of the polymer. The gelatin component of the scaffolds was produced of hydrolyzed
porcine collagen type 1 (Sigma-Aldrich, Taufkirchen, Germany). The components have been dissolved
in hexafluoroisopropanol (HFIP, Sigma-Aldrich, Taufkirchen, Germany). To create primary pores we
used Sodium Chloride at a grain size of 250-300 pm. Secondary pores of 50-100 um in size have been
generated in the biomaterial by air insufflation between the porogenic grains during the evaporation
process of the solvent. For our study purposes we produced scaffolds consisting of 100% HA (0/100),
5% gelatin and 95% HA (5/95) and scaffolds consisting of 30% gelatin and 70% HA (30/70). Finished
scaffolds were on average 5 mm in diameter and 2 mm in height (Figure A1).

4.3. Seeding and Culture of MSCs in Composite Scaffolds

Produced scaffolds were sterilized by beta-irradiation and after thawing, hMSCs were re-seeded,
expanded and harvested again at 80% confluence. Sterile scaffolds were cell-seeded by adding
1 x 10° MSCs by injecting onto the cylindrical polymer scaffolds. Seeding density reached
approximately 20 x 10°/mL as the volume of one scaffold contains 50-60 puL. Seeding was performed
under vacuum conditions (—1 bar, 10 s) to guarantee good infiltration and distribution of the cells into
the porous scaffold as previously described [38]. After that, scaffolds were transferred to a 24 well
plate and cell adhesion was allowed for one hour. Cell-seeded scaffolds were cultured at 37 °C in 5%
CO; in Dulbecco’s modified Eagle’s medium (DMEM), high glucose with, 1%ITS+3, Dexamethasone
(0.1 uM), ascorbic acid (200 uM), pyruvate (0.11 mg/mL). Each group was cultured with addition of
10 ng/mL TGF-beta 1 (R & D Systems, Wiesbaden, Germany) to induce chondrogenesis. Medium was
changed 3 times per week.

4.4. Cell Viability Measurement

To answer the question whether different scaffold compositions influence cell viability in a
different way we used a resazurin based viability assay (Sigma-Aldrich, Taufkirchen, Germany).
After permeating into the cell the resazurin-dye undergoes an oxidation-reduction reaction as a result
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of an intracellular metabolic reaction therefore indicating living cells. In short, cell seeded scaffolds
were incubated (45 min; medium/resazurin = 10/1) according to the manufacturer’s instructions and
relative fluorescence units of the supernatant were determined using excitation wavelengths of 545 nm
and detection wavelengths of 590 nm. Cell viability was assessed at day 2, 4, 7, 10, 14, 18 and day 21.
Cell viability is not affected by this assay [39].

4.5. Gene Expression Analysis

For gene expression analysis, samples were homogenized in RNEasy Plus Universal (Quiagen,
Hilden, Germany) reagent with a tissue grinder, RNA was extracted according to the manufacturer’s
instructions, and the RNA concentration was determined using a spectrophotometer (Nanodrop
ND-2000, Fisher Scientific, Schwerte, Germany). One microgram of RNA from each sample was
reverse transcribed into cDNA using Transcriptor First Strand Synthesis Kit (Roche, Mannheim,
Germany) and cDNA amplification was performed using a Biorad CFX 96 real-time polymerase
chain reaction system with intron-spanning primers and SYBR Green Reaction Mix (Agilent, Santa
Clara, CA, USA). The relative gene expression was calculated using the delta-delta-Ct algorithm
(DDCT method). Each sample was normalized to the average expression of the three housekeeping
genes: Receptor expression-enhancing protein 5 (REEP-5), vacuolar protein sorting protein (VPS-29),
Proteasome subunit beta type-4 (PSMMB-4). Expression levels of the cartilage-specific markers Sox 9,
Collagen II, and MIA, and the hypertrophy-related marker, Collagen-type X and the fibrous-tissue
related marker Collagen I, were determined and relative gene expression compared to mean gene
expression of housekeeping genes was reported. For complete sequences of all primers see Table A1.

4.6. Histology

For histomorphometry cell-seeded constructs were harvested on days 1,7, 14 and 21 and frozen
sections were prepared. Samples were cut to 10 pm thin sections and stained with dimethylmethylene
blue (DMMB) to detect glycosaminoglycans and microscopically evaluated.

4.7. Immunohistochemistry

Sectioned samples (10 pm thickness) were rehydrated in washing buffer (TRIS 0.2 M, NaCl)
for 10 min and peroxidases blocked by PBS containing 10% HyO, and 10% Methanol for 30 min.
For antigen retrieval samples were incubated by 0.1% pepsin at pH 3.5. After applying monoclonal
primary antibodies against collagen I (Sigma-Aldrich, Taufkirchen, Germany) and II (Merck,
Darmstadt, Germany), biotin conjugated polyclonal secondary antibodies (goat anti-mouse IgG
(Jackson, West Grove, PA, USA)) and the nickel and cobalt enhanced DAB stain were used for
visualization. Samples were microscoped and photographed using a Nikon Eclipse microscope
(Nikon, Diisseldorf, Germany).

4.8. Confocal Microscopy

For visualization of cell distribution within the 3D space of the scaffold, we used confocal
microscopy after fluorescence labelling of the viable cells. Therefore we used standard protocols for
Calcein AM labelling according to the manufacturer (LIVE/DEAD Viability /Cytotoxicity Kit, Mo Bi
Tec, Gottingen, Germany). Scaffolds were examined under the confocal microscope (Nikon D Eclipse
C1, Nikon, Diisseldorf, Germany) and photographed at 4x and 10x magnification.

4.9. Analysis of Extracellular Matrix Production

To assess capability of extracellular matrix production an enzyme-linked immunosorbent assay
(ELISA) test for collagen II was performed. MSC-seeded scaffolds were homogenized (0.05 M acetic
acid plus 0.5 M NaCl (pH 2.9-3.0)), digested with 10 mg/mL pepsin and dissolved in 0.05 M acetic acid
under rotation for 48 h at 4 °C, followed by elastase digestion for 24 h. According to the manufacturer’s
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protocol (Native Type II Collagen Detection Kit 6009, Chondrex, Redmond, WA, USA) digestion and
the collagen type II estimation were performed. DNA concentrations were assayed using the Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen, Eugene, OR, USA). Collagen-type Il and DNA content were
determined and chondrogenic capability was defined as the ratio between content of collagen type II
and DNA for each MSC-seeded scaffold.

4.10. Analysis of TGF-Beta Concentrations in Supernatant in Cell Free Scaffold Conditions

As one possible reason for different chondrogenic potential of hMSCs within different scaffold
formulation might be differences in availability of active TGF-beta as the most prochondrogenic
stimulator. We tested whether different scaffold compositions might alter the availability of TGF-beta.
Therefore empty scaffolds of the three different compositions (0/100, 5/95 and 30/70) were incubated
in prochondrogenic medium as described under Section 4.3. At 0, 30, 60 and 120 min as well as after
24 h medium was collected. According to the manufacturer’s protocol (TGF $1-ELISA, Duoset, R & D
Systems, Minneapolis, MN, USA) the TGF-beta concentration was determined by quantitative ELISA.

4.11. Staistical Analysis

Statistical analysis was carried out using SPSS® (version 20, IBM, Armonk, NY, USA). We applied
the Kolmogorov-Smirnov test to check for normal distributions. For normally distributed items a
two-way analysis of variance (ANOVA) with group and time as independent factors followed by
individually performed posthoc tests to maintain overall alpha level at p < 0.05 was performed.
For non-normal distributions, a Kruskal-Wallis test followed by individual Mann-Whitney test was
used. To control for type-1 error, a Bonferroni correction for multiple comparisons was applied.

5. Conclusions

A HA-gelatin composite scaffold is suitable for cartilage tissue engineering. Three different
scaffold compositions with different ratios of HA /gelatin showed different promotion of chondrogenic
differentiation of hMSCs. In our study, scaffolds with 100% HA were more supportive for chondrogenic
differentiation than scaffolds with lower ratios of HA. In future work, improvement of 3D scaffold
design and functionalization of HA will be investigated.
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Appendix
Table A1. PCR-Primers and sequences.
Primer Forward Reversed
Collagen 2 5 GGGCAATAGCAGGTTCACGTA 3 5 TGTTTCGTGCAGCCATCCT 3’
Collagen 1 5" ACGTCCTGGTGAAGTTGGTC 3’ 5" ACCAGGGAAGCCTCTCTCTC 3’
Collagen 10 5 CCCTCTTGTTAGTGCCAACC 3 5" AGATTCCAGTCCTTGGGTCA 3’
Sox 9 5" ACACACAGCTCACTCGACCTTG 3 5 AGGGAATTCTGGTTGGTCCTCT 3
MIA 5" AAAGGGGTCATCGTAACAGG 3 5" GGGAAGTCGAACCTCTTCTG 3’
PSMB 2 5" GCTGCCAGGTAGTCCATGTAA 3’ 5" CGAAACCTGGCTGACTGTCT 3
REEP 5 5" AGGTCAGCCACTGGGTATCA 3’ 5 CCTCTCTCCTCTGCAACCTG 3’
VPS 29 5" AGCTGGCAAACTGTTGCAC 3 5 GACGGTGGTGGTGACTGAG 3’

Figure A1. DMMB and picrosirius red staining of empty scaffolds of different composition (columns):
DMMB staining for glycosaminoglycans (e.g., HA) at x10 magnification (upper row) and picrosirius
red staining for collagen (e.g., gelatin) content (scale bar = 500 um). Scaffolds with higher gelatin content
are more intensely stained by picrosirius red, while homogenous distribution of the components within
the scaffolds is visualized.
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