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Abstract: Rock-like materials are composites that can be regarded as a mixture composed of elastic,
plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate
loading according to element model theory. This paper presents an analytical solution for stress
wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and
verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic
rock-like materials was first established, and then kinematic and kinetic equations were then solved
to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials.
An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was
conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on
differential evolution was conducted to estimate undetermined variables for constitutive equations.
Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic
rock-like materials was investigated. According to the results, the frequency of the stress wave,
viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of
the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly
strain-dependent attenuation in viscoelastic-plastic rock-like materials.

Keywords: viscoelastic-plastic rock-like materials; constitutive equation; stress wave equation;
strain rate; attenuation; SHPB apparatus

1. Introduction

Previous studies have examined the propagation of the stress wave in composite materials, such
as rock and concrete under a loading for the seismic design of various infrastructure systems [1–3].

The propagation of the stress wave is governed mainly by the inherent physical properties of
the material and characteristics of the stress wave. Although brittle rock-like materials (e.g., fresh
granite) are typically heterogeneous and show brittle fracture behaviors under a static load and
low-strain-rate load, their dynamic behaviors are dependent on the strain rate under a high-strain-rate
load [4–6]. In general, mechanical responses of the materials dependent on the strain rate can be
divided into two categories: time-independent transient responses (responses not dependent on the
strain rate) and time-related non-transient responses (responses dependent on the strain rate) [7]. From
a macroscopic perspective, the dispersion phenomenon is equivalent to the absorption phenomenon
in that the two phenomena are commonly induced by the dissipative force of viscous materials from
the viscosity effects.
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An analytical solution for stress wave propagation in viscoelastic materials is used widely in
polymer materials based on the viscosity effects according to the elastic responses [8]. An analytical
solution for stress wave propagation in viscoplastic materials has been developed by considering the
viscosity effects based on the plastic responses [9]. A theoretical solution for stress wave propagation
in viscoelastic-plastic materials that considers the viscosity effects on both elastic and plastic parts has
been developed based on the elastic-plastic responses [10].

2. Analytic Solution for Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials

2.1. Constitutive Equation of Viscoelastic-Plastic Rock-Like Materials

To derive a constitutive equation for viscoelastic-plastic rock-like materials under a
high-strain-rate load, such a material should be assumed to be a composite material composed
of elastic, plastic, and viscous components. In addition, these three components should be assumed
to be distributed randomly and that the mixture reflects the macroscopic dynamic and mechanical
behaviors of viscoelastic-plastic rock-like materials. According to element model theory [11–13],
which is widely accepted in the constitutive equation of rock-like materials, the constitutive model of
viscoelastic-plastic rock-like materials can be established.

This model is composed of three main components: an elastomer, a Newtonian body, and a
St. Venant body. Figure 1 shows the constitutive model of viscoelastic-plastic rock-like materials, and
the constitutive equations are presented as follows:

Materials 2016, 9, 377 2 of 12 

 

An analytical solution for stress wave propagation in viscoelastic materials is used widely in 
polymer materials based on the viscosity effects according to the elastic responses [8]. An analytical 
solution for stress wave propagation in viscoplastic materials has been developed by considering the 
viscosity effects based on the plastic responses [9]. A theoretical solution for stress wave propagation 
in viscoelastic-plastic materials that considers the viscosity effects on both elastic and plastic parts 
has been developed based on the elastic-plastic responses [10]. 

2. Analytic Solution for Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials 

2.1. Constitutive Equation of Viscoelastic-Plastic Rock-Like Materials 

To derive a constitutive equation for viscoelastic-plastic rock-like materials under a high-strain-
rate load, such a material should be assumed to be a composite material composed of elastic, plastic, 
and viscous components. In addition, these three components should be assumed to be distributed 
randomly and that the mixture reflects the macroscopic dynamic and mechanical behaviors of 
viscoelastic-plastic rock-like materials. According to element model theory [11–13], which is widely 
accepted in the constitutive equation of rock-like materials, the constitutive model of viscoelastic-
plastic rock-like materials can be established. 

This model is composed of three main components: an elastomer, a Newtonian body, and a  
St. Venant body. Figure 1 shows the constitutive model of viscoelastic-plastic rock-like materials, and 
the constitutive equations are presented as follows: 

(1) Elastomer. The stress–strain relationship is linear elastic. The constitutive equation is: σா = ଵεாܧ  (1) 

where E1 is the initial elastic modulus of the elastic component, εE and σE are the strain and stress of 
the elastomer, respectively. 

(2) Newtonian body. The stress is proportional to the strain; there is no immediate deformation, 
and the constitutive equation can be defined as: σே = ηεሶே  (2) 

where η is the viscosity coefficient, εሶே and σN are the strain rate and stress of the Newtonian body, 
respectively. 

(3) St. Venant body. To be ideal elastic-plastic, there should be no creep, relaxation, and 
springback. The constitutive equation is: σௌ௏ = ଶεௌ௏, σௌ௏ܧ < σௌ (3a) εௌ → ∞, σௌ௏ ≥ σௌ (3b) 

where E2 is the initial elastic modulus of the St. Venant body and σS is the elastic limit. The elastic 
limit is the lowest stress level at which the material begins to deform plastically. The elastic limit 
should be determined experimentally. If the stress on the specimen exceeds the elastic limit, the 
stress-strain curve becomes nonlinear because of the plastic strain component [2]. 

E1

η  

E2 as

 
Figure 1. Configuration of the constitutive model for viscoelastic-plastic rock-like materials.  
Note: as is St. Venant element. 
Figure 1. Configuration of the constitutive model for viscoelastic-plastic rock-like materials. Note: as is
St. Venant element.

(1) Elastomer. The stress–strain relationship is linear elastic. The constitutive equation is:

σE “ E1εE (1)

where E1 is the initial elastic modulus of the elastic component, εE and σE are the strain and stress of
the elastomer, respectively.

(2) Newtonian body. The stress is proportional to the strain; there is no immediate deformation,
and the constitutive equation can be defined as:

σN “ η
.
εN (2)

where η is the viscosity coefficient,
.
εN and σN are the strain rate and stress of the Newtonian

body, respectively.
(3) St. Venant body. To be ideal elastic-plastic, there should be no creep, relaxation, and springback.

The constitutive equation is:
σSV “ E2εSV , σSV ă σS (3a)

εS Ñ8, σSV ě σS (3b)
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where E2 is the initial elastic modulus of the St. Venant body and σS is the elastic limit. The elastic limit
is the lowest stress level at which the material begins to deform plastically. The elastic limit should
be determined experimentally. If the stress on the specimen exceeds the elastic limit, the stress-strain
curve becomes nonlinear because of the plastic strain component [2].

According to element model theory and the parallel relationship between three stress components,
the stress and strain should satisfy the following:

σ “ σE ` σSV ` σN (4a)

ε “ εE “ εSV “ εN (4b)

From the three sets of constitutive equations of the model elements and their parallel relationship,
differential equations of the constitutive model for viscoelastic-plastic rock-like materials can be
derived as:

σ “ pE0 ` E2q ε` η

ˆ

E0 ` E1 ` E2

E1

˙

.
ε´

η
.
σ

E1
, σ ă σS (5a)

σ “ E0ε` η

ˆ

E0 ` E1

E1

˙

.
ε´

η
.
σ

E1
` E2εS, σ ě σS (5b)

Equation (5) is a special case of the constitutive equations for viscoelastic-plastic rock-like materials
and can be rewritten in a general form as follows:

α0σ`α0
.
σ “ b0ε` b10

.
ε (6)

This equation is called a standard linear solid model. To describe the general behaviors of
viscoelastic-plastic rock-like materials, a generalized linear viscoelastic-plastic model should be
defined as:

m
ÿ

i“0

ai
Biσ

Bti “

n
ÿ

i“0

bi
Biε

Bti (7)

where ai and bi are the material parameters.

2.2. The Wave Equation of Viscoelastic-Plastic Rock-Like Materials

This study confines stress wave propagation along the slender bar. Stress wave propagation along
the slender bar can be simulated experimentally using an SHPB device. Through this test, the dynamic
properties of a specimen material can be obtained [14–17]. The fundamental theory of the stress wave
propagation in a slender bar can also be used to test the pile integrity.

To establish a stress wave equation for viscoelastic-plastic materials, kinematical and kinetic
equations are incorporated with a constitutive equation of viscoelastic-plastic rock-like materials [18].
In the coordinate system, the central axis of a slender rock bar is taken as the x-axis, and the length is set
to far exceed the diameter of the bar. Basically, A0 (the initial cross-sectional area prior to deformation),
ρ0 (initial density), and the material parameters have no relationships with the coordinate system.
In the remainder of this paper, u (displacement of the material point), ε (strain), ν (particle velocity),
and σ (stress) are the longitudinal components along the x-axis.

The kinematic equation is often called a continuity equation or a mass conservation equation.
A compatibility equation about ε and u can be established based on the monotropic continuity condition
of displacement u:

Bu
BX

“
Bε

Bt
(8)
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The kinetic equation is called an equation of motion or a momentum conservation equation.
The following equation can be established based on the continuity condition as follows:

ρ0
Bv
Bt
“
Bσ

BX
(9)

A constitutive equation (physical equation) presents a continuous function between strain and
stress. A piecewise continuous function can also be used in a constitutive equation in a manner similar
to that in Equation (5).

Because the velocity of the stress wave induced by impact loading in hard rock materials is high
and the travel time in the microelement is too short to cause heat exchange with the neighboring
microelement, the process of impact loading can be considered to be approximately adiabatic.
Therefore, it is unnecessary to implement an energy conservation equation to derive a closed-form
solution for σ, ε, and ν.

If viscoelastic-plastic rock-like materials are subject to a high-strain-rate compressive loading,
then the stress wave is fully reflected in the fractured surface formed by the damage induced by the
shock wave. Therefore, the stress wave cannot propagate forward. To ensure the stress function σpεq
as a continuous differentiable function, this paper focuses mainly on the mechanical properties of
viscoelastic-plastic rock-like materials without cracks. Under such a condition, the stress does not
exceed the yield stress. Therefore, Ed “ dσ{dε ě 0, and the stress wave velocity can be defined
as follows:

C “ ˘

d

1
ρ0

dσ
dε
“

d

1
ρ0

Ed (10)

where C is the stress wave front velocity. The sine stress is a monotropic function of the strain; C is a
monotropic function of strain; and ρ0C is the impedance of the material, which plays a decisive role in
stress wave propagation. In Equation (10), the positive sign corresponds to the wave traveling from
right to left, and vice versa for the negative sign.

The stress wave equation for viscoelastic-plastic rock-like materials can be obtained by solving
kinematic and kinetic equations (Equations (8) and (9), respectively) and the constitutive equation
(Equation (5)) for viscoelastic-plastic rock-like materials. If u (displacement) is considered to be an
unknown quantity, then the calculation process is as follows:

If σ ă σs, then substitute ε “ Bu
BX and v “ Bu

Bt into Equation (5a) separately and take the first
derivative with respect to the x-axis on both the left and right sides:

Bσ

BX
“ pE0 ` E2q

B2u
BX2 ` η

ˆ

E0 ` E1 ` E2

E1

˙

B3u
BtBX2 ´

ηB2σ

E1BtBX
(11)

Substituting Equation (7) into Equation (9) results in the following equation:

ρ0
B2u
Bt2 “ pE1 ` E2q

B2u
BX2 ` η

B3u
BtBX21 σ ă σs (12)

This equation is a third-order partial differential equation of u. If the travel time of the stress wave
is short, then the viscosity term containing the third derivative can be ignored. Therefore, the above
equation can be expressed as a second-order partial differential equation for stress wave propagation
along the elastic bar.

Similarly,

ρ0
B2u
Bt2 “ E1

B2u
BX2 ` η

B3u
BtBX21 σ ě σs (13)
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Because of the viscosity term, the elastic wave equation u “ F pX` C0tq does not satisfy the stress
wave equation (Equation (14)). To solve this problem, a harmonic wave solution can be adopted:

u pX, tq “ A ¨ exp ri pωt´ kiXqs (14)

Substituting Equation (14) into Equation (12) yields:

ρ0ω
2 ´ pE1 ` E2q k2

i ´ ηiωk2
i “ 0 (15)

Because this is an equation with a complex number, the frequency ω can be considered a real
number, and ki must be a complex number:

ki “ k` iα (16)

Substituting Equation (16) into Equation (15) yields:

ρ0ω
2 ´ pE1 ` E2q

´

k2 ´α2
¯

´ 2kiα pE1 ` E2q ´ ηiω
´

k2 ´α2
¯

` 2ηαkω “ 0 (17)

If the real component is set to be equal to the imaginary component, then the following equations
can be derived:

ρ0ω
2 ´ pE1 ` E2q

´

k2 ´α2
¯

` 2ηαkω “ 0 (18)

pE1 ` E2q 2kα` ηω
´

k2 ´α2
¯

“ 0 (19)

Solving Equations (18) and (19) with respect to the attenuation factor α and the wave number k
gives the following:

α2 “
ρ0ω

2
b

pE1 ` E2q
2
` η2ω2 ´ pE1 ` E2q

2rη2ω2 ` pE1 ` E2q
2
s

(20a)

k2 “
ρ0ω

2
b

pE1 ` E2q
2
` η2ω2 ` pE1 ` E2q

2rη2ω2 ` pE1 ` E2q
2
s

(20b)

The attenuation factor α can be either positive or negative. Because a positive root means that the
amplitude increases with increasing propagation distance, it violates the law of energy conservation
and has no physical meaning. Therefore, the attenuation factor α should be negative. The solution to
Equation (12) can be obtained as follows:

u pX, tq “ Aexp p´αXq exp ri pωt´ kXqs (21)

Similarly, if σ ě σs, then the harmonic wave solution in Equation (14) is the solution to
Equation (13), and its form is similar to Equation (20). Under this condition, the wave number k
and the attenuation factor α can be determined, respectively, using the following equations:

α2 “
ρ0ω

2
´
b

E2
1 ` η

2ω2 ´ E1

¯

2
`

E2
1 ` η

2ω2
˘ (22a)

k2 “
ρ0ω

2
´
b

E2
1 ` η

2ω2 ` E1

¯

2
`

E2
1 ` η

2ω2
˘ (22b)
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Equations (20) and (22) can be rewritten as:

α2 “
ρ0ω

2
´?

b2 ` 1´ b
¯

2η
`

b2 ` 1
˘ (23a)

k2 “
ρ0ω

2
´?

b2 ` 1` b
¯

2η
`

b2 ` 1
˘ (23b)

where b “ E
ηω , E is the nominal elastic modulus. Here, E “ E1 ` E2 if σ ă σs, and E “ E1 if

σ ě σs, respectively.
Therefore, the elastic modulus of the material decreases when the stress exceeds the plastic

threshold. The stress wave is influenced significantly by the attenuation factor under such a condition.
The particle velocity and strain of materials can be defined using spatial and temporal positions:

v pX, tq “
Bu pX, tq
Bt

“ Aexp p´αXq exp ri pωt´ kXqs iω “ iωu pX, tq (24)

ε pX, tq “
Bu pX, tq
Bt

“ ´i pα` kq Aexp p´αXq exp ri pωt´ kXqs “ ´i pα` kq u pX, tq (25)

The attenuation speed depends on the attenuation factor of the stress wave α, and its unit is
[dB/m]. From Equations (20a) and (22a), the analytical solution for stress wave propagation in
viscoelastic-plastic rock-like materials suggests that the attenuation factor α can be determined by the
viscous coefficient of the material, the elastic modulus, density, and the frequency of the stress wave.

3. Verification of the Analytic Solution for Stress Wave Propagation

3.1. An Experimental Test Using the SHPB and an Inverse Analysis

The mean strain rate
.
ε and the elastic limit σs in the constitutive equation, Equation (5) can be

obtained experimentally. The elastic modulus (E1 and E2) and the viscosity coefficient η are parameters
to be determined. To obtain these unknown parameters, an experimental test using the SHPB (Split
Hopkinson Pressure Bar) was adopted. The SHPB is an experimental technology to examine the
dynamic mechanical properties of engineering materials. The pressure rod is assumed to be a simple
elastic rod. Owing to impact load at one end, the elastic stress waves are propagated and cause
deformation (i.e., elastic deformation and plastic deformation).

This study verified the analytic solution derived in the previous section by conducting an SHPB
test with concrete samples composed of fine aggregates. The height and diameter of the sample were
25 mm and 50 mm, respectively. The density of the sample was 2080 kg¨m´3, and the maximum grain
size was 2.5 mm. Figure 2 presents the SHPB apparatus. Based on the SHPB test of viscoelastic-plastic
materials, the effects of the viscous coefficient, the elastic modulus, density, and the frequency of
the stress wave on the attenuation factor were investigated. The stress-strain curves for the concrete
specimen for three strain rates are presented in Figure 3.
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The elastic stress wave along the guide rod in the SHPB can be decomposed into a series of
harmonic components using the spectrum analysis method. The frequency and wavelength of
harmonics are different from each other, and the harmonics propagate at different phase velocities [18].
Because the wavelength of the stress wave depends on the bullet length, the frequency of the stress
wave varies, even for the same strain rate [19]. Dynamic properties of materials were not yet verified
to be related directly to the frequency of the stress wave. Therefore, the effect of the frequency was not
considered in the present study for parameter identification purposes.

The identification process of unknown parameters using experimental test results is an
optimization problem. An optimal solution providing the minimum mean square error in the objective
function can be obtained as:

λ̂2 “

N´1
ÿ

i“1

trσ pxq ´ σis {σiu
2

N ´ num
(26)

where σ pxq is the calculated stress that can be obtained by strain εi measured from an experimental
test for the objective function. The unit of σ(x) is MPa; σi is the stress for testing; num is the number
of unknown parameters; and N is the number of experimental data observations. The optimization
technique used in the present study is the genetic algorithm (GA), which can address complicated
problems because it is based on the process of a biological evolution, rules governing the survival of
the fittest, and the chromosome information exchange mechanism. The GA has various advantages
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and is well described [20,21], and Figure 4 presents a specific schematic of the GA. Table 1 lists the
parameters obtained from an inverse analysis using the GA.
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Table 1. Inverse analysis of the parameters in the constitutive equations for viscoelastic-plastic
rock-like materials.

Sample
Number

Mean Strain
Rate (s´1)

Estimated Parameters from Inverse Analysis

Elastic Modulus (N/m2) Viscosity
Coefficient, η Variance,

"
σ

2

E1 E2

C01 87 3.499 ˆ 1010 3.217 ˆ 1010 1.200 ˆ 104 9.077 ˆ 10´2

C02 194 3.498 ˆ 1010 3.368 ˆ 1010 1.093 ˆ 104 8.572 ˆ 10´3

C03 260 3.488 ˆ 1010 3.457 ˆ 1010 8.311 ˆ 103 2.239 ˆ 10´2

The stress-strain curves from the analytical solution were reproduced using the parameters
obtained from inverse analysis. The test and reproduced curves are presented in Figure 5. The
estimated stress-strain curve from the analytic solution was identical to the stress-strain curve from the
experimental test regardless of the strain rate, and the mean square error between them was less than
10% of the strain range of the intersections. The newly derived constitutive equation and parameters
from inverse analysis were validated in terms of their applicability and reliability.
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Figure 5. Viscoelastic-plastic dynamic stress-strain curves. (a) Strain rate: 87 s´1; (b) strain rate:
194 s´1; (c) strain rate: 260 s´1.

3.2. Attenuation Factors in the Stress Wave Equation

The effects of the frequency of the stress wave on the attenuation in viscoelastic-plastic rock-like
materials depends mainly on the imperfect elasticity (plasticity and viscosity). Previous studies have
reported that microscopic factors are involved in this process, including the composition of the rock
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mineral, particle size, internal crack distribution, structures, and pore fluids [22]. The amplitude of
attenuation is presented as:

A pxq “ A0exp pαxq (27)

where A0 “ A pxq |x“0 is the strength of the dynamic impact source. The attenuation amplitude of the
propagating stress wave increases exponentially with increasing propagation distance, and the extent
of attenuation is determined by the attenuation factor α.

The relationship between the attenuation factor and the frequency of the stress wave can
be explored using the parameters in the constitutive equation of viscoelastic-plastic rock-like
materials obtained from the experimental test using the SHPB apparatus. The viscoelasticity formula
Equation (20a) and the viscoelasticity plasticity formula Equation (23a) can be used for analysis. As
shown in Figures 6 and 7 the square of the attenuation factor is closely correlated with the frequency
of the stress wave. An increase in the frequency of the stress wave increases the attenuation factor,
regardless of the strain rate.
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According to Equation (22), the variations in the attenuation factor with respect to the elastic
modulus and the viscosity coefficient were obtained, as shown in Figure 8. Based on the analysis



Materials 2016, 9, 377 11 of 13

results, the attenuation factor decreased with increasing elastic modulus, whereas it increased with
increasing viscosity coefficient. On the other hand, the elastic modulus increased with increasing
strain rate, and the viscosity coefficient decreased with increasing elastic modulus. The increase
in the attenuation factor decelerates with increasing strain rate if the frequency of the stress wave
increases. This suggests that the attenuation factor is a parameter related to the strain rate. An increase
in the strain rate reduces the attenuation amplitude of the stress wave. Based on a comparison of
Figures 6 and 7 the elastic modulus decreases significantly based on the viscoelastic-plasticity. That is,
the attenuation factor is much higher than the viscoelastic damping factor for the three strain rates.
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Viscous attenuation induced by the material viscosity is called the absorption phenomenon.
Compared to geometric dispersion by slender bar size, the changes in the frequency in viscous
attenuation always develops in opposite directions. For the propagation of the stress wave along
viscoelastic-plastic rock-like materials, the attenuation of the high-frequency wave is greater than that
of the low-frequency wave, and geometric dispersion induced by the lateral inertia of the slender bar
is more significant in the low-frequency wave than that in the high-frequency wave.

4. Conclusions

This theoretical and experimental study investigated the stress wave propagation in
viscoelastic-plastic rock-like materials under a high-strain-rate load and examined the characteristics
of strain-dependent attenuation.

Based on element model theory, composite materials, such as rock and concrete, are assumed
to be a mixture composed of elastic, plastic, and viscosity components. A constitutive equation of
viscoelastic-plastic rock-like materials was developed based on an analytic model composed of an
elastomer, a Newtonian body, and a St. Venant body.

Stress wave equations are derived based on the kinematic and kinetic equations considering a
nonlinear viscoelastic-plastic constitutive equation. The analytical solution for stress wave propagation
in viscoelastic-plastic rock-like materials suggests that the attenuation factor can be determined by the
viscous coefficient of the material, the elastic modulus, density, and the frequency of the stress wave.

The analytical solution derived in this study was verified through an experimental test using an
SHPB apparatus. Unknown parameters of the constitutive equations were estimated inversely using a
differential evolution algorithm. According to the results, the estimated stress-strain curve from the
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analytic solution is identical to the stress-strain curve obtained from the experimental test, regardless
of the strain rate, and the mean square error between them is less than 10%.

Stress wave propagation and the attenuation factor in viscoelastic-plastic materials are affected
by the viscous coefficient, the elastic modulus, density, and the frequency of the stress wave. The
attenuation factor decreases with increasing elastic modulus, whereas it increases with increasing
viscosity coefficient. The attenuation factor increases with increasing frequency of the stress wave.
The attenuation of the stress wave is dependent on the strain such that an increase in the strain rate
decelerates the increase in attenuation factor.
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