
materials

Article

A Multiscale Computational Model Combining a
Single Crystal Plasticity Constitutive Model with the
Generalized Method of Cells (GMC) for
Metallic Polycrystals

Masoud Ghorbani Moghaddam 1, Ajit Achuthan 1,*, Brett A. Bednarcyk 2, Steven M. Arnold 2

and Evan J. Pineda 2

1 Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699, USA;
ghorbam@clarkson.edu

2 NASA Glenn Research Center, Cleveland, OH 44135, USA; brett.a.bednarcyk@nasa.gov (B.A.B.);
steven.m.arnold@nasa.gov (S.M.A.); evan.j.pineda@nasa.gov (E.J.P.)

* Correspondence: aachutha@clarkson.edu; Tel.: +1-315-268-4429; Fax: +1-315-268-6695

Academic Editor: Timon Rabczuk
Received: 16 March 2016; Accepted: 27 April 2016; Published: 4 May 2016

Abstract: A multiscale computational model is developed for determining the elasto-plastic behavior
of polycrystal metals by employing a single crystal plasticity constitutive model that can capture
the microstructural scale stress field on a finite element analysis (FEA) framework. The generalized
method of cells (GMC) micromechanics model is used for homogenizing the local field quantities.
At first, the stand-alone GMC is applied for studying simple material microstructures such as a
repeating unit cell (RUC) containing single grain or two grains under uniaxial loading conditions. For
verification, the results obtained by the stand-alone GMC are compared to those from an analogous
FEA model incorporating the same single crystal plasticity constitutive model. This verification is
then extended to samples containing tens to hundreds of grains. The results demonstrate that the
GMC homogenization combined with the crystal plasticity constitutive framework is a promising
approach for failure analysis of structures as it allows for properly predicting the von Mises stress
in the entire RUC, in an average sense, as well as in the local microstructural level, i.e., each
individual grain. Two–three orders of saving in computational cost, at the expense of some accuracy
in prediction, especially in the prediction of the components of local tensor field quantities and
the quantities near the grain boundaries, was obtained with GMC. Finally, the capability of the
developed multiscale model linking FEA and GMC to solve real-life-sized structures is demonstrated
by successfully analyzing an engine disc component and determining the microstructural scale details
of the field quantities.

Keywords: multiscale computational model; metallic polycrystals; Generalized Method of Cells
homogenization; crystal plasticity constitutive model

1. Introduction

Engine fan blades and discs are subjected to extreme temperatures and mechanical stresses during
their operation. The prediction of damage initiation and propagation is important in these engine
components, not only to avoid potential catastrophic mission failures, but for developing optimal and
economical designs as well. Developing such prediction capabilities requires development of stress
analysis models that can incorporate the interaction of various microstructural features, such as grain
boundaries and dislocations.
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For metals and metallic alloys, the major deformation mechanism at the microstructural scale
is the dislocation motion causing plasticity. Two key characteristics that define plasticity are the
permanent strain due to slipping of atomic layers under shear stress and the strain hardening, both
contributing to the macroscale nonlinear stress-strain behavior. In the single crystal plasticity models,
the dislocation motion is implemented as permanent shear strain in the various slip systems (slip plane
and slip direction) with the aid of a set of state variables [1,2]. The strain hardening property that
defines the strength of the slip systems is also implemented in terms of another set of state variables.
The nonlinear evolution laws are defined for the permanent shear strains and strength of slip systems,
along with the equilibrium equations in an incremental and iterative approach.

The major challenge in implementing microstructure-based plasticity models in real-sized
structural components is the excessive computational cost, as it requires solving governing equations
at both the microstructural and macrostructural length scales. Even for modeling a small subscale
volume consisting of tens to a few hundred grains, the computational cost for executing a finite element
model incorporating the physics of dislocation at the microscale motion is exorbitant. To address
this challenge, the development of various multiscale models, broadly classified under three major
methods, namely, sequential (or hierarchical), computational homogenization scheme (so called FE2)
and integrated technique, were reported [3–6].

In the sequential method, the macro model utilizes a number of parameters which are either
obtained from a detailed microscale experimental analysis or pre-computed [7–13]. As a result, these
models are effectively macroscopic models, but use internal state variables for describing the material
behavior at microscale. Therefore, sequential methods are valid for prediction and computationally
very efficient. However, the macroscale models are typically calibrated using a finite number of
loading scenarios and do not account for the material’s microstructure explicitly. Thus, sequential
methods may lack some fidelity in capturing the anisotropic constitutive response of a polycrystal
under completely general loading scenarios.

The computational homogenization scheme, on the other hand, can relate the complex
material behavior at microscale to its macroscale response by explicitly modeling the material’s
microstructure [6,14–22]. In these methods, the local governing behavior at the macroscale is
determined by solving the microscale boundary value problem on a representative volume element.
This also affords the use of simpler, more fundamental constitutive models at the microscale, since
the anisotropic nonlinearity at the macroscale arises naturally due to the interaction of the various
phases at the microscale. This micro-macro transition can also be implemented by considering coupled
boundary value problems at the micro- and macroscales, and solving them simultaneously by means
of finite element methods. The computational homogenization scheme, though offering high fidelity,
can still be computationally expensive for many practical problems.

The integrated method is based on applying a homogenization technique to an embedded
polycrystal in a finite element framework. The homogenization technique, mostly mean-field theories,
serves as the transition step between the micro and macro scales [5,23–27]. The microstructure
is discretized and split into different phases with analytical relations describing the interaction
between the phases. While providing relatively good accuracy, depending on the mean-field
theory used, these methods are computationally very efficient. Recent studies have demonstrated
successful implementation of a viscoplastic self-consistent model for composite materials, both under
explicit [23,24,26] and implicit schemes [25].

A main challenge in the development of a homogenization technique is relating the macroscale
average strain at a point to the microstructural representation of the material. The homogenization
technique is formulated following two major methods: (1) The Representative Volume Element (RVE)
method based on statistical homogenization theories considering the random distribution of the
microstructural features; and (2) The Repeating Unit Cells (RUC) method based on periodicity in
the microstructure. The definition of RVE requires the equivalent homogenized displacement and
traction boundary conditions to be simultaneously satisfied. The RUC-based methods were proposed
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to address the difficulty in satisfying the required homogenous traction–displacement boundary
condition for arbitrarily chosen, statistically homogeneous, microstructures in the RVE concept. Besides
analytical methods, those mainly developed for elastic materials, the numerical solutions of the RUC
using boundary element method [28], the discrete Fourier transform approach [29,30] and the finite
element method [31], have been developed for inelastic, viscoelastic and viscoplastic materials. These
RUC-based homogenization techniques are mostly restricted to specific unit-cell architecture, loading
direction and simplified boundary condition.

Semi-analytical techniques such as the generalized method of cells (GMC) have also been
developed for RUC homogenization [32–35]. The GMC method enables modeling of complex unit-cell
architectures and is capable of studying the elastic–plastic response of periodic heterogeneous materials
under various loading conditions. In GMC, an RUC is discretized into a number of sub-volumes,
referred to as subcells. Within each of these subcells, the displacement fields are approximated linearly.
Traction and displacement continuity conditions are utilized to calculate a strain concentration matrix
allowing localization of the applied, average, far-field strains to local subcell strains. The GMC method
does not include coupling between the shear and normal components of stress. Many micromechanics
theories exhibit this lack of coupling, which typically yields ultra-efficient computational performance.
However, retaining this coupling is only critical when this coupling is a first-order effect. Advanced
methods [33,34,36,37], such as the High-Fidelity Generalized Method of Cells (HFGMC) were proposed
to account for the shear coupling through quadratic displacement approximations in the subcells.
However, increase in fidelity incurs a penalty on the computational efficiency.

In this article, GMC is evaluated as a potential method of homogenization to develop a multiscale
model that can capture microscale plastic deformation in polycrystal metals and metallic alloys.
This work is an extension of a previous study by authors [38,39] on the applicability of GMC
homogenization for studying two-phase materials, e.g., Ni-base superalloys, characterized by crystal
plasticity framework at microstructures. Polycrystalline materials, with several randomly oriented
grains, demonstrate high material anisotropy; this anisotropy introduces its own challenges and
is the focus for this study. At first, the performance of the stand-alone GMC for simple test cases,
in terms of solution accuracy and computational time, is evaluated by comparing the results with
a finite element model that uses the same material subroutine. The polycrystal microstructure is
simulated using a pre-processor functionality that creates Voronoi cell tessellations and assigns random
orientations. A small polycrystal sample with 8, 27 and 125 grains is then simulated using stand-alone
GMC compared with the FEA model. Finally, the multiscale model implemented on a finite element
analysis framework at macroscale, with the element properties defined at microscale using GMC
homogenization, is evaluated by analyzing a realistic engine disc component.

2. Theory & Numerical Implementation

2.1. Single Crystal Plasticity Model

The kinematics for the deformation mechanics of crystals follows the pioneering work of
Taylor [40], and Hill and Rice [41]. The theory is based on the assumption that any elasto-plastic
deformation can be split into two multiplicative operations: a plastic deformation where material is
deformed through the rearrangement of lattices, followed by an elastic deformation associated with
the stretching of lattices. The total deformation gradient F is then given by:

F “ Fe¨ Fp (1)

where Fp and Fe are the plastic and the elastic deformation gradient, respectively.
Based on the deformation gradient definition, the total velocity gradient L is stated as:

L “
.
F¨ F´1 “ D`Ω (2)
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In which the symmetric stretch rate D and the anti-symmetric spin tensor Ω can be decomposed
into lattice and plastic parts (()*,()p), respectively.

D “ D˚ `Dp

Ω “ Ω˚ `Ωp (3)

The velocity gradient associated with the plastic deformation Lp is given in terms of Schmid’s
law as:

Lp “ Fp¨
.
F

p
´1 “

ÿ

α
.
γ

αmα
â

na (4)

where
.
γ

α is the rate of shear strain associated with the slipping of α slip system; m is the unit normal
to the slip plane; and n is the unit vector parallel to slip direction. The incremental formulation of
plasticity theory is based on (1) the evolution of Cauchy stress in the corotational frame of reference

that rotates with the crystal lattice, J˚ pσq; (2) the slipping rate
.
γ
pαq and (3) the strain hardening rate

.
gpαq as given below:

J˚ pσq ` σ pI : D˚q “ C : D˚ (5)

where σ is the Cauchy stress; D˚ is rate of stretching associated with elastic deformation; and C is the
tensor of elastic moduli. The governing equation for slipping is defined as:

.
γ
pαq
“

.
apαq

ˆ

τα

gα

˙n
(6)

where τα is the resolved shear stress; gα is the strength; the
.
apαq refers to the slipping rate when the

resolved shear stress reaches the strength. The governing equation for the strength can be modeled as:

.
gpαq “

ÿ

β hαβ pγq
.
γ
pαq (7)

where hαβ is the slip-hardening moduli. The sum ranges over all activated slip systems. The
coefficient hαβ represents the self-hardening modulus when α “ β, and the latent-hardening modulus
otherwise [42].

hαα “ h pγq “ h0sec2
ˇ

ˇ

ˇ

ˇ

h0γ

τs ´ τ0

ˇ

ˇ

ˇ

ˇ

(8)

where h0 is the initial hardening modulus; τ0 is the yield stress which equals the initial value of current
strength gpαq(0); τs is the stage-I stress (or the break-through stress where large plastic flow initiates);
and γ is the Taylor cumulative shear strain on all slip systems, i.e.,

γ “
ÿ

α

ż t

0

ˇ

ˇ

ˇ

.
γ
pαq

ˇ

ˇ

ˇ
dt (9)

The latent hardening modulus is given by:

hαβ “ qh pγq ¨ pα ‰ βq (10)

where q is a constant. Finally, the instantaneous shear strength of a slip system is then obtained as:

gpαq “ τ0 `

ż t

0

.
gpαq dt (11)

For the numerical implementation of a single crystal plasticity model, a User MATerial (UMAT)
subroutine in the form of for Abaqus [43] is used.
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2.2. Generalized Method of Cells

The generalized method of cells is a micromechanical formulation for predicting the overall
thermo-inelastic behavior of the multiscale composites. There are four steps involved in this
homogenization process [33,44]. First, the RUC should be identified (Figure 1a) and discretized.
A typical RUC consists of Nα ˆ Nβ ˆ Nγ rectangular subcells (α “ 1, . . . , Nα; β “ 1, . . . , Nβ;
γ “ 1, . . . , Nγq in the x1, x2 and x3 directions, respectively, as shown in Figure 1b. The individual
subcells have the dimensions of pdα, hβ, lγq, and are related to the unit cell dimensionspd, h, lq by:

d “
ÿ

Nα
α“1 dα, h “

ÿ Nβ

β“1 dβ, l “
ÿ Nγ

γ“1 dγ (12)
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As the second step, the relationships between the macroscopic average stresses and strains with the

microscopic fields are established. A linearly variable displacement, upαβγq
i “ wpαβγq

i pxq` xpαq1 ∅pαβγq
i `

xpβq2 χ
pαβγq
i ` xpγq3 ξ

pαβγq
i pi “ 1, 2, 3q is considered inside each subcell. This displacement profile consists

of displacement components at the center of each unit cell, wpαβγq
i , and the microvariables ∅pαβγq

i ,

χ
pαβγq
i , and ξ

pαβγq
i that characterize the linear dependence of the displacement upαβγq

i on the local

coordinates xpαq1 , xpβq2 , and xpγq3 . The vector x “ px1, x2, x3q defines the position of the center of the
subcell with respect to the global coordinate system.

The definition of strain tensor in each subcell ε
pαβγq
ij is given as:

ε
pαβγq
ij “

1
2
pBiu

pαβγq
j ` Bju

pαβγq
i q (13)

Then, the average strain in the RUC is defined as:

εij “
1

dhl

ÿ

Nα
α“1

ÿ Nβ

β“1

ÿ Nγ

γ“1 dαhβlγε
pαβγq
ij (14)

Considering a general constitutive equation for thermo-elastic-plastic materials in each subcell
pα, β, γq, the average stress in that subcell is considered as:

σ
pαβγq
ij “ Cpαβγq

ijkl pε
pαβγq
kl ´ ε

I pαβγq
kl ´ ε

T pαβγq
kl q (15)
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where the Cpαβγq
ijkl is the elastic tensor, and the repeated indices ‘k’ and ‘l’ represented a summation

following the Einstein notation. The ε
I pαβγq
kl and ε

T pαβγq
kl are the average inelastic and thermal strain

tensors, respectively, in each subcell.
Based on the volumetric summation of the average stresses in all subcells, the average stress in

the entire unit-cell can be written as:

σij “
1

dhl

ÿ

Nα
α“1

ÿ Nβ

β“1

ÿ Nγ

γ“1 dαhβlγσ
pαβγq
ij (16)

In the third step, the continuity of strain and traction is applied. It is considered that the RUCs are
periodic, and the interfaces of the subcells and the boundaries of the RUCs follow the displacement
and traction continuity. Applying these conditions results in elimination of the microvariables in
the displacement definition and produces a set of continuity relationships. As a result, a set of
Nα

`

Nβ ` Nγ ` 1
˘

` Nβ

`

Nγ ` 1
˘

` Nγ equations stems from the strain continuity relation which can
be declared as:

AGεs “ Jε (17)

with AG and J being matrices representing the geometrical details of the subcells and those related to
the unit-cell itself, respectively. The ε is the average strain in the unit-cell, while εs is defined as:

εs “ pε
p111q, . . . , εpNα , Nβ , Nγ qq (18)

The continuity of tractions, results in:

AM

´

εs ´ εI
s ´ εT

s

¯

“ 0 (19)

which contains 6NαNβNγ ´
`

NαNβ ` NαNγ ` NβNγ

˘

´
`

Nα ` Nβ ` Nγ

˘

equations, in which AM
includes the information regarding the material properties in each subcell. εI

s and εT
s represent the

inelastic and thermal strains in each subcell, defined similarly to Equation (18).
The strain and traction continuity conditions (Equations (17) and (18)) can be combined as:

rAεs ´ rD
´

εI
s ` εT

s

¯

“ Kε

where, rA “

«

AM
AG

ff

, rD “

«

AM
0

ff

, K “

«

0
J

ff

(20)

Rewriting this equation for each subcell as:

εpαβγq “ Apαβγqε`Dpαβγq
´

εI
s ` εT

s

¯

(21)

allows the average strain in the subcell to be expressed in terms of the macrostrain, and the inelastic
and thermal subcell strains by defining the concentration of elastic and inelastic matrices Apαβγq and
Dpαβγq, respectively.

In the fourth step, the overall macroscopic constitutive equations of the material are obtained
based on the effective properties. The average (homogenized) constitutive equation for the RUC is:

σ “ B˚
´

ε´ εI ´ εT
¯

(22)

in which the B˚ represents the effective elastic tensor of the polycrystal,

B˚ “
1

dhl

ÿ

Nα
α“1

ÿ Nβ

β“1

ÿ Nγ

γ“1 dαhβlγ CpαβγqApαβγq (23)
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The global inelastic strain tensor εI and the average thermal strain tensor εT are also obtained in a
similar fashion.

εI “
´B˚´1

dhl

ÿ

Nα
α“1

ÿ Nβ

β“1

ÿ Nγ

γ“1 dαhβlγ CpαβγqpDpαβγqεI
s ´ εIpαβγqq (24)

εT “
´B˚´1

dhl

ÿ

Nα
α“1

ÿ Nβ

β“1

ÿ Nγ

γ“1 dαhβlγ CpαβγqpDpαβγqεT
s ´ εTpαβγqq (25)

It should be noted that GMC was reformulated to solve for subcell tractions, as opposed to strains,
to improve computational efficiency [35].

2.3. MAC/GMC

The Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), developed
by NASA Glenn Research Center [45], which predicts the effective nonlinear response of heterogeneous
materials based on the known behavior of the constituent materials, is used in the present study. The
MAC/GMC software, like most of the commercially available FEA packages, admits user-defined
constitutive models. This capability was used to incorporate the single crystal plasticity model within
the code such that the inelastic behavior of the individual constituent materials could be represented.
The reformulated GMC [35] is called at finite element level to represent the material response of that
element using NASA’s FEAMAC software [43,45].

3. Results and Discussion

The main objective for a multiscale analysis is to provide an accurate constitutive response to the
higher scale, being the average stress and strain behaviors of the microscale. In addition, for a failure
study of a structure, it is helpful to be able to predict the field quantities at a microstructural length
scale. In the results and discussion section of this study it has been attempted to evaluate the GMC
homogenized solution combined with the crystal plasticity framework in polycrystalline materials
with regard to both the entire RUC and the local microstructural behaviors.

In order to evaluate GMC for studying the plasticity in polycrystals, several virtual test cases,
under a tensile stress of 200 MPa with a constant loading rate of 200 MPa{s applied in z direction, were
considered. In the FEA model, periodic boundary conditions were applied in all three directions to
simulate the periodicity of the unit cell in a bulk domain. At first, the stress–strain behaviors of a single
crystal sample under uniaxial loading was analyzed and compared with FEA. This was followed by
a polycrystalline sample made up of two grains. Both the global stress–strain curves obtained from
the entire domain and the local stress-strain curves of the individual grains were compared. Then,
the analyses of polycrystals with 27, 64 and 125 grains were implemented. A face-centered-cubic
(FCC) copper sample with 12 active slip systems ({111} <110> family) and the cubic material properties
(c11 “ 168, 400 MPa, c12 “ 121, 400 MPa, c44 “ 75, 400 MPa) are used in this study. For the hardening
law, h0 “ 541.5 MPa, τs “ 109.5 MPa and τ0 “ 60.8 MPa were applied. In addition, the rate sensitivity
exponent n, reference strain rate

.
a. and the ratio of latent to self-hardening moduli q. were taken as 10

and 0.001 s´1 and 1, respectively, for the present study.
The polycrystal grain structure was simulated using the Voronoi tessellations and the grain

orientations were randomly assigned using MATLAB built-in functions. The GMC uses a linear
displacement approximation in each subcell, and as a result of the lack of normal-shear coupling, as
long as the geometry of the phases in the RUC is fixed, the solution of GMC is completely insensitive
to refinement of the subcell grid. More discussions on the mesh sensitivity in GMC are available in [33].
However, for similar element-wise resolution in the polycrystalline samples in both the FEA and GMC,
to obtain a proper solution in FEA 20-node-brick elements were required.
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Finally, the capability of GMC homogenization to solve large-scale problems was demonstrated
by using the FEAMAC multiscale model framework. A 254 mm radius turbine disk was analyzed
using FEA at the macroscale. At each element integration point, an RUC representing a microstrcuture
consisting of 27 grain polycrystal material is used to model the local non-linear material repsonse. The
homogenization at the element level is carried out by GMC with 1000 subcells.

3.1. Single Crystal Behavior

A 100 ˆ 10 ˆ 10 mm3 single crystal copper sample, with (1,1,0) crystal orientation modeled
by 90 subcells/elements under a uniaxial tensile loading in the sample length direction (z direction),
was considered. The corresponding results in terms of the variation of average axial stress (σzz) vs. the
average axial strain (εzz) are shown in Figure 2.Materials 2016, 9, 335 8 of 21 
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The GMC convergence was studied by varying time increments, number of iterations and
permitted error (ERR) for the convergence. It is observed that the GMC solution can converge to the
solution from FEA, either by refining the load increments without changing the number of iterations,
or, for the smaller number of load increments, by allowing for more iterations.

3.2. Polycrystal Behavior

Applicability of the GMC base homogenization approach for polycrystalline samples are studied
in this section. At first, in Section 3.2.1, a polycrystalline sample consisting of two grains with maximum
possible anisotropy with respect to the grain orientations is analyzed. Then, Voronoi polycrystals with
several numbers of grains with randomly oriented grains, representing real material microstructures,
are studied in Section 3.2.2.

3.2.1. Two-Grain Polycrystal

A simple polycrystal consisting of two grains, as shown in Figure 3, is considered. The orientations
chosen for the grains are shown in Table 1. The arbitrarily chosen orientation provides a high degree
of anisotropy in the studied sample.
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Table 1. Grain data used for studying the simple polycrystal case.

Grain # Volume Fraction
1st Vector 2nd Vector

Local Global Local Global

1 30% (0,0,1) (0,0,1) (1,0,0) (1,0,0)
2 70% (1,1,0) (0,0,1) (1,´1,0) (1,0,0)

The average axial strain component (εzz), the average axial stress component (σzz) and the average
von Mises stress plotted against the load-step for the entire domain are shown in Figure 4a–c,
respectively. The average values of the studied field quantities were calculated by taking the
volume-weighted average over all the elements. With regards to the average RUC behavior, the
GMC results show excellent agreement with the FEA solutions.

The local microstructural response of the RUC is also studied in Figure 5 by comparing the GMC
vs. FEA results with regard to the average element-wise behaviors corresponding to each of the
grains for the applied stress load. For the axial stress vs. the load step (Figure 5b), some discrepancy
between the reported results from GMC and FEA for each individual grain is observed. The difference
is significant in the elastic regime, which contributes to the difference in the overall behavior. On
the contrary, the average von Mises stress behavior (Figure 5c), which is a measure of the shear
deformation, and the average axial strain (Figure 5a) demonstrates good agreement in both the elastic
and plastic zones.
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Figure 4. (a) Average axial strain (εzz) vs. load-step; (b) average axial stress (σzz) vs. load-step;
(c) von Mises stress vs. load-step, for the entire domain in the two-grain polycrystal model.
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Figure 5. (a) Average axial strain (εzz) vs. load-step; (b) average axial stress (σzz) vs. load-step;
(c) von Mises stress vs. load-step for the individual grains, Grain1 (G1) and Grain 2 (G2).
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Table 2 reports the maximum error percentile for each of these cases. Similarly, the von Mises
stress distribution at a cross-section taken midway through the length in the loading direction for the
strain loading case also matches in each grain (Figure 6).

Table 2. Maximum percentile error of the GMC solution (compared to FEA) for the two-grain
polycrystal sample.

Domain Average Axial Strain Error % Average Axial Stress Error % Average

Entire Domain ´0.231 0.036 ´0.706
Grain 1 ´0.232 ´33.891 1.146
Grain 2 ´0.232 14.131 ´1.325
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Figure 6. Von Mises stress distribution on a cross-section taken midway through the length in the
loading direction for the two-grain polycrystal model by: (a) GMC; (b) FEA.

Therefore, it can be concluded from these results that GMC could be quite effective for
homogenization in terms of predicting the effective stress quantities, such as von Mises, while the
prediction of individual components of stress tensor could be below satisfactory due to homogenization
and lack of shear coupling.

3.2.2. Voronoi Polycrystal

The GMC integrated with single crystal plasticity constitutive model is further verified by
analyzing polycrystalline samples with additional grains and random orientations (Figure 7).

The n ˆ n ˆ n grains terminology refers to n grains (roughly) in each dimension with a total
of n3 grains (exact) in the sample. Figure 7a shows the grain geometry generated using Voronoi
tessellations in MATLAB, and Figure 7b shows the corresponding finite element and GMC models.
The orientations were assigned according to the randomly selected orientation vectors for each of these
grains. Overall, there is an agreeable match between the discretized model geometries and the target
tessellation geometry. The slight mismatch is mainly because of the fact that the color coding is based
on the element centroids for the finite element model, while the MATLAB script follows the exact
surface. Hence, this approach of meshing the sample geometry first, followed by assigning the grain
orientations to the elements based on their location of centroids rather than meshing the grain structure
directly, has an inherent drawback in that it cannot match the grain geometry exactly. However, this
can be reduced significantly by refining the mesh sufficiently to make element size much smaller than
the grain size.
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The GMC and FEA results are compared for the 3ˆ 3ˆ 3 grain sample under the uniaxial applied
tensile loading (Figure 8).

The average stress-strain behaviors obtained from both these methods, in all the three directions,
are shown in Figure 8. It can be observed that for the entire domain, the converged GMC solutions
related to the axial stress (Figure 8b) and von Mises stress (Figure 8c) match well with the FEA solutions;
however, the axial strain does not show good agreement. The axial strain, especially that obtained by
FEA analysis, is a result of the anisotropy in the materials, which can be improved by increasing the
number of grains in the sample.

The average values of field quantities in the individual grains, for the case of loading in the
z-direction, are further studied by comparing the behavior of three arbitrarily chosen grains (Grain
numbers 1, 15 and 20) obtained by GMC and FEA (Figure 9).
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Figure 8. (a) Average axial strain (εzz) vs. load-step; (b) average axial stress (σzz) vs. load-step;
(c) von Mises stress vs. load-step for a 3 ˆ 3 ˆ 3 grain polycrystal (loaded in the three Cartesian
coordinate directions).
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Figure 9. (a) Average axial strain (εzz) vs. load-step; (b) average axial stress (σzz) vs. load-step;
(c) von Mises stress vs. load-step, for three randomly selected grains.
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The axial strain (Figure 9a) shows a relatively large difference, while the axial stress demonstrates
excellent agreement. Though the difference was relatively larger for von Mises stress when compared
to the axial stress, it was still within a reasonable range: around 15% error after the loading is completed.
This difference can be attributed to the lack of normal-shear coupling in the GMC formulation, which
introduces error in the stress concentrations near grain boundaries.

To further study the effectiveness of GMC, the results of two arbitrarily chosen subcells
were compared with the corresponding elements in the FEA predictions. One of the studied
elements/subcells was located far from the grain boundary (element 628), while the other (element 145)
was in the region near boundary between the grains. The GMC and FEA results of the axial strain show
significant difference (Figure 10a) in each of the elements. The axial stress results agree closely for
element 628, away from the boundary, while they demonstrate significant difference for element 145,
which is closer to the boundary (Figure 10b).Materials 2016, 9, 335 14 of 21 
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Figure 10. (a) Axial strain (εzz) vs. load-step; (b) average axial stress (σzz) vs. load-step; (c) von Mises
stress vs. load-step, for two randomly selected elements/subcells.

In the case of von Mises, element 628 has excellent agreement, while element 145, closer to the
grain boundary, shows reasonable agreement. Even in the elastic regime, the GMC and FEA von Mises
stresses differ because of additional shear stresses introduced through normal-shear coupling in the
FEA model. A more detailed comparison is provided in Table 3, which clearly shows that the GMC
solution includes a maximum of 7% error when compared to FEA for the element far away from the
grain boundary, but 17% error for the element closer to the grain boundary.
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Table 3. Maximum percentile error of the GMC solution (compared to FEA) for the 3 ˆ 3 ˆ 3
polycrystal sample.

Domain Average Axial
Strain Error %

Average Axial Stress
Error %

Average von Mises
Error %

Entire Domain 37.338 0 ´5.650

Grain 1 99.575 ´18.245 15.482
Grain 15 41.738 ´11.280 ´12.998
Grain 20 18.648 ´3.996 ´13.992

Element 145 41.343 30.952 ´17.062
Element 628 97.511 ´8.633 6.932

In addition, the von Mises stress distribution on the cross-section is compared in Figure 11. It
can be observed from the comparison that von Mises stress distribution determined by GMC agrees
reasonably well with FEA in individual grains, though the gradient near the grain boundaries (as was
also concluded from Figure 10) is not captured as well in GMC.Materials 2016, 9, 335 15 of 21 
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The computational speeds were compared between GMC and FEA for three different cases: Case
(1) a single crystal with one element/subcell; Case (2) 27-grain polycrystal with 1000 elements/subcells
and Case (3) 125-grain polycrystal with 2744 elements/subcells (Table 4). GMC demonstrated a
significant reduction in the computational cost. The computational speeds of GMC were 90, 209 and
239 times faster than that of FEA for Cases 1, Case 2 and Case 3, respectively.
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Table 4. Comparison of computational time between FEA and GMC models.

# of Grains FEA/Abaqus MAC/GMC MAC/GMC Speedup
Per Iteration

1 grain/1 element 12 s
0.021 s/iter

0.06 s
0.000235 s/iter 90ˆ

3 ˆ 3 ˆ 3 = 27 grains/1000 elements 297 s
4.18 s/iter

5.062 s
0.02 s/iter 209ˆ

5 ˆ 5 ˆ 5 = 125 grains/2744 elements 1438 s
16.72 s/iter

18.63 s
0.07 s/iter 239ˆ

The significant savings in the computational cost in addition to the capability to predict the
average RUC field quantities with minimal error make GMC homogenization a reliable and efficient
method for analyzing large-size problems. Large stress gradients near the grain boundaries due to
the abrupt change in the orientation of the grains adversely impact the local prediction accuracy of
GMC due to the lack of normal-shear coupling, especially for the components of field tensor quantities
averaged over the grains. However, the error on the prediction of effective quantities such as von
Mises is within a reasonable range. The local values of the stress tensor components and the von
Mises stress, determined at the element integration points, showed higher accuracy for the elements
away from the grain boundary. Though the prediction error of the stress tensor components were
relatively high for elements near the grain boundary, the error associated with the von Mises remained
within reasonable limits. It is also important to note that the stress gradients near grain boundaries in
real materials are not as sharp as that predicted by FEA due to various grain boundary deformation
mechanisms and smoother grain boundaries. Hence, difference in the prediction between FEA and
GMC decreases in a more realistic case than that observed in the present study. In summary, it can be
stated based on the results from the present study that the GMC method can be used for extracting the
effective von Mises stress (critical quantity for determining failure in metalic materials) at microscale
with a reasonable accuracy, while reducing the computational cost significantly. Moreover, it is the
average RUC stresses and strains that provide the link (i.e., “handshake”) between the macro- and
microscales. Thus, the good agreement in the prediction of the average RUC fields demonstrates that
GMC is a viable subscale tool for integration in a multiscale framework.

3.3. Disc

GMC integrated with the single crystal constitutive model is linked to macroscale through an FEA
framework (FEAMAC) to develop the multiscale model that can analyze structural scale problems
consisting of millions of grains. The macroscale strain, updated in each time-step, is determined
at the integration points of the macroscale FEA elements. These integration point quantities are
applied to the RUCs (microscale) homogenized by GMC, providing the average stresses, stiffness and
inelastic strains back to the FEA (macroscale) integration point. For the purpose of demonstrating
this functionality, a segment of a real-size turbine disk is analyzed. The disk is 254 mm long and is

exposed to a centrifugal load (ρω2qwith the magnitude of 6.3 kg¨ rad2

mm3¨ s2 (corresponding to the squared

angular speed of 7 ˆ 108
´

rad
sec

¯2
). Considering the symmetry of the geometry and the load, 1/8 of the

disk is analyzed applying appropriate symmetric boundary conditions and 20-node brick elements.
It is important to note that the symmetric assumption is valid strictly only at the macroscale. The
violation of this assumption due to the anisotropy and inhomogeneity arising from the differences in
grain orientations at microscale does not have any significant impact on the present demonstration
study, and is hence ignored. The 3 ˆ 3 ˆ 3-grain polycrystal was used as the material model for each
element in the microscale domain.

Figure 12a shows the von Mises stress distribution in the disk. To compare the macroscale stress
distribution, the von Mises stress distribution obtained by using a standard finite element method
(single scale) with a macroscale plasticity model is shown in Figure 12b. In the standard FEA model,
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the global stress–strain curve obtained from the same 27-grain polycrystal under uniaxial loading was
used as the constitutive model. It is important to note that the stress–strain variation per element in the
standard FEA follows the element interpolation, while in the multiscale model the GMC can evaluate
the stress–strain distribution at the microscale consistent with the interpolated macroscale values of
the macroscale finite element.Materials 2016, 9, 335 17 of 21 
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The von Mises stress distributions shown in Figure 12a,b demonstrate that the multiscale linking
using GMC homogenization under a finite element framework predicts expected distribution at
macroscale. The cross-sectional von Mises stress distribution for an element (Element 112), chosen
arbitrarily, is shown in Figure 13, and the element location is indicated in the model in Figure 12a).

The distribution of the grain orientations on the chosen cross-section of the RUC and the von
Mises stress distribution on this cross-section for two of the integration points of a random element
(here Element 112) are demonstrated in Figure 13a,b, respectively. In addition, the average von Mises
stress distribution for all the integration points chosen on the previously defined RUC cross-section
is shown in Figure 13c. The results show that the local von Mises distribution at the grain-level in
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a real-sized model can be determined using the developed multiscale model, which is extremely
computationally expensive, with a standard FEA approach.
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4. Conclusions

A multiscale computational model was developed by employing the single crystal plasticity
constitutive model at the microscale, in conjunction with GMC for homogenization, coupled to an FEA
framework at the macroscale. In order to verify the effectiveness of GMC as a homogenization tool,
the microscale behavior of single and polycrystalline samples were determined using the stand-alone
GMC, and compared to that obtained from the standard FEA utilizing higher-order elements. For
the polycrystals consisting of tens to hundreds of grains, GMC analysis achieved two–three orders of
savings in computational cost at a minimal expense of accuracy in the components of both average
and local tensor field quantities. The results based on GMC homogenization demonstrated reasonably
good agreement with the FEA solution in terms of the von Mises and stress tensor components for
the entire studied polycrystalline domain, the grain-averaged von Mises, von Mises and stress tensor
components for elements away from the grain boundaries and von Mises for elements near the grain
boundary. Therefore, the von Mises stress was found to be in a reasonably good agreement for all
cases, making GMC a promising method for failure analysis applications.

Although the large gradient near the grain boundaries was not captured by GMC, the applicability
of GMC homogenization is expected to be more effective in real materials where behavior does not
vary at the grain boundaries as drastically as in the model due to various grain boundary deformation
mechanisms. In addition, the accuracy of the local fields may not be pertinent in the absence of failure
localization, as long as the average stress and strain quantities are accurate, since this is the mode for
transmitting information across the scales in this multiscale framework.

Finally, the multiscale aspect of the model was demonstrated by implementing GMC as a
homogenization tool on an FEA platform and investigating a real life turbine engine disc problem. The
macroscale results demonstrated the expected stress distribution when compared to the FEA-based
analysis, thereby verifying the method. The microscale distribution of von Mises stress was extracted
on the cross-section of an arbitrarily selected element. The results demonstrated the multiscale
capability of the developed multiscale model and may allow engineers to model variability in the
microstructure spatially within a structural component and tailor the microstructure for different
structural applications.
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