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Abstract: The article presents a selected area of research and development concerning the methods
of material analysis based on the automatic image recognition of the investigated metallographic
sections. The objectives of the analyses of the materials for gas nitriding technology are described.
The methods of the preparation of nitrided layers, the steps of the process and the construction
and operation of devices for gas nitriding are given. We discuss the possibility of using the
methods of digital images processing in the analysis of the materials, as well as their essential
task groups: improving the quality of the images, segmentation, morphological transformations
and image recognition. The developed analysis model of the nitrided layers formation, covering
image processing and analysis techniques, as well as selected methods of artificial intelligence are
presented. The model is divided into stages, which are formalized in order to better reproduce their
actions. The validation of the presented method is performed. The advantages and limitations of the
developed solution, as well as the possibilities of its practical use, are listed.
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1. Introduction

Gas nitriding is a thermo-chemical treatment of iron alloys involving the diffusion saturation of
the metal surface with nitrogen. The aim of the thermo-chemical treatment is to produce structural
changes in the processed material and, thus, to change its functional characteristics and mechanical or
physico-chemical properties (i.e., abrasion resistance, hardness, fatigue resistance, corrosion resistance).
The process includes several steps: the production of the active saturating elements’ atoms, forming
a nitriding atmosphere; the adsorption of free atoms on the surface of the workpiece, including
physical adsorption associated with the attraction of atoms and chemical adsorption associated with
the formation of the intermetallic layer; thermally-activated diffusion of atoms in the surface layer
involving the spread of the molecules of the diffusing substances in the surrounding medium. During
the nitriding process, the nitrogen concentration in the surface layer is changed. Diffusing nitrogen
creates a zone of chemical compounds composed of pure nitrides and a diffusion zone (internal
nitriding zone), wherein the content of nitrides is reduced to the negligible value in the core material.
The whole process can be controlled, among other things, by creating the nitriding atmosphere with
a certain potential, produced by different techniques and providing it with a specified flow through
the retort. In the case of the bicomponent atmosphere, the dilution of ammonia (NH3) with nitrogen
(N2) or dissociated ammonia (NH3dis) results in the reduction of the supply of atomic nitrogen on the
steel surface, which leads to a reduction of the surface concentration of nitrogen and, consequently,
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to limiting the growth of undesirable, porous and brittle ε, ε + γ' zones. The effect of the nitriding
process is the outer layer of the structure and the phase composition dependent on parameters, such
as the temperature, the duration of the process, the type of material constituting the object subjected to
nitriding and the nitriding atmosphere composition.

Nitriding is done on materials comprising Cr, V or Mo nitride-creating elements. During the
nitriding process, such phases are formed as nitric ferrite, nitric austenite, γ' nitrides (Fe4N) and
ε nitrides (Fe2N). The gas nitriding process is carried out in specially-designed machines, which,
depending on the type of gas nitriding, may vary the equipment. The typical facility to carry out
gas nitriding (Figure 1) consists of: retort with a system of heaters, a dissociator, inlet and outlet gas
systems, the fan circulating the atmosphere and the control system. In addition, the machine can be
equipped with sensors to allow the control of the processes parameters, including determining the
degree of ammonia dissociation and nitrogen potential, and the sensors allowing for the investigation
of the process results (e.g., magnetic field sensor [1]).

Materials 2016, 9, 265 2 of 14 

brittle ε, ε + γ' zones. The effect of the nitriding process is the outer layer of the structure and the 

phase composition dependent on parameters, such as the temperature, the duration of the process, the 

type of material constituting the object subjected to nitriding and the nitriding atmosphere composition. 

Nitriding is done on materials comprising Cr, V or Mo nitride-creating elements. During the 

nitriding process, such phases are formed as nitric ferrite, nitric austenite, γ' nitrides (Fe4N) and ε 

nitrides (Fe2N). The gas nitriding process is carried out in specially-designed machines, which, 

depending on the type of gas nitriding, may vary the equipment. The typical facility to carry out gas 

nitriding (Figure 1) consists of: retort with a system of heaters, a dissociator, inlet and outlet gas 

systems, the fan circulating the atmosphere and the control system. In addition, the machine can be 

equipped with sensors to allow the control of the processes parameters, including determining the 

degree of ammonia dissociation and nitrogen potential, and the sensors allowing for the investigation 

of the process results (e.g., magnetic field sensor [1]). 

 

Figure 1. Photograph and a schematic diagram of the gas nitriding device. 

Thermo-chemical treatment in the form of gas nitriding is utilized in a number of engine and 

pump components’ production. The processed parts are, e.g., connecting rods, cylinder liners, 

pistons, pins and piston rings, gears and shafts [2]. Nitriding is also widely used to improve the 

tools’ durability, such as tools for plastic forming, forging dies, molds, drawing dies, cutting tools 

made of high speed steel, drills, taps, milling cutters, etc. 

2. Methods of Processing and Analysis of Digital Images 

The processing and analysis of digital images is the area of problems related to the processing 

and interpretation of video signals using information technology. Automatic processing and 

analysis of digital images is widely used in cognitive [3] and practical applications and is utilized in 

many industry sectors [4]. There are many types of digital image processing and analyzing methods, 

and their essential task groups are: improving the quality of the images, segmentation, 

morphological transformations and image recognition. Methods for improving image quality [5] are 

used to reduce interference associated with non-linear characteristics of optoelectronic transmitters 

or aberration of lens systems used in vision systems. 

The methods of improving image quality include point (anamorphic) and spatial operations. 

Point operations are characteristic in that the result of the conversion of pixels depends only on the 

values of the analyzed pixel, without taking into account the relationship with other pixels located in 

their vicinity. In the case of spatial operations, analyzed pixel values depend on the values of other 

pixels from a specific neighborhood or environment dependent on the diameter of the so-called local 

operator. Another class of methods for processing and analyzing digital images is the segmentation 

process, also known as labelling [6]. The segmentation process operations involve the division of 

data forming the image in order to increase the efficiency of recognition and the interpretation of the 

Figure 1. Photograph and a schematic diagram of the gas nitriding device.

Thermo-chemical treatment in the form of gas nitriding is utilized in a number of engine and
pump components’ production. The processed parts are, e.g., connecting rods, cylinder liners, pistons,
pins and piston rings, gears and shafts [2]. Nitriding is also widely used to improve the tools’ durability,
such as tools for plastic forming, forging dies, molds, drawing dies, cutting tools made of high speed
steel, drills, taps, milling cutters, etc.

2. Methods of Processing and Analysis of Digital Images

The processing and analysis of digital images is the area of problems related to the processing
and interpretation of video signals using information technology. Automatic processing and analysis
of digital images is widely used in cognitive [3] and practical applications and is utilized in many
industry sectors [4]. There are many types of digital image processing and analyzing methods, and
their essential task groups are: improving the quality of the images, segmentation, morphological
transformations and image recognition. Methods for improving image quality [5] are used to reduce
interference associated with non-linear characteristics of optoelectronic transmitters or aberration of
lens systems used in vision systems.

The methods of improving image quality include point (anamorphic) and spatial operations.
Point operations are characteristic in that the result of the conversion of pixels depends only on the
values of the analyzed pixel, without taking into account the relationship with other pixels located in
their vicinity. In the case of spatial operations, analyzed pixel values depend on the values of other
pixels from a specific neighborhood or environment dependent on the diameter of the so-called local
operator. Another class of methods for processing and analyzing digital images is the segmentation
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process, also known as labelling [6]. The segmentation process operations involve the division of data
forming the image in order to increase the efficiency of recognition and the interpretation of the objects
therein. Segmentation methods include two basic groups: area and contour. Area segmentation is
a division of the image into homogeneous zones, meeting the established criteria of homogeneity
(e.g., intensity, color, texture), which typically represent specific fragments of reality mapped to the
picture. Contour segmentation is used to determine the boundaries between objects mapped in the
analyzed image. Examples of methods of segmentation are: thresholding [7], region-growing [8]
and watershed transformation [9]. Another group of methods for image processing and analysis
are morphological transformations, by means of which the processing of objects’ shapes, which are
mapped in the analyzed image, is carried out. This is done through the use of so-called structurizing
elements [10], which are patterns of specific shapes with highlighted center points. Because of the
complexity of morphological transformation algorithms, they are divided into: simple (primary)
transformations and complex transformations. Simple transformations are characterized by the fact
that they cannot be replaced with other morphological transformations. Complex transformations
are divided into the first order and the transformations of the second or higher order. The first
order complex transformations are characterized by the fact that their action is based on a few basic
operations, and the number of occurrences of different types of basic operations is limited to one.
Complex transformations of the second and higher order are transformations whose operation is
based on a combination of basic operations; the number of occurrences of each basic operations for
the second order is two and for higher order, proportionately more. An important set of methods
for image processing and analysis are pattern recognition algorithms. There are many definitions
of image recognition process. Image recognition by Duda and Hart is a machine identification of
significant regularities in a complex and noisy environment [11]. Bezdek defines pattern recognition as
a search for graphical data structures [12], and Tadeusiewicz defines the image recognition as automatic
identification of classes, namely recognition of objects and phenomena belonging to the classes [13].
The image recognition process usually consists of two stages. The first stage is a measurement of the
value of the characteristic features of the objects recognized in the image.

The second step provides the analysis of the measured feature values to determine the membership
of objects characterized by the features to defined classes. Features, by which objects are characterized,
may be different for different types of objects; thus, it is not possible to unify them. Pattern recognition
methods, divided due to the implementation of the decision making, are shown in Figure 2.
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Figure 2. Classification of image recognition algorithms due to the implementation of the decision making.

The choice of methods for image processing and analysis and their use depends on many factors,
among which a significant role is played by the type of objects represented in the analyzed images and
the assumed limitations of processing time. Different kinds of methods are characterized by specific
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sets of advantages and limitations, determining their practical application. The effective selection of
methods to solve the given problem determines to a large extent the achieved results.

3. Model of the Processes of the Manufacture of Nitrided Layers’ Analysis Based on Automated
Analysis of Digital Images

The developed solution makes it possible to identify the conditions under which the chosen
coatings were manufactured, based on a limited range of input data in the form of digital image.
The tasks of this type fall within the area referred to as reverse engineering and are used inter alia
for the purpose of discovering the method used to develop certain products. As for the practical
aspects, it can be applied in the analysis of the causes of damage to machines and equipment or the
investigation of the technology used by competitors. In the developed model, it was assumed that
the automatic inference concerning the parameters characterizing the gas nitriding processes and the
obtained layers’ properties will be based on metallographic section photos. The structural model of
the method for studying the mechanisms of preparing nitrided layers based on automated analysis of
digital images is shown in Figure 3.
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automated analysis of digital images.

The general model of formal analysis is as follows:

FM : XM Ñ YM (1)

where:
FM—the operator of the model, XM—input values space, YM—output values space.

The input values space XM is composed of: metallographic sections’ digital images, information
on the actual size of the mapped structures, information on the method of metallographic sections’
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preparation and information about the type of material constituting the core of the analyzed sample.
The output values space YM is the layers’ parameters, information on the possible technologies used in
gas nitriding and the process characteristics with which it is possible to produce surface layers similar
to those that have been analyzed.

Before examining the images and if multi-stage inference is possible, it is necessary to properly
prepare input data in the form of digital images of material samples. Photos should be so arranged
that they exhibit the characteristics of the analyzed material structures in the best possible way.
The metallographic sections should be prepared using techniques that allow visualization of their
characteristics, such as etching, evaporation or coloring [14]. Reagents for etching effect primarily
the grain boundaries, and grains of different composition are more or less etched. When the etched
sample consists of several phases, then they are shown in different degrees, which allows carrying out
the automatic identification based on the photos. It is important that the same analyzed structures
are prepared by identical methods. Taking pictures of the material samples is possible with the use of
metallographic microscopes currently available on the market, with the function of recording images
in digital form, which ensures the repeatability of the obtained images. It is also important that the
photos are made for the same sample orientation (e.g., the material surface cross-section is on the
left side and the core on the right side of the photo). It is essential for further analysis of images, as
analytical algorithms require that one specify the direction of analysis (the order of nitriding zones’
occurrence on the pictures).

The main analysis begins with the inference concerning the choice of procedures covering the
methods of processing and analyzing digital images to identify nitriding areas and their characteristics.
It is necessary in order to obtain the characteristics of the distribution of the brightness of pixels in the
images representing metallographic cross-sections. A method of forming these characteristics shows,
inter alia, Equation (3). This step is necessary because of differences related to the representation of
the nitriding areas, resulting, inter alia, from the methods of sample preparation and the core material,
which could affect the obtained picture.

Formally, this stage is as follows:

FS1 : XS1 Ñ YS1

where:

XS1 “
 

XP, XR, XZ(—input values space for the inference associated with the identification procedures
for image processing and analysis,
XP “

 

xP
1 , xP

2 , ..., xP
i
(

—a set of parameters of metallographic section preparation,

XR “
!

xR
1 , xR

2 , ..., xR
j

)

—a set of parameters characterizing the core material,

XZ “
 

xZ
1 , xZ

2 , ..., xZ
k
(

—a set of parameters characterizing digital photos,
YS1 “

 

YU(—output values section for the inference associated with identification procedures for
image processing and analysis,
YU “

 

yu
1 , yu

2 , ..., yu
l
(

—a set of parameters characterizing the methods of processing and analyzing
digital images included in the procedures for identifying gas nitriding areas.

The records are presented in the generalized (model) form. In individual instances, the parameters
in different sets can have different values, e.g.:

Metallographic section preparation parameters:

xP
1 —6—sample preparation method identifier (combination of processes, for which a number of other

parameters can vary),
xP

2 —0.63—the upper limit of the Ra roughness after the mechanical grinding process,
xP

3 —0.54—the lower limit of the Ra roughness after the mechanical grinding process,
xP

4 —0.02—the upper limit of the Ra roughness after the mechanical polishing process,
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xP
5 —0.012—the lower limit of the Ra roughness after the mechanical polishing process,

xP
6 —4—etching method identifier (e.g., 4 is for Nital).

Core material parameters:

xR
1 —AISI Type H13 hot work tool steel—material identifier (it indicates a material having a particular

chemical composition),
xR

2 —7.8 density (g/cm3),
xR

3 —0.27—min value of Poisson’s ratio,
xR

4 —0.3—max value of Poisson’s ratio,
xR

5 —190—min shear modulus (GPa),
xR

6 —210—max shear modulus (GPa),
xR

7 —10.4 ˆ 10´6—min thermal expansion coefficient (K´1),
xR

8 —10.5 ˆ 10´6—max thermal expansion coefficient (K´1),
xR

9 —28.6—min thermal conductivity (W/m¨K),
xR

10—28.8—max thermal conductivity (W/m¨K).

Digital photo’s parameters:

xZ
1 —2048 vertical resolution (px),

xZ
2 —2048 horizontal resolution (px),

xZ
3 —1—type of color reproduction (e.g., monochrome),

xZ
4 —8—the number of bits mapping colors or shades of gray of a single pixel,

xZ
5 —2—scale (section length in µm mapped by a single bit in the photo).

Inference is carried out using the deductive model [15] based on the bivalent logic. In this solution,
the knowledge of the known cases is represented in the form of complex logical rules of evidence and
conclusions. The advantage of this is that, assuming that only certain rules will be used (which are
reflected in reality), the result will also be devoid of uncertainty. To write the logic rules, Horn clause
format was used [16]:

< : w1 ^w2 ^ ...^wn Ñ k (2)

where:

w1, w2, wn—rule evidence; k—rule inference.

The next step in the analysis is to identify nitriding areas using the procedures chosen at the
application stage.

Formally, this stage is as follows:

FS2 : XS2 Ñ YS2

where:

XS2 “
 

XO, XP, XR(—input values space for the stage concerning the inference associated with the
identification of nitriding zones,
XO “

 

xO
1 , xO

2 , ..., xO
i
(

—set of digital photos,
XP “

 

xP
1 , xP

2 , ..., xP
i
(

—set of methods of metallographic section preparation parameters,
XR “

 

xR
1 , xR

2 , ..., xR
k
(

—set of parameters characterizing the core material,
YS2 “

 

YE(—output values space for the stage concerning the inference associated with the
identification of nitriding zones,
YE “

 

yE
1 , yE

2 , ..., yE
l
(

—set of nitriding zones visualized on the metallographic sections photos.
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The analysis is preceded by identifying the ROI (region of interest) [17], which is a part of the
image subject to further processing (Figure 4) and contains important information from the point of
view of the task.
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Figure 4. ROI (region of interest) representing the fragment of the nitrided sample metallographic
section photo. Tool steel AISI H13.

After determining the ROI, the procedures related to the process of gas nitriding zones'
identification, processes associated with improving the image quality are performed, which include,
depending on the method of sample preparation and core material parameters:

‚ Scaling in two-dimensional space,
‚ Contrast enhancement using one of the functions of the type: 1 ´ e´C, ln(1 + C), tanh(C), where:

C—former contract value,
‚ Filtration, which aims to compensate the imperfections of the image acquisition process or

ineffective exposure of the tested object (filters: median [18]; Gauss [19]).

Later in the process, the identification of nitriding areas is based on an analysis of the brightness
distribution of pixels. In this process, the projection of the intensities of pixels on the axis mapping the
distance from the surface to the core of the material is carried out by evaluation of the average levels
for each row in the ROI starting from the surface of the material according to the equation:

ppyjq “
1
rx

rx
ÿ

i“1

ppxiq (3)

where:

xi—number of the next pixel in a single ROI line,
yj—number of the next pixel in a single ROI row,
rx,ry—the number of pixels in rows and rows forming a rectangular ROI area,
ppxiq—i-th pixel brightness in a ROI row,
ppyjq—the average brightness of the pixels in the j-th row of the ROI area.

An example of the pixels’ brightness distribution in an image representing the ROI on the
metallographic section of the nitrided sample material is shown in Figure 5.

For the ROI shown in Figure 4, the nitride zone located on the surface of the sample has a higher
brightness of pixels with respect to surrounding areas (this zone in many publications is also called a
white zone [20]). For this reason, it is possible to detect this in a figure showing the distribution of the
brightness of pixels as a peak, whose width also determines the thickness of this zone.



Materials 2016, 9, 265 8 of 14
Materials 2016, 9, 265 8 of 14 

 

Figure 5. Distribution of the brightness of pixels in an image representing the fragment of the 

analyzed material (AISI H13 tool steel) from the surface to the core (230 pixels distance) for different 

profile numbers (pixel rows) in the ROI area. 

After identifying the location and the thickness of each zone in the sample material pictures,  

the forecasting process of the hardness distribution in the zone of internal nitriding is being 

implemented (if this type of zone has been identified). 

Formally, this stage is as follows: 

333 : SSS YXF    

where: 

3
{ , , }

A R G

S
X X X X —input values space for predicting the hardness distribution in the zone of 

internal nitriding, 

1 2
{ , ,..., }

A A A A

i
X x x x —image data of the analyzed metallographic section, 

1 2
{ , ,..., }

R R R R

j
X x x x —set of parameters characterizing the core material, 

1 2
{ , ,..., }

G G G G

k
X x x x —set of parameters characterizing the nitriding zones, 

3
{ }

H

S
Y Y —output values space for predicting hardness distribution in the zone of  

internal nitriding, 

1 2
{ , ,..., }

H H H H

l
Y y y y —dataset characterizing the projected distribution of hardness in the zone of 

internal nitriding. 

Forecasting the hardness distribution in the zone of the internal nitriding using visual analysis 

is based on a comparison of the brightness distribution of pixels of the analyzed sample to the pixel 

brightness distributions of samples made of the same material, for which the characteristics of the 

hardness distribution are known. Knowledge of these characteristics, i.e., levels of hardness assigned 

to specific pixel brightness, comes from the hardness tests carried out using the conventional 

destructive methods carried out on previously-photographed metallographic sections. Hardness is 

measured for sample points with varying brightness mapped in images. For certain brightness levels 

multiple measurements of hardness should be made (the average value of hardness is the end 

result). Research of this type should be done before applying the method developed in the article 

and should include similar materials as those that are analyzed using the developed method. 

Metallographic sections of these materials should also be prepared in an analogous manner to  

the analyzed ones. The larger the collection of empirical data, the higher the chance of finding in the 

database material similar to that analyzed and subsequently to identify the hardness based on the 

Figure 5. Distribution of the brightness of pixels in an image representing the fragment of the analyzed
material (AISI H13 tool steel) from the surface to the core (230 pixels distance) for different profile
numbers (pixel rows) in the ROI area.

After identifying the location and the thickness of each zone in the sample material pictures, the
forecasting process of the hardness distribution in the zone of internal nitriding is being implemented
(if this type of zone has been identified).

Formally, this stage is as follows:

FS3 : XS3 Ñ YS3

where:

XS3 “
 

XA, XR, XG(—input values space for predicting the hardness distribution in the zone of
internal nitriding,
XA “

 

xA
1 , xA

2 , ..., xA
i
(

—image data of the analyzed metallographic section,

XR “
!

xR
1 , xR

2 , ..., xR
j

)

—set of parameters characterizing the core material,

XG “
 

xG
1 , xG

2 , ..., xG
k

(

—set of parameters characterizing the nitriding zones,
YS3 “

 

YH(—output values space for predicting hardness distribution in the zone of internal nitriding,
YH “

 

yH
1 , yH

2 , ..., yH
l
(

—dataset characterizing the projected distribution of hardness in the zone of
internal nitriding.

Forecasting the hardness distribution in the zone of the internal nitriding using visual analysis
is based on a comparison of the brightness distribution of pixels of the analyzed sample to the pixel
brightness distributions of samples made of the same material, for which the characteristics of the
hardness distribution are known. Knowledge of these characteristics, i.e., levels of hardness assigned to
specific pixel brightness, comes from the hardness tests carried out using the conventional destructive
methods carried out on previously-photographed metallographic sections. Hardness is measured
for sample points with varying brightness mapped in images. For certain brightness levels multiple
measurements of hardness should be made (the average value of hardness is the end result). Research
of this type should be done before applying the method developed in the article and should include
similar materials as those that are analyzed using the developed method. Metallographic sections
of these materials should also be prepared in an analogous manner to the analyzed ones. The larger
the collection of empirical data, the higher the chance of finding in the database material similar to
that analyzed and subsequently to identify the hardness based on the brightness of pixels. If there
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is no data available about similar material with a metallographic section prepared in an analogous
manner, the hardness estimation is not possible. Hence, the method is heuristic. It was assumed that
the average brightness of the pixel intensity values (Figure 6) corresponds to known levels of hardness
of the internal nitriding zone.
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for images of AISI H13 tool steel metallographic sections.

After determining the distribution of hardness in the internal nitriding zone, another element in
the analysis process is carried out: identification of nitriding technology.

Formally, it is as follows:
FS4 : XS4 Ñ YS4

where:

XS4 “
 

XW(

—input values space for identification of nitriding technology,
XW “

 

xW
1 , xW

2 , ..., xW
i
(

—set of facts and rules describing the relationship between the parameters
entered in the XR set characterizing the core material, parameters entered in the XG set characterizing
the nitride zones, parameters entered in the XH set characterizing the predicted hardness distribution,
YS4 “

 

YZ(—output values space for the identification of nitriding technology,

YZ “
!

yZ
1 , yZ

2 , ..., yZ
j

)

—collection of adequate gas nitriding technologies allowing one to produce a
nitrided layer analogous to the one analyzed.

At this stage, the process is carried out using a similar mechanism as at the stage of the methods of
image processing and analysis selection, i.e., using a deductive model and a bivalent logic. The result
of inference is a set of potential gas nitriding technologies, using which, it is possible to obtain the
outer layers characterized by similar properties to the analyzed sample. The premises and conclusions
of rules used at this stage of the analysis include facts describing: nitriding zones (S), phases (F) in
particular zones and gas nitriding technologies (G).
where:

S P tSa, Swu, F P
 

Fε, Fε`γ1 , Fγ1 , Fα`γ1 , Fα

(

, G P tG1, ...Gnu

Sa P Pp
 

Fε, Fε`γ1 , Fγ1
(

q,
Sw P Pp

 

Fα`γ1 , Fα

(

q,
G1, ...Gn—sets describing the characteristics of gas nitriding technologies,
Sa—set describing the iron nitrides zone,
Sw—set describing the internal nitrification zone,
Fε, Fε`γ1 , Fγ1—sets describing the characteristics of phases in the iron nitrides’ zone,
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Fα`γ1 , Fα—sets describing the characteristics of phases in internal nitrification zone,
P—power set.

Below is an example of a rule for the deductive process of nitriding technology identification:

<: IF Sa “
 

Fε`γ1 , Fγ1
(

ñ G “ G2

The knowledge base may include rules describing any gas nitriding technologies, including
unregulated or regulated nitriding, with single or multi-component atmospheres, e.g.: NH3, NH3 + N2,
NH3 + NH3dys, NH3 + H2.

The last step in the process of analysis is to identify the characteristics of the gas nitriding process.
Formally, this stage is as follows:

FS5 : XS5 Ñ YS5

where:

XS5 “
 

XC(—input values space for the gas nitriding process characteristics’ identification step,
XC “

 

xC
1 , xC

2 , ..., xC
i
(

—set of facts and rules describing the relationship between the parameters
entered in the XR set characterizing the core material, parameters entered in the XG set characterizing
the nitride zones, parameters entered in the XH set characterizing the predicted hardness distribution
and identified nitriding technology,
YS4 “

 

YN(—output values space for the gas nitriding process characteristics’ identification step,

YN “
!

yN
1 , yN

2 , ..., yN
j

)

—set of parameters constituting the characteristics of the gas nitriding process
adequate to produce a nitrided layer analogous to the analyzed one.

In the inference process at this stage, the Mamdani model [21] and fuzzy logic [22] are used.
The premises and conclusions of fuzzy rules are constructed with the fuzzy sets mapping the nitriding
process parameters. A set of rules to analyze from the set of accumulated rules’ knowledge base is
selected based on their conformity with the type of sample core material and the type of technology
selected in the previous step. The structure of rules for inference concerning the controlled nitriding
technology with a NH3 single component atmosphere is as follows:

<j: IF (F0
ε is MF0

ε
j ) AND (F0

ε`γ1
is M

F0
ε`γ1

j ) AND (F0
γ1

is M
F0
γ1

j ) AND (F0
α`γ1

is M
F0
α`γ1

j )

AND (FN
ε is MFN

ε
j ) AND (FN

ε`γ1 is M
FN
ε`γ1

j ) AND (FN
γ1 is M

FN
γ1

j ) AND (FN
α`γ1 is M

FN
α`γ1

j )

THEN (Npj is MNp
j ) AND (Tj is MT

j ) AND (tj is Mt
j)

where:

F0
ε , F0

ε`γ1
, F0
γ1

, F0
α`γ1

—initial widths of particular phases in iron nitrides and internal nitrification zones,

MF0
ε

j , M
F0
ε`γ1

j , M
F0
γ1

j , M
F0
α`γ1

j —input space fuzzy sets representing the initial widths of particular phases
in iron nitrides and internal nitrification zones,
FN
ε , FN

ε`γ1 , FN
γ1 , FN

α`γ1—final widths of particular phases in iron nitrides and internal nitrification zones,

MFN
ε

j , M
FN
ε`γ1

j , M
FN
γ1

j , M
FN
α`γ1

j —output space fuzzy sets representing the final widths of particular phases
in iron nitrides and internal nitrification zones,
Npj—nitrogen potential,
Tj—process temperature,
tj—process duration,
j = (1 . . . m)—rule number describing the given part of the nitriding process.

The inference at this stage is a complex process with fuzzification (the transformation of sharp
signals into fuzzy sets using specific functions that were assumed that will form isosceles triangles
with vertices corresponding to the sharp values and the sides stretched throughout the range of
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the corresponding field), inference (determination of resulting complex fuzzy sets in the output
values space for nitrogen potential, temperature and time of the nitriding process) and defuzzification
(determination of the sharp values from the complex fuzzy sets using the method of the center of
gravity [23]). If the identified nitriding technology includes a multicomponent atmosphere, then the
rules are much more complex, because they describe the proportions between the components of the
atmosphere, which may change during the nitriding process.

4. Model Verification

In order to confirm the usefulness of the developed model, verification for the chosen input
dataset was performed. These data were images of material samples obtained from gas nitriding
processes with varying process parameters. Samples of material before taking pictures were prepared
according to established methods (grinding, Nital etching), so that they can provide reference material
for the data stored in the system database. There were also collected data on the actual size of the
structures represented on digital images of material samples, in order to properly scale them in the
image processing and analysis. The database coupled with a knowledge base used by the system
contained imaging data, including 22 specimen photos representing fragments of material elements
subjected to the gas nitriding processes. Three material samples were chosen for the analysis: W300,
W302 and W320 (Figure 7). These steels were chosen due to their widespread use in the machine
industry and, thus, demonstrate the usability of the developed methodology.
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Figure 7. Metallographic section fragments of the gas nitrided steels: (a) W300 steel; (b) W302 steel;
(c) W320 steel.

The verification process takes several steps. The first verification carried out was the process
of inference based on the deductive model, concerning automatic selection of analytical procedures
consisting of the methods of image processing and analysis.

Of the four developed procedures characterized by certain attributes (the type of core material
represented in the pictures, the metallographic section preparation method, the range of pixel
brightness in pictures), a procedure was identified, which by the rule knowledge used in the process
of inference enables the most effective vision analysis for these cases. This procedure was chosen by
means of automatic inference because of the describing rule, joining the sample etching method used
and the resulting ranges of variation of pixel brightness.

In the next step of verification, the internal nitriding zone and nitrides zones were identified
on pictures of material specimens. This was most evident for the W320 steel metallographic section
(Figure 8).Materials 2016, 9, 265 12 of 14 
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There were thickness of each zone specified, as well as the hardness in the internal nitriding zone.
Hardness estimated using the developed method and Vickers hardness determined for each sample
are shown in Figure 9.
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Figure 9. Distribution of hardness for W300, W302 and W320 steels: (a) estimated by the developed
method based on metallographic section image analysis; (b) using the Vickers method.

Deductive inference-based identification of gas nitriding technologies allow one to obtain material
modification corresponding to the analyzed samples, using the indicated potential technologies,
including the monocomponent NH3 atmosphere, as well as multicomponent NH3 + NH3zdys,
NH3 + N2. Knowing the sample preparing technology (monocomponent NH3 atmosphere-ZeroFlow),
the theoretical calculations with the actual parameter values were compared. The values obtained
theoretically and the actual parameters used to generate the analyzed material modification are shown
in Table 1.
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Table 1. The parameter values calculated for the nitriding process using a monocomponent NH3

atmosphere and actual parameter values.

Material Type W300 W302 W320

The actual parameter values

Temperature T (˝C) 570 570 570
Time t (h) 8 8 5
Nitrogen potential (Np) 1.5 1.4 6.4

The determined parameter values

Temperature T (˝C) 580 580 580
Time t (h) 7.5 7.3 4.8
Nitrogen potential (Np) 1.7 1.7 6

Other, less significant parameters, such as retorts and flushing time, were determined independently by the
control system of the nitriding device.

5. Conclusions

The developed methodology to identify parameter values determining the nitrided layers’
manufacturing process, as well as material properties, based solely on automated analysis of images
of metallographic sections and selected methods of artificial intelligence, provides a solution to the
problem of limited access to expensive research equipment. The presented methodology helps also to
reduce the human factor in research by automating the process. The methodology should be treated as
a heuristic solution due to the need to provide a priori knowledge used in the process of automatic
inference, which may not cover the required subject range in each analyzed case. In companies
of a commercial nature, the developed methodology can be used to discover the methods used to
manufacture certain products by the competition. Another area of application can be aiding the analysis
of the causes of damage to machines and equipment under field conditions without the need for
expensive laboratory equipment and long-term studies. Using only the material specimens’ pictures in
analysis is the main limitation of the method, which may in the case of a narrow knowledge base lead to
failure to obtain a satisfactory result. One possibility to increase the efficiency of the developed solution
is to build an extensive knowledge base to use in the process of inference. Another is to consider the
possibility of using other methods, e.g., photoelectron spectroscopy [24], etc. The developed model
methodology is open, which means that it can be subjected to further modifications, which aim to
increase its effectiveness.
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