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Abstract: Environmental pollution from human and industrial activities has received much attention
as it adversely affects human health and bio-diversity. In this work we report efficient visible light
photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role
of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized
on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states
were controlled by annealing the nanorods at various temperatures and were characterized by
photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography
(HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high
surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of
10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than
that of nanorods with lower surface defects. The mineralization process of phenol during degradation
was also investigated, and it showed the evolution of different photocatalytic byproducts, such as
benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this
study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible
light photocatalytic activity, which is otherwise only active in the ultraviolet region.
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1. Introduction

Phenol and its derivatives are widely used in several manufacturing industries and can find
their way into the environment, polluting the ground water or surface water resources [1]. Phenol
can accumulate over several years in the presence of the point source if not treated properly, which
can lead to a serious threat to human health [2] and can adversely affect sustainable development of
societies and aquatic life [3]. Phenolic compounds have been found in different sewage sludge, influent
and effluent of wastewater, river water and soil [4–7]. The compounds 2-nitrophenol, 4-nitrophenol
and 2.4-dinitrophenol, ranging from 0.1 to 5.0 µg/L, have been reported to be present in the Ebro
river in Spain [7], while up to 40 mg/L in river water was reported due to the dispersal of wastewater
from the petrol industry [8]. Physicochemical methods including adsorption using activated carbon,
biological treatments and advanced oxidation processes (AOPs) are generally used for the degradation
of phenolic compounds in water. In the quest for purifying polluted water, photocatalysis has become
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a popular choice in recent years, and it is an effective process for converting organic pollutants, such
as phenol, into harmless products such as mineral acids, water and carbon dioxide [9,10]. Light,
upon absorption in the photocatalyst, typically a semiconductor material, generates radicals that can
degrade organic pollutants. Most of the widely used photocatalysts, e.g., titanium dioxide (TiO2),
tin dioxide (SnO2) and zinc oxide (ZnO), are wide-bandgap metal oxides, and thus high energy
ultraviolet (UV) irradiation is needed to activate them, making it difficult for large-scale, economically
viable photocatalytic applications. Therefore, research is now focusing on using solar energy for the
photocatalytic degradation of organic pollutants in water. The amount of UV irradiation in solar
light is about 5% of the spectrum, while 45% of sunlight is in the visible light region [11]. In order to
efficiently utilize solar energy, photocatalysts need to be modified to make them active in the visible
region of the solar spectra [12].

In order to improve visible light absorption in wide-bandgap metal oxide semiconductors, metal
and non-metal doping, plasmon coupling, band-matching with two semiconductors and self-doping
by crystal defects have been discussed in the literature. Doping by introducing metal and non-metal
elements shows improvements in visible light absorption in wide-bandgap semiconductors [13–15].
For example, when ZnO is doped to Cu and Ag, it improves the photocatalytic activity of ZnO under
visible light irradiation [16,17]. The improvement of photocatalytic activity of ZnO is also observed by
effective charge separation through the coupling of a metal deposit (nanoparticles) on the photocatalyst
surface [18–21]. Furthermore, the mixed composite of two semiconductors [22–24] has been shown
to be effective in efficient charge separation upon visible light absorption. Visible light absorption
can also be increased through defect engineering of the photocatalyst surface, sometimes called
self-doping [25,26]. Increasing or controlling the crystal defects in the semiconductor also increases the
range of visible light absorption of the material, making it active under solar light [27]. Many studies
showed promising improvement in the photocatalytic activities of metal oxide semiconductors by
creating defects on the surface of the catalyst. It was shown that oxygen vacancies can be controlled
by annealing ZnO nanoparticles or nanorods at elevated temperatures, enhancing the photocatalytic
degradation of organic contaminants [28,29].

In this work, we study the defect-induced photocatalytic activity of ZnO nanorods with a careful
comparison of the surface defect states of the ZnO nanorods using phenol as a test contaminant.
Density of the surface defect states in ZnO nanorods was controlled by annealing the nanorods in
ambient atmosphere at moderate temperatures and their influence on the visible light photocatalytic
activity of the ZnO nanorods was explored.

2. Results and Discussion

Figure 1a shows the SEM micrographs of vertically aligned hexagonal wurtzite ZnO nanorods
grown on glass substrates annealed in air at 350 ˝C. The average length of the ZnO nanorods was
found to be ~4.3 ˘ 0.2 µm (estimated from the cross-sectional view of the samples as shown in the
inset) and the average diameter was 100 ˘ 10 nm. It should be noted that no morphological changes
were observed between the samples annealed at 100 ˝C (data not shown here) and 350 ˝C, respectively.
XRD patterns of the ZnO nanorods annealed at 100 and 350 ˝C are shown in Figure 1b. Both the ZnO
nanorod samples showed characteristic XRD peaks of hexagonal wurtzite crystal structure confirmed
from JCPDS card No. 01-070-8070. No variations in the XRD patterns were observed between the
ZnO nanorods annealed at different temperatures. The strongest XRD peak at 34.35˝ indicated the
preferential orientation of the ZnO nanorods along the (002) crystal plane [30].
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Figure 2. (a) Room temperature photoluminescence (PL) spectra of ZnO nanorods annealed at 100 
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the band-to-band transition observed at 388 nm. 

Figure 1. (a) SEM micrograph of ZnO nanorods grown on glass substrate using a microwave-assisted
hydrothermal process. The sample was annealed at 350 ˝C in air for 1 h, followed by the growth.
Inset shows the cross-sectional view of the vertically aligned ZnO nanorods; (b) XRD patterns of
ZnO nanorods annealed at 100 and 350 ˝C in order to vary the concentrations of surface defects in
the nanorods.

Surface defects in the ZnO nanorods modulated by annealing them at two different temperatures
were then characterized by photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS)
techniques. The room temperature PL spectra of ZnO nanorods annealed at 100 and 350 ˝C are shown
in Figure 2a, where emissions in both the UV and visible regions are observed. The PL bands in
the high energy region are found to be composed of two major Gaussian components, peaking at
around 388 nm (~3.2 eV) and 418 nm (~2.9 eV), respectively, as shown in Figure 2b,c, representing
the band-to-band transitions in ZnO and a radiative transition from a defect state situated near the
conduction band (CB) of ZnO, respectively. Deep-level zinc interstitial (Zni) defects, typically found at
~0.22 eV below the CB of ZnO, are reported as the possible origin of the violet emission from ZnO [31].

Materials 2016, 9, 238 3 of 10 

 

Figure 1. (a) SEM micrograph of ZnO nanorods grown on glass substrate using a microwave-assisted 

hydrothermal process. The sample was annealed at 350 °C in air for 1 h, followed by the growth. 

Inset shows the cross-sectional view of the vertically aligned ZnO nanorods; (b) XRD patterns of 

ZnO nanorods annealed at 100 and 350 °C in order to vary the concentrations of surface defects in  

the nanorods. 

Surface defects in the ZnO nanorods modulated by annealing them at two different temperatures 

were then characterized by photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) 

techniques. The room temperature PL spectra of ZnO nanorods annealed at 100 and 350 °C are 

shown in Figure 2a, where emissions in both the UV and visible regions are observed. The PL bands 

in the high energy region are found to be composed of two major Gaussian components, peaking at 

around 388 nm (~3.2 eV) and 418 nm (~2.9 eV), respectively, as shown in Figure 2b,c, representing the 

band-to-band transitions in ZnO and a radiative transition from a defect state situated near the 

conduction band (CB) of ZnO, respectively. Deep-level zinc interstitial (Zni) defects, typically found 

at ~0.22 eV below the CB of ZnO, are reported as the possible origin of the violet emission from  

ZnO [31]. 

 

Figure 2. (a) Room temperature photoluminescence (PL) spectra of ZnO nanorods annealed at 100 

and 350 °C (Excitation: 350 nm). Both the PL spectra were found to be composed of five Gaussian 

components, which are shown in (b) and (c). The relative concentrations of surface-situated oxygen 

vacancy states in the annealed ZnO nanorods, represented by PL components at 530 and 580 nm  

(Vo+ and Vo++, respectively), are shown in (d) as the ratio of area under the PL bands to the area under 

the band-to-band transition observed at 388 nm. 

Figure 2. (a) Room temperature photoluminescence (PL) spectra of ZnO nanorods annealed at
100 and 350 ˝C (Excitation: 350 nm). Both the PL spectra were found to be composed of five Gaussian
components, which are shown in (b) and (c). The relative concentrations of surface-situated oxygen
vacancy states in the annealed ZnO nanorods, represented by PL components at 530 and 580 nm
(Vo

+ and Vo
++, respectively), are shown in (d) as the ratio of area under the PL bands to the area under

the band-to-band transition observed at 388 nm.
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The broad emissions from the ZnO nanorods observed in the green-yellow (GY) region, typically
attributed to the surface defects in ZnO nanostructures, were also found to be composed of three major
Gaussian components centered at 483, 530 and 580 nm. The small 483 nm component can be related to
the zinc vacancy states (VZn), whereas the 530 and 580 nm PL bands are due to the singly and doubly
charged oxygen vacancy states (Vo

+ and Vo
++), respectively [32,33]. As shown in Figure 2d, upon

annealing the ZnO nanorods at 350 ˝C, the relative concentration of oxygen vacancies near the surface,
measured as the ratio of the area under the Gaussian components to the area under the band-to-band
transition at 388 nm, was found to increase compared to the 100 ˝C annealed ZnO nanorods, indicating
that oxygen vacancy states diffuse towards the surface upon annealing at higher temperature due
to the increase in the self-diffusion coefficient of the oxygen vacancy states [31]. Further, since in
ZnO wurtzite crystal the axial ratio of the oxygen hcp lattice (c/a ~1.606) is slightly smaller than
ideal (c/a ~1.633), the out-of-plane diffusion of defects is dominant, allowing the oxygen vacancies to
migrate towards the surface of the nanorods [34]. As a result, upon annealing the nanorods at 350 ˝C,
the relative concentration of oxygen vacancy sites gradually increases near the surface.

In order to further verify the chemical states of oxygen near the surface of the annealed ZnO
nanorods, we carried out XPS measurements on the ZnO nanorods annealed at 100 and 350 ˝C. Figure 3
shows the asymmetric O1s XPS spectra of the ZnO nanorods annealed at different temperatures. Both
asymmetric O1s XPS spectra were coherently fitted by three Gaussian components, centered at 530.6 eV
(Oa), 531.9 eV (Ob) and 532.6 eV (Oc), respectively, as shown in Figure 3a,b. The Oa peak on the lower
binding energy side of the O1s spectrum can be attributed to the O2

´ ions which are surrounded by
zinc atoms with the full supplement of nearest-neighbor O2

´ ions [34]. Thus, the Oa peak of the O1s
spectrum can be attributed to the Zn–O bonding. The Oc peak towards the higher binding energy
at 532.6 eV is usually associated with the chemisorbed or dissociated oxygen or OH species on the
surface of ZnO, such as adsorbed H2O or adsorbed O2 [35,36]. The middle component at the binding
energy 531.9 eV (Ob) of the O1s spectra is related to the O2

´ ions that are in oxygen-deficient regions
within the ZnO matrix (oxygen vacancies) [37,38]. Therefore, changes in the area under these peaks
upon annealing can be correlated to the variations in the chemical states of oxygen at the surface of the
ZnO nanorods.
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Figure 3. Oxygen 1s XPS spectra of ZnO nanorods annealed at (a) 100 ˝C and (b) 350 ˝C. The O1s
spectra were coherently fitted with three Gaussian peaks (Oa, Ob and Oc); (c) Percentage variations in
the area under Oa, Ob and Oc representing the chemical states of oxygen at two different annealing
temperatures of the ZnO nanorods.

The area of the peak Oa was found to increase from 63.8% to 74.3% when ZnO nanorods were
annealed at 350 ˝C, indicating the improvement in the Zn–O bonding in ZnO nanorods upon annealing.
In this regard, it has been shown that, at annealing temperatures above 300 ˝C, the Zn–O bonding
stoichiometry can be enhanced [39,40]. Also, the area under the Oc peak was observed to decrease,
suggesting the reduction of the surface-adsorbed OH species in the ZnO nanorods upon annealing.
However, the area under the Ob peak related to the oxygen vacancies was observed to increase from
14.9% to 16.8% when nanorods were annealed at 350 ˝C, indicating the accumulation of oxygen
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vacancy states near the surface of the ZnO nanorods, confirming the diffusion of oxygen vacancies
towards the surface of the ZnO nanorods upon annealing them at 350 ˝C resulting in the increase in
the GY PL band intensity compared to the 100 ˝C annealed nanorods, as observed in Figure 2a.

The ZnO nanorods with two different surface defect densities were then used to study the
photocatalytic degradation of phenol under solar light irradiation. Figure 4a shows a schematic
diagram of three chromatograms of phenol degradation after 300 min with and without the ZnO
nanorods. The retention time for phenol under the given High performance liquid chromatography
(HPLC) operating conditions was recorded at 4.66 min. The concentration of phenol at different times
was estimated from the area under the phenol peak detected at 4.66 min.
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Figure 4. (a) High performance liquid chromatography (HPLC) chromatograms representing the
phenol peak at retention time 4.66 min after 300 min of photocatalytic degradation with and without
the ZnO nanorods; (b) Visible light photocatalytic degradation kinetics of phenol (initial concentration:
10 ppm) with and without the ZnO nanorods having different surface defect densities.

When phenol was exposed to light only in the absence of ZnO nanorods, it showed a slight
degradation of about 3% after 300 min, indicating that visible light has almost no effect on the
degradation of phenol in aqueous medium. When ZnO nanorods with lower surface defects were
used, only about 20% degradation of phenol was observed after 300 min (Figure 4b), showing a
degradation rate constant of 1 ˆ 10´3 min´1. In this regard, it has been reported earlier that the
presence of surface defects in ZnO nanostructures increases the rate of electron-hole pair generation
through increased sub-bandgap absorption, enhancing the photocatalytic activity of the material in the
visible region [41,42]. Additionally, the increased surface defect density in the 350 ˝C annealed ZnO
nanorods increases the number of active sites near the surface of the nanorods by acting as trap sites
for the photo-generated electrons, allowing the photoactive charges to interact easily with the phenol
molecules [41]. As a result, when ZnO nanorods with higher surface defects (annealed at 350 ˝C) were
used, the photocatalytic degradation of phenol was further observed to enhance demonstrating the
degradation rate constant (4.3 ˆ 10´3 min´1) comparable to what has been reported in the literature
using titanium dioxide (TiO2) nanoparticles and UV light irradiation [1], and it is more than four times
that of the nanorods with lower defects.

In order to understand the detailed photocatalytic degradation process of phenol pathways,
we have studied the formation of byproducts during the degradation of phenol. Degradation of
phenol initially starts with the breakage of the O–H bonds, resulting in phenol giving up a proton
(H+). It results in the formation of an anion stabilized by the aromatic ring [43]. Figure 5a shows the
evolution of different reaction byproducts detected during the photocatalytic degradation of phenol
using the ZnO nanorods with higher surface defects. Benzoquinone (BQ), catechol, resorcinol and
formic acid were detected as the major byproducts of the phenol photocatalytic degradation under
visible light irradiation. The intermediates that could be detected were benzoquinone, catechol, formic
acid and resorcinol.
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Figure 5. (a) Intermediate byproducts detected at various stages of photocatalytic degradation of
phenol under visible light irradiation with ZnO nanorods as photocatalyst and (b) variations in the pH
of the phenol solution during the degradation process.

BQ forms readily upon photoirradiation in the presence of a photocatalyst, with the maximum
reached within 180 min, and it is almost intractable in samples subjected to photocatalysis for 300 min.
The formation of BQ at the early stage was also reflected from the pH of the phenol solution (Figure 5b)
as it rapidly increased towards basic pH from 6.2 to 6.6, reaching a maximum pH of 7.2 at around
180 min where the BQ concentration was also at its peak. Catechol and resorcinol were observed at the
early stages during the photodegradation, processing very low concentrations. The presence of both
catechol and resorcinol were found to decrease beyond 200 min of photoirradiation and were almost
undetectable after 300 min of photocatalytic reaction. The pH of the phenol solution was observed
to shift slightly towards the acidic region due to the formation of formic acids after about 180 min
of photocatalytic degradation during our experiments. Based on these results, the photocatalytic
degradation pathway for phenol under visible light irradiation in the presence of ZnO nanorods
with high surface defects is presented in Figure 6, showing the complete mineralization process
of phenol. Hydroxyl radicals produced on the photocatalyst surface react with phenol to produce
hydroquinone. Phenol produces phenoxy radicals that are in resonance with ortho- and para-position
radical structures which lead to the formation of the three mesomeric forms of the radical, which reacts
with hydroxyl radicals to form hydroquinone, benzoquinone, and catechol [43]. Hydroquinone reacts
with OH´ to form benzoquinone. Upon extended photo-oxidation, the benzene ring can open due to
continuous oxidation, leading to the formation of aliphatic compounds and ultimately mineralizing to
form carbon dioxide (CO2) and water upon complete oxidation, which is schematically presented in
Figure 6.
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Figure 6. Photocatalytic degradation pathways of phenol under visible light irradiation in the presence
of ZnO nanorods with high surface defects as photocatalysts depicting the complete mineralization
process of phenol where O–H bonds are broken and resulting in the formation of multiple channels
starting with hydroquinone, catechol and resorcinol. Benzoquinone is reversible with hydroquinone.
The aromatic ring is opened and results in the formation of aliphatic compounds, such as mineral acids,
water and carbon dioxide.
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3. Materials and Methods

3.1. Preparation of Zinc Oxide Nanorods

The synthesis of ZnO nanorods was carried out using microwave-assisted hydrothermal
process [44,45]. ZnO nanorods were grown using a two-step process: (a) deposition of a seed layer on
the glass substrate and (b) growth of the nanorods. The glass substrates were first carefully cleaned
using detergent, ethanol and followed by acetone and finally deionized (DI) water under sonication
for 15 min each. For ZnO seeding process, a solution (10 mM) was prepared by dissolving zinc
acetate dihydrate (Zn(CH3COO)2¨ 2H2O; Merck, Billerica, MA, USA) in DI water. The ZnO seed layer
was deposited by spraying the solution on the glass substrate placed on a hotplate at 350 ˝C. ZnO
nanorods were then grown by horizontally dipping the seeded substrates in a mixture of equimolar
concentrations of 20 mM zinc nitrate hexahydrate (Zn(NO3)2¨ 6H2O; Sigma, Saint Louis, MO, USA)
and hexamethylenetetramine (HMTA; Merck) solution in DI water and heating in a microwave oven at
a power setting of 180 W for 45 min. The temperature of the growth solution was 90 ˝C. After 45 min
the old growth solution was replaced with new solution and the cycle was repeated four more times.
After that, obtained glass substrates containing ZnO nanorods were removed from the solution, rinsed
thoroughly with DI water, and dried in an oven at 90 ˝C. In order to modulate the density of surface
defects in the ZnO nanorods, some ZnO nanorod samples were annealed at 100 ˝C and rest were
annealed at 350 ˝C in air for 1 h in a furnace (Carbolite CWF 1200, Derbyshire, UK).

3.2. Characterization

The morphology of the ZnO nanorods was investigated by field emission scanning electron
microscopy (FESEM, JSM-7600F, JEOL, Tokyo , Japan, operated at 20 kV) and the crystal structure was
evaluated using X-ray diffraction (XRD, Miniflex 600, Rigaku, Tokyo , Japan) with Cu Kα radiation in
the scanning range from 20˝ to 80˝ in 0.02˝/s steps. Photoluminescence (PL) spectra of the samples
were collected by using fluorescence spectrometer (LS 55, Perkin Elmer, Waltham, MA, USA) at
room temperature with 350 nm excitation wavelength (~3.54 eV). X-ray photoemission spectroscopy
(XPS; Omicron Nanotechnology, Taunusstein, Germany) with a monochromatic Al Kα radiation
(energy = 1486.6 eV) working at 15 kV was used to study the surface states of the ZnO nanorods.
The obtained XPS spectra were calibrated with respect to the C1s feature at 284.6 eV. During the
XPS measurements, ZnO samples were flooded with electrons to avoid surface charging during the
XPS measurements.

3.3. Photocatalytic Activity Test

A phenol solution (10 ppm) was prepared in organic-free DI water. Amount of 3 mL of the
phenol solution was put into 3.5 mL plastic cuvettes. The glass slide (dimensions of 2.5 cm ˆ 0.9 cm)
containing ZnO nanorods with different surface defect densities, that were previously prepared by
using microwave-assisted hydrothermal process, were placed semi-vertically in the cuvettes and they
were kept under stimulated solar light (AM 1.5 radiation, 1 kW/m2) obtained from a solar simulator
(Sciencetech SS1.6 kW, London, ON, Canada). A control sample of 10 ppm phenol in DI water without
any ZnO nanorods was also placed under the simulated solar light. The photocatalytic degradation
was carried out for 300 min and phenol fractions (50 µL) were collected at regular intervals and
degradation kinetics was studied by analyzing the phenol solution by using ultra performance liquid
chromatography (UPLC, LC-30AD, Shimadzu, Tokyo, Japan) technique. Prior to the starting of the
photocatalytic reactions, adsorption test was conducted in dark to attain an adsorption/desorption
equilibrium of phenol with the ZnO nanorods and it was found that within 2 h of dipping into phenol
solution the equilibrium was achieved. For all photocatalytic experiments, ZnO nanorod samples were
soaked in phenol solution for 2 h prior to the photocatalysis experiments.
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3.4. Analytical Method of Degradation Assay

The change in phenol concentration over time by using ZnO nanorods with different surface
defect densities was monitored by ultra performance liquid chromatography (UPLC). An autosampler
(SIL-30A, Shimadzu, Tokyo, Japan) was used for introducing 20 µL of the samples into the
chromatograph. The analysis was carried out using a ODS hypersil column (3 µm particle size,
4.6 mm internal diameter (I.D.), 80 mm length, Hewlett Packard, Santa Clara, CA, USA) maintained
at room temperature. The mobile phase was a mixture of water and methanol in a ratio 55:45 and
the pH was adjusted to 3 using sulfuric acid. The flow rate of the mobile phase was 0.3 mL/min,
while the recorded pressure was around 50 bars. The compounds of interest were spectrally scanned
(200–400 nm) by using Diode Array detector (Prominence SPD-M20A, Shimadzu, Tokyo, Japan) and
five wavelengths (210, 245, 270, 276 and 290 nm) were selected for the analysis. The photocatalytic
degradation kinetics of phenol was then plotted as Ct/Co against visible light irradiation time, where
Ct is the concentration of phenol at irradiation time “t” measured by HPLC and Co is the initial
concentration of phenol (10 ppm).

4. Conclusions

Zinc oxide nanorods were synthesized on glass substrates using a microwave-assisted
hydrothermal process and the surface defects in the nanorods were modulated by annealing the
nanorods in air at different temperatures. The PL and XPS analysis showed maximum surface defects
for the 350 ˝Cannealed ZnO nanorods. The role of the surface defects on the visible light photocatalytic
activity of ZnO nanorods was then evaluated by degrading phenol in aqueous medium. ZnO nanorods
with maximum surface defect densities showed the highest photocatalytic degradation rate for phenol
and degraded more than 72% of the phenol in just 5 h of solar light irradiation. The intermediate
products formed during the phenol photocatalysis were studied and the complete mineralization
pathway for the visible light photocatalytic degradation of phenol in the presence of ZnO nanorods
is presented.
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