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Abstract: Recently, numerous compounds have been studied in order to develop antibacterial
agents, which can prevent colonized wounds from infection, and assist the wound healing. For this
purpose, novel silver chloride nanoparticles stabilized with chitosan oligomer (CHI-AgCl NPs) were
synthesized to investigate the influence of antibacterial chitosan oligomer (CHI) exerted by the silver
chloride nanoparticles (AgCl NPs) on burn wound healing in a rat model. The CHI-AgCl NPs had
a spherical morphology with a mean diameter of 42 ˘ 15 nm. The burn wound healing of CHI-AgCl
NPs ointment was compared with untreated group, Vaseline ointment, and chitosan ointment group.
The burn wound treated with CHI-AgCl NPs ointment was completely healed by 14 treatment days,
and was similar to normal skin. Particularly, the regenerated collagen density became the highest in
the CHI-AgCl NPs ointment group. The CHI-AgCl NPs ointment is considered a suitable healing
agent for burn wounds, due to dual antibacterial activity of the AgCl NPs and CHI.

Keywords: Silver chloride nanoparticles; Chitosan oligomer; Burn wound healing;
Antibacterial activity

1. Introduction

Antibacterial materials could be used in food packaging or handling, medical tools, hospitals
where people are more vulnerable to infections, possible areas like bathrooms where personal hygiene
is important, air and water filtration, etc. Among various materials known to be effective against
a variety of bacteria, silver (Ag) compounds (including elemental silver, silver oxide, silver halide, etc.)
are unique materials due to their powerful antibacterial activities against nearly 650 bacteria strains.
In addition, Ag compounds are well-known and have already been used in many biological and
medical fields, such as biosensors, wound healing materials, dental resin composites, and cancer
therapeutics [1,2].

Traumatic wounds including burn wound occur frequently in skin loss, and bacterial infections
often result from heavy contamination. There are many dressings and creams available to clinicians
for use in treating burn wounds. Numerous agents are valued for their antibacterial activity, which
can prevent colonized wounds from becoming infected, thereby assisting the wound to heal. Wound
infection is one of the main problems and serious consequence in severe burns or extensive skin
loss since bacteria produce leukocidin and tissue-destroying enzymes that further impair healing.
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As a result, wound infections alter and delay normal the wound healing mechanism. One of the
approaches for treating a wound infection is the use of wound dressings containing antibacterial
materials with a broad-spectrum of activity. Ag compounds have been widely found in wound
dressings in various forms, such as elemental Ag (Ag metal, and nanocrystalline Ag), inorganic
compounds (silver oxide, silver phosphate, silver chloride, silver sulfate, silver calcium-sodium
phosphate, silver zirconium compound, and silver sulfadiazine), and organic complexes (silver zinc
allantoinate, silver alginate, and silver carboxymethylcellulose) [3–5]. Recent evidence suggests that
the antibacterial mechanism is due to the release of Ag+ or Ag0. In addition, this antibacterial effect
accelerates wound healing [6,7]. The slow release of Ag ions is required for a continual bactericidal
concentration of Ag ions in the wound. Silver chloride (AgCl) is colorless and its low solubility product
ensures a long life and a slow release of silver ions for antibacterial property [8,9]. Indeed, there have
been some reports on using AgCl for antibacterial agent in wound dressing [10–12].

Chitosan, a β-1,4-linked polysaccharide of glucosamine (2-amino-2-deoxy-β-D-glucose) with
lesser amounts of N-acetylglucosamine, is a natural non-toxic biopolymer derived by deacetylation of
chitin [13]. Chitosan oligomer (chitooligosaccharide, CHI) is easy to prepare by the acidic or enzymatic
partial hydrolysis of chitosan. It has been reported that lower oligomers of chitosan are water-soluble
and biologically active, through their solubility and activities are dependent on average degree of
polymerization (DP) and the degree of deacetylation (DD) [14,15]. Chitosan and chitosan oligomer
have pronounced antibacterial effects because of the presence of amino groups [16,17]. Many studies
have also been carried out on the use of chitosan and its derivatives as a wound healing accelerator by
enhancing the functions of inflammatory cells, and there is good evidence that chitosan can beneficially
influence every separate stage of wound healing [18–22]. Chitosan and chitosan oligomer are currently
being explored as novel tools for wound and burn dressings, because of their immunostimulating,
hemostatic, antibacterial, nontoxic, biocompatible, and biodegradable properties [23].

In previous study [24], AgCl NPs stabilized with CHI were prepared by green synthesis. The effect
of the CHI, which was used as a resource of Cl ions and a stabilizing agent, on the formation reaction
of the AgCl NPs was investigated. It was confirmed that the Cl ions remained around ammonium
group in CHI molecule since the CHI was made by acidic hydrolysis using hydrochloric acid. Ag ions
readily reacted with the Cl ions during the formation of AgCl NPs. The synergistic effect of CHI-AgCl
NPs on the antibacterial activity was confirmed to be because it was prepared by the combination of
CHI and AgCl NPs, known antibacterial materials. However, further studies on accelerating effect of
the in vivo wound healing by antibacterial CHI-AgCl NPs have not been studied.

The present study was carried out to give an example of an effective burn wound healing agent
based on synergistic effect from using both AgCl and CHI. We synthesized CHI-AgCl NPs using
water-soluble chitosan oligomer by an environment-friendly method. Furthermore, the CHI-AgCl
NPs ointment was prepared to evaluate the healing effect for burn wound using rat model with the
expectation of applications in pharmaceutical and biomedical fields.

2. Materials and Methods

2.1. Preparation of CHI-AgCl NPs

Oligomeric chitosan (CHI, DD = 87%) was supplied by Hyosung Co. (Korea), and its composition
is as follows: dimer 2.31, trimer 12.53, tetramer 15.11, pentamer 13.59, hexamer 8.86, heptamer 6.46,
octamer 8.87, and nonamer or higher 32.27 mol %. Cl ions (Cl´) remained in CHI molecule because
CHI was made by acidic hydrolysis using chitosan in hydrochloric acid. CHI was used as a resource
of Cl ions and stabilizing agent for preparing AgCl NPs. Distilled water was used as solvent in all
the syntheses to provide benign environmental conditions in this system. In a typical preparation,
0.5 mL of 0.1 M AgNO3 solution was added to 60 mL of 5% (w/v) CHI solution. After complete
dissolution, the mixture was reacted in a three-necked glass-stopper flask fitted with a double-walled
spiral condenser to prevent evaporation and heated to 70 ˝C for 300 min. All solution components
were purged with nitrogen gas to eliminate oxygen. After the formation of CHI-AgCl NPs, the
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suspension was freeze-dried immediately at –85 ˝C to produce the powder CHI-AgCl NPs. A series of
experiments were performed to obtain transparent CHI-AgCl NPs by varying the order of reactants
and the reaction temperature.

2.2. Characterization of CHI-AgCl NPs

A UV-Vis spectrophotometer (Shimadzu, UV-2450, Tokyo, Japan) was used to record absorption
spectra in the suspension of CHI-AgCl NPs using a cell with path length of 1.0 cm. The morphology
of CHI-AgCl NPs was observed using a transmission electron microscope (TEM) (EM 912 OMEGA,
ZEISS, Jena, Germany). The samples for TEM observation were prepared by spotting a few microliters
of the suspension of synthesized CHI-AgCl NPs onto a holey carbon TEM grid followed by drying
before putting them into the TEM sample chamber.

2.3. Preparation of Ointments

Three ointments for in-vivo burn wound healing were prepared from Vaseline, CHI, and CHI-AgCl
NPs powder. The burn wound healing effect of CHI-AgCl NPs against CHI alone was examined,
and Vaseline was used as a base component of the ointment. The composition of each ointment for
burn wound healing is described in Table 1. The CHI and CHI-AgCl NPs powder were dissolved in
distilled water to obtain 10% (w/v) aqueous solutions at room temperature, which were used in the
water phase. Twelve grams of Vaseline, 12 g of stearyl alcohol and a 4 g of surfactant (Cremophor
RH40, HCO-40, SIGMA, Darmstadt, Germany) were heated at 75 ˝C and mixed with the water phase
solution (40 mL) at 75 ˝C to obtain an emulsion. Uniform ointments were obtained after slow cooling
of the emulsion.

Table 1. The composition of each ointment for in-vivo burn wound healing in the rats.

Ointment Composition Vaseline CHI CHI-AgCl NPs

Oil phase 12 g Vaseline, 12 g Stearyl alcohol, 4 g Cremophor RH40

Water phase (40 mL) – 4 g CHI 4 g CHI-AgCl NPs

Optical images
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2.4. Burn Wound Model

The experiment was approved by the institutional committee for animal care in laboratory
research. For all experiments, four-week-old Sprague-Dawley rats were housed and bred at the
experimental animal center of Chungnam National University. The animals were provided with
a commercial diet and water ad libitum under temperature-, humidity-, and lighting-controlled
conditions (22 ˘ 2 ˝C, 55 ˘ 5%, and a 12:12-h light–dark cycle, respectively). Procedures involving
animals and their care were conducted in accordance with our institutional guidelines, which comply
with international laws and policies [25]. To induce burns with skin damage, a slightly modified
soldering iron with a flat contact area of 28.3 mm2 (AD = 6 mm) was made. Before creation of the burn
wound, rats were anaesthetized by Tiletamine plus Zolazepam, (30 mg/kg + 10 mg/kg) according
to body weight. Hair on the dorsal side of the rats was removed, and a burn wound was inflicted
by placing the circular iron disc (heated to 95 ˝C) over the dorsal side for 20 s. Second-degree burns
without cellular and tissue structure in the dermis were observed by sections stained with hematoxylin
and eosin (H&E). Animals were divided after 7 days of acclimation in the cage, and then assigned
equally (n = 30) to one of the following groups: Group 1-untreated controls dressed with gauze; Group
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2-treated with the Vaseline ointment with gauze; Group 3-treated with CHI ointment with gauze;
and group 4-treated with CHI-AgCl NPs ointment with gauze. Small amounts of ointment were
applied everyday for 21 days. The sample tissue was enucleated after treatment 1, 3, 7, 14, and 21 days
before sacrifice. The skin tissue for histopathological analysis was fixed in 10% buffered formalin,
subsequently dehydrated, and embedded in paraffin. The tissue paraffin was cut into 5 µm sections.
Fixed sections were then stained with H&E and Masson’s trichrome staining (MT).

2.5. Analysis of Blood Counts

The biochemical analysis of the whole blood was performed to confirm the healing process.
The blood sample was obtained from the abdominal aorta of animals before sacrifice. After being
placed in a serum tube containing the EDTA, and the tube was shaken with an orbital shaker. Complete
blood counts were measured using an automatic blood chemical analyzer (MS9-5, CARESIDE CO.
LTD, Seongnam, Korea).

3. Results and Discussion

3.1. Characterization of CHI-AgCl NPs

The formation of CHI-AgCl NPs was confirmed easily by both the color change from yellow to
yellowish brown with increasing reaction time and the strong surface plasmon resonance (SPR) peak
around 400 nm due to the formation of spherical AgCl NPs [12]. Figure 1a shows some typical UV-Vis
spectra of the suspension with CHI-AgCl NPs for the different reaction times. A strong SPR peak was
observed at around 400 nm, which is a characteristic of spherical faceted AgCl NPs. A red shift of
the absorption maximum was observed with increasing reaction time. The inset graph in Figure 1a
shows the change in absorbance at λ = 400 nm of the CHI-AgCl NPs suspension with the reaction
time for 300 min. To further investigate the morphology of CHI-AgCl NPs, the sample was analyzed
with a field emission scanning electron microscope. There is a roughly spherical CHI-AgCl NPs, as
seen in Figure 1b. The size of the roughly spherical CHI-AgCl NPs ranges between 30 and 50 nm, and
their average diameter is 42 ˘ 15 nm (inset image in Figure 1b). It was assumed that the formation
mechanism of AgCl NPs occurred in two steps. The mechanism on the formation of CHI-AgCl NPs
is illustrated in Figure 1c. Firstly, the Ag ions readily reacted with Cl ions, which remained around
the ammonium group of CHI after the acidic hydrolysis by hydrochloric acid (HCl). Secondly, small
AgCl NPs were stabilized with amino and hydroxyl groups in CHI and underwent growth to large
particles [26–30].
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Figure 1. (a) UV-Vis spectra of CHI-AgCl NPs dispersion with reaction time (the inset shows the
change in absorbance at 400 nm with reaction time); (b) TEM image and the corresponding particle
size distribution (inset) of the CHI-AgCl NPs; and (c) a proposed mechanism for the formation of
CHI-AgCl NPs.
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3.2. A Clinical Pathology Study

A clinical pathology study was conducted during in-vivo burn wound treatment to determine the
effects of burn trauma on skin that was infected and dehydrated after sustaining injury. The survival
curves were found to be significantly different between the ointment-treated groups (Groups 2–4)
and untreated group (Group 1). The survival rates of the CHI-AgCl NPs ointment group were 90%,
but those of the untreated, Vaseline, and CHI groups were 80% at 21 days (n = 30). In all groups of
animals, most of the fatalities occurred between Day 1 and 6 because of the post-burning infection
(Figure 2a). In particular, the surviving rate was highest in the CHI-AgCl NPs ointment group in
comparison with other ointment treated groups (Groups 2 and 3), making it clear that the CHI-AgCl
NPs ointment had prevented the infection and improved the burn wound healing. The body weight
gain and components of blood were determined for the clinical pathology study during the burn
wound healing process. The body weight gain was compared in Figure 2b. On early treatment days
until Day 3, the body weight gain was decreased for all groups. There was no significant difference
in all groups during treatment days. White blood cells (WBC) are involved in defending the body
against both infectious disease and foreign material. Although the normal range of a white blood
cells was 6.60 to 12.6 m/mm3, the amount of WBC was somewhat increased in all of the untreated
and treated groups after sustaining injury [31]. It was still increased in the untreated group with
increasing treatment days, but those of the other treated groups were decreased. The variation of
WBC in CHI-AgCl NPs treated group (Group 4) was the lowest of all groups, which indicated that
the CHI-AgCl NPs ointment reduced the infection, resulting in accelerating the burn wound healing.
The amount of platelets was increased in the all groups during early-treatment days because the burn
wound was created, and was reduced thereafter with increasing treatment days (Figure 2c,d).
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NPs ointment (İ) on: survival curves (a); body weight gains (b); concentration of white blood cells
(WBC) (c); and concentration of platelet (PLT) (d).
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3.3. Histological Analysis

The healing pattern of the burn wounds was studied to examine the histology for the untreated,
Vaseline, CHI, and CHI-AgCl NPs groups on Days 1, 3, 7, 14, and 21 using H&E staining method
(Figure 3). Generally, the injury initiates inflammatory phases for healing [32]. Therefore, it is difficult
to assess whether the inflammatory response is part of the normal healing process or an effect of
the material during the early stages of wound healing. For the untreated group, the epidermis is
completely destroyed and interrupted, and the tissue of the wound is filled by necrotic material,
bulla, and infiltrated inflammation until Day 21. Hyperkeratosis was also observed on Days 7 and
14. The Vaseline-treated group was shown to be similar to the untreated group. At 21 days, however,
the Vaseline-treated group exhibited less infiltrated inflammation than untreated group, but not bulla.
In the CHI ointment-treated group, the number of bulla was gradually decreased, and infiltrated
inflammation was not observed in comparison to the Vaseline-treated group. In contrast, the CHI-AgCl
NPs ointment-treated group was shown to have little infiltrated inflammation, and the underlying
area showed fibrosis with proliferation of fibroblasts that were placed in the granulation tissue, and
started to fill up the regenerated tissue from Day 14. After 21 days, the epidermis was filled with
mature granulation tissue like normal tissue, confirming the accelerated burn wound healing by the
improved antibacterial activity of the AgCl NPs stabilized with CHI.
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3.4. Evaluation of Collagen Percentage

Collagen is the main structural protein component of connective tissue, and is mainly found in
skin. Therefore, it is desirable to observe the regenerated collagen in damaged skin during the healing
process. To observe the collagenous components, the wounds with or without treated ointment were
stained using a Masson’s trichrome staining method. Figure 4 shows representative photomicrographs
of wound healing on Days 3, 7 and 14. The collagenous components were stained in blue, and the
cytoplasm appeared in varying shades of red. It was precisely observed that the necrosis was filled in
the regenerated tissue in untreated group (Group 1), whereas the ointment-treatment (Groups 2–4)
influenced the regeneration of collagen for burn wound healing. For an accurate description, the
density of collagen at 14 days was determined using an image analyzer (Nikon, Japan), as shown in
Figure 5. The relative collagen density was increased significantly in the ointment-treated groups,
compared to that of the untreated group. Among them, the CHI-AgCl NPs-treated group (Group 4)
showed the highest collagen density, suggesting increased collagenase activity by the dual antibacterial
activity of the AgCl NPs stabilized with CHI. The data were represented as the mean ˘ standard
deviation (SD) of 10 independent experiments, and difference was significant at p < 0.05 compared
with the untreated, Vaseline, and CHI groups.
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Figure 5. (a) The relative collagen density in burn induced skin damage at treatment Day 14.
Evaluation of histopathology in the healing effect of untreated (b); Vaseline (c); CHI (d); and CHI-AgCl
NPs (e) ointment using MT staining. The photographs were taken at an original magnification of
ˆ100. The data are mean ˘ SD of 10 independent experiments. * indicates data with a statistical
significance (p < 0.05) compared with the untreated and CHI-AgCl NPs ointment-treated groups.

4. Conclusions

In view of the rapid progress of application of nanomaterials in bioengineering fields,
environmentally friendly methods should be required since the common methods generate toxic and
biological hazards. The CHI-AgCl NPs was successfully obtained by a simple and environmentally
benign method that used water and CHI as a biomaterial. The CHI is fundamental in the formation and
stabilization of well-dispersed AgCl NPs with a mean diameter of 42 ˘ 15 nm. The burn wound treated
with CHI-AgCl NPs ointment showed the highest percent of survival, and a reasonable number of
white blood cells because of the prevention of infection in wound healing. The collagenous components
were more regenerated in the CHI-AgCl NPs ointment group than the other treated groups. It was
demonstrated that the CHI-AgCl NPs were more effective as a wound-healing accelerator because
of improved antibacterial activity of CHI exerted by the AgCl NPs. Consequently, CHI-AgCl NPs
ointment is considered a promising material for burn wound healing.
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