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Abstract: All-biomass soy protein-based films were prepared using soy protein isolate (SPI),
glycerol, hydroxypropyl cellulose (HPC) and epoxy castor oil acid sodium (ECOS). The effect of the
incorporated HPC and ECOS on the properties of the SPI film was investigated. The experimental
results showed that the tensile strength of the resultant films increased from 2.84 MPa (control) to
4.04 MPa and the elongation at break increased by 22.7% when the SPI was modified with 2% HPC and
10% ECOS. The increased tensile strength resulted from the reaction between the ECOS and SPI, which
was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR),
scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). It was found that ECOS
and HPC effectively improved the performance of SPI-based films, which can provide a new method
for preparing environmentally-friendly polymer films for a number of commercial applications.
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1. Introduction

Plastics with low cost, good mechanical properties, durability, disposability and chemical
resistance bring great convenience to our daily lives [1]. However, with the increased concerns
about dwindling petroleum reserves and environmental problems, biodegradable plastics have
attracted intense interest and will provide a promising alternative to petroleum-based plastics [2–5].
Over the past few decades, proteins have been extensively investigated as replacements for
their petroleum-based counterparts, due to their low cost, renewability, biocompatibility and
biodegradability [6]. The protein content of soy protein isolates (SPI) is higher than other protein
products, which facilitates film-forming capabilities [7,8]. Protein plays a multifunctional role in
providing tightness to liquid, barriers to gases, and bonding layers for making films or coating [9,10].
Furthermore, protein-based films and coatings are non-toxic, degradable, constraining enzymatic
browning of fresh-cut products and inhibiting polyphenoloxidase adventitious in foods [11,12].
However, the extensive use of SPI films has been limited because of their low tensile strength, poor
water resistance and moisture barrier properties [13–15]. Much effort has been expended to improve
these properties through physical, chemical and combination modifications of SPI materials [16–21].
Generally, the increased tensile strength of modified SPI-based films has consistently resulted in
decreased flexibility due to the restricted molecular motion of the SPI main polymer chain [19,22].
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The natural polymer cellulose has been extensively employed in practical products, because of
its chemical stability, biocompatibility, biodegradability and sustainability. Modified cellulose and
its derivatives are more conducive to enhance the properties of materials than the raw cellulose [23].
Small amounts of hydroxypropyl cellulose (HPC) are very compatible with SPI, but microphase
separation appears between SPI and HPC as the quantity of HPC in the mixture is increased, which
will result in inferior mechanical properties [20].

Castor oil has attracted much attention as a polymer modified in the past few decades due to
its environmentally-compatibility, biodegradability and abundance [24]. The alkene double bond in
natural oils together with abundant hydroxyl and ester groups in the molecular chains, provide these
raw materials with ample reaction sites for esterification, hydrogenation, alcoholysis, interesterification
and epoxidation. In general, epoxidation has been found to be one of the main methods for chemical
modification of vegetable oils [25]. The epoxidized oil was widely used in a variety of films and coatings
for improving their properties [26]. Benaniba et al. [27] reported that the thermal and mechanical
behavior of polyvinyl chloride (PVC) was enhanced by addition of epoxidized oil. Moreover, the
flexibility of polyurethane-molded plastic films could be improved after adding epoxidized oil [28].
Previous research has demonstrated that the thermal stability and water resistance of poly (vinyl
alcohol) (PVA) films could be greatly enhanced by the introduction of epoxidized castor oil (ECO) [29].
It has also been demonstrated that the epoxy groups reacted readily with the amino groups in
soy protein and improved the water resistance of resulting soy protein-based composite [30,31].
Epoxidized soybean oil (ESO) cured with terpene-based acid anhydride showed a higher glass
transition temperature and tensile strength than other modified ESOs [32].

In this reported study, the epoxidized castor oil acid sodium (ECOS) was synthesized, saponified
and employed to enhance the performance of the SPI-based films. Several SPI/HPC films modified
by ECOS were prepared by casting methods and alkenyl succinic anhydrides (ASA) was used as the
polymerization catalyst [33]. The effect of the ECOS addition on the thermal stability of the modified
SPI films was examined. The tensile strength (TS) and elongation at break (EB) of the SPI-based films
were also evaluated.

2. Experimental

2.1. Materials

SPI with 2.0% moisture content and 88.0%–95.0% protein content was kindly provided by Yuwang
Ecological Food Industry Co., Ltd. (Shandong, China). The glycerol and analytical reagent acetic
acid were obtained from Beijing Chemical Works Co., Ltd. (Beijing, China). HPC (MW = 100,000) was
obtained from Alfa Aesar Co., Ltd. (Shanghai, China). The castor oil was obtained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). The hydrogen peroxide with a concentration of 30%
was obtained from Xilong Chemical Company Co., Ltd. (Guangdong, China). Other chemical reactants
of analytical grade were purchased from Beijing Chemical Reagents Co., Ltd. (Beijing, China) and used
as received.

2.2. Synthesis of ECO

The epoxidation of castor oil was conducted according to the following procedure: the 60 g
castor oil was treated with 12 g CH3COOH and the 4 g urea was used as stabilized agent. The 48 g
H2O2 together with 4 g H3PO4 was added to this mixture stirred for 60 min at 35 ˝C. This chemical
reaction was then incubated at 60 ˝C for 150 min. The resultant product was washed three times
with 10% K2CO3 solution and deionized H2O, and then the oil layer was separated using a rotary
evaporator [34]. Finally, ECOS was obtained by the saponification reaction of ECO and sodium
hydroxide. The schematic diagram of epoxidized castor oil is shown in Figure 1.
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2.3. Preparation of SPI films

Various SPI solutions were prepared according to the following procedure. A set of SPI and
glycerol were firstly added to deionized water and mixed homogeneously. The mixtures were heated
in a water bath for 30 min at 85 ˝C and the solution pH was maintained at 8. Various amounts of HPC
were added to the SPI solution, mixed uniformly and ultrasound-treated (750 W, 20 KHz, VC-750,
Sonics and Materials, Newton, CT, USA) for 5 min to dissolve HPC and remove trapped air bubbles.
Then, ECOS and ASA were added to Samples E and F and stirred uniformly. A film-casting solution
resulted from this reaction (40 mL) was poured into leveled Teflon plates, dried at 45 ˝C for 20 h and
peeled off the substrate for later use. The detailed formulations of all the produced films are listed in
Table 1.

Table 1. The formulations of films A–F.

Sample SPI (g) Glycerol (g) Water (g) HPC (g) ECOS (g) ASA (g)

A 5 2.5 95 – – –
B 5 2.5 95 0.05 – –
C 5 2.5 95 0.1 – –
D 5 2.5 95 0.25 – –
E 5 2.5 95 0.1 0.5 –
F 5 2.5 95 0.1 0.5 0.005

2.4. 1H Nuclear Magnetic Resonance (NMR)

1H NMR spectra of the produced films were obtained using a JEOL DELTA2 600 MHz
FX-1000 spectrometer (JEOL Ltd., Tokyo, Japan) employing deuterated chloroform (CDCl3) and
tetramethylsilane as solvent and internal standard, respectively.

2.5. Film Characterization

2.5.1. Equilibrium Treatment

Films were equilibrated with 50% relative humidity at 25 ˘ 1 ˝C for 48 h in a desiccator using
saturated salt solutions of K2CO3 prior to testing [17].

2.5.2. Film Thickness

Film thicknesses were measured using a digital micrometer (Measuring & Cutting Tool Works
Co., Ltd., Shanghai, China)with an accuracy of 0.001 mm. Measurements were taken at five random
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locations on each film. The average thickness value of each film was calculated for later use in the
mechanical properties measurements.

2.5.3. Mechanical Properties

The tensile strength of films was determined using a universal testing machine (INSTRON 3365,
Norwood, MA, USA) at room temperature at a crosshead speed of 50 mm¨min´1. Five replicates for
each film were conducted and the average value was reported.

2.5.4. X-ray Diffraction Analysis (XRD)

X-ray diffraction tests were conducted using a D8 Advance diffractrometer (Bruker AXS,
Karlsruhe, Germany) with a Cu-Kα source in continuous scanning mode, operating at 45 kV and
30 mA ranged from 5˝ to 60˝ (2θ) at 2˝¨min´1. The crystal state was calculated using associated
accessory software (DIFFRAC.EVA; V3.1).

2.5.5. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was used
to examine the chemical structures of the films. A Nicolet 6700 FTIR spectrometer (Thermo Scientific,
Madison, WI, USA) with an ATR accessory was employed for these tests at the range of 600 and
4000 cm´1 with 4 cm´1 resolution for 32 scans.

2.5.6. Thermogravimetric Analysis (TGA)

The thermal stabilities of films were examined using a Q50 TGA device (TA Instruments,
New Castle, DE, USA) with a heating rate of 10 ˝C¨min´1 from room temperature to 600 ˝C under
constant N2 stream (100 mL¨min´1) to avoid thermo-oxidative reactions. The maximum degradation
rate was calculated as the mass (%) at peak temperature divided by the peak temperature.

2.5.7. Scanning Electron Microscopy (SEM)

An S3400N Hitachi scanning electron microscope (SEM, Hitachi, Tokyo, Japan) with an accelerating
voltage of 20 kV and a magnification of 1600ˆ was used to observe the cross sectional morphologies of
the films. Prior to the obsevations, the specimens were sputter-coated with gold to avoid charging
under the electron team.

2.5.8. Statistical Analysis

The analysis of variance (ANOVA) was used to evaluate the significance in the difference between
means, whichwas considered as significant difference when P < 0.05.

3. Results and Discussion

3.1. Synthesis of ECO

1H NMR spectra of castor oil and ECO are shown in Figure 2. The chemical shifts at δ = 0.8 ppm
(peak 1) and δ = 4.2–4.3 ppm (peak 9) can be assigned to methyl protons and methylene protons of
glycerol, respectively. The peak at δ = 5.4–5.6 ppm corresponds to the double bond protons -CH=CH-
of castor oil fatty acid (peak 10, Figure 2a), which was consistent with that reported in the literature [35].
Compared to Figure 2a, the presented chemical shift at δ = 2.9–3.1 ppm (peak 10, Figure 2b), can be
assigned to the epoxy groups of ECO (Figure 2b). These results indicated that C=C double bond was
successfully oxidized to an epoxy bond. However, the peak at δ = 5.4–5.6 ppm greatly decreased
but did not disappear, indicating that the epoxidation reaction was incomplete. This was due to the
steric hindrance from double bonds located in the middle of molecule chains, which would affect the
epoxidation efficiency [36].
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Figure 2. 1H NMR spectra of (a) castor oil; and (b) ECO.

3.2. ATR-FTIR Spectra of the SPI-Based Films

The ATR-FTIR spectra of the experimental films are shown in Figure 3. The peaks at 1634 cm´1,
1538 cm´1 and 1234 cm´1 correspond to amide I (C=O stretching), amide II (N-H bending) and
amide III (C-N and N-H stretching) of SPI, which was consistent with the previous report [37].
Comparing films A and F, all peaks intension of the films B, C and D was not significantly changed
because no formed covalent bond existed between HPC and SPI [20]. It appeared that the peak
intensities at 1234 cm´1 were corresponding to the decreased free amino groups in films E and F, which
was probably a result of the reaction between epoxy groups of ECOS and amino groups in the SPI,
corresponding to the Lei’s results [38].
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anhydrides (ASA).

3.3. Thermal Properties of the SPI-Based Films

The weight loss and differential thermogravimetric (TG) curves of the SPI-based films were
recorded from 40 to 600 ˝C and are shown in Figure 4. The results for the TGA thermal degradation
of the SPI-based films are shown in Table 2. The weight loss range from 120 to 200 ˝C was related
primarily to the evaporation of glycerol as the first decomposition Stage and the weight loss from 250 to
350 ˝C was caused by the thermal degradation of soy proteins at the second Stage [31]. The initial
degradation temperature of the first Stage for films B and C was not significantly different, when
compared with that of the pure protein film (film A). The first Stage degradation was contributed by
the evaporation of glycerol, while the small amount of HPC would not affect the hydrogen bonding
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between glycerol and SPI [20]. However, the degradation temperature for film D in the first Stage
was greatly decreased, owing to the formation of more paths for glycerol evaporation as a result of
the HPC aggregation [39]. The temperatures of the initial degradation and maximum degradation
rate in the first Stage for films E and F both increased due to the formed hydrogen bonds between
ECOS and glycerol. The initial degradation temperature in the second Stage of films B, C and D were
not significantly changed, compared with the pure protein film (film A), which was resulted from the
physical crosslinking between HPC and SPI. In addition, the initial degradation temperature in the
second Stage for films E and F increased significantly, confirming that the reaction occurred between
epoxy groups of ECOS and amino groups in SPI.
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Figure 4. TG (a); and differential TG (b) patterns of the films: (A) the control, (B) add 1% HPC, (C) add
2% HPC, (D) add 5% HPC, (E) add 2% HPC and 10% ECOS, (F) add 2% HPC, 10% ECOS and alkenyl
succinic anhydrides (ASA).

Table 2. Thermogravimetric analysis (TGA) parameters of the thermal degradation of the soy protein
isolate (SPI)-based films.

Films Ti1 (˝C) Tmax1 (˝C) Ti2 (˝C) Tmax2 (˝C)

A 1 131.20 159.44 270.73 299.92
B 2 132.12 162.56 272.73 302.88
C 3 130.38 161.50 272.20 301.07
D 4 126.80 154.96 272.86 302.12
E 5 137.52 171.11 284.56 299.36
F 6 137.54 167.53 283.54 297.45

Note: Ti , initial temperature of degradation; Tmax , temperature at maximum degradation rate: 1 the control;
2 add 1% HPC; 3 add 2% HPC; 4 add 5% HPC; 5 add 2% HPC and 10% ECOS; 6 add 2% HPC, 10% ECOS and
alkenyl succinic anhydrides (ASA).

3.4. Crystalline Properties of the SPI-Based Films

The XRD diffraction patterns of the SPI-based films and HPC are shown in Figure 5a. Their relative
crystallinities were calculated and are presented in Figure 5b. The XRD Peaks at 9.6˝ and 20.5˝ for film
A corresponded to 7 s and 11 s globulins of the soy protein [40]. When the highly crystalline HPC was
introduced into the SPI matrix, the relative crystallinity of films B, C and D increased, corresponding to
the Zhou’s study [20]. Compared with film B, the relative crystallinity of film C decreased as a result of
the increasing of molecular inter-atomic forces with the increase in hydrogen bonding formed between
HPC and SPI [41]. This bonding restricted the SPI molecular rearrangement and resulted in decreased
crystallinity and the relative crystallinity of film D decreased. When ECOS and ASA were added, the
relative crystallinity of films E and F continued to decrease but was still higher than that of film A.
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These results confirmed the reaction between the epoxy groups and amino groups, which restricted
the molecular motion of the SPI and ECOS, decreasing their crystallinity.
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3.5. Micromorphology of the SPI-Based Films

The cross-section morphological structure of the experimental films was observed by SEM as
shown in Figure 6. Obviously, the surface of film A was rough and contained small pleats, which
was consistent with the results of our previous studies [17]. The fractured surface of films B and C
were smoother than film A, indicating that the small amount of HPC in SPI-based films was complete
compatibility with the SPI matrix, thus forming a smoother surface [20]. When the amount of HPC
was further increased, the cross-section of film D was rougher than the control (film A) because of the
partially aggregated HPC. When ECOS was incorporated, the fractured surfaces of films E and F were
smoother than film C, as a result of the reaction between ECOS and SPI [17].
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3.6. Physical and Mechanical Properties of the SPI-Based Films

The tensile test results on properties of the experimental films are summarized in Table 3 and
the strain-stress curves of the films are shown in Figure 7. The stress continuously increased with
the increasing strain until brook without necking, indicating some isotropy in the film [42]. After the
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incorporation of HPC, the TS of the blended films increased and reached a maximum value in film C
and then decreased (film D) with further increases in the HPC content. The decrease of TS probably
resulted from the stress concentration in the blended film caused by the aggregation of HPC, which
was consistent with the test results previously mentioned. Compared with film C, when ECOS and
ASA were introduced, TS of the modified films (films E and F) were continuously enhanced, illustrating
that ECOS successfully reacted with SPI.

Table 3. The thickness, tensile strength (TS) and elongation at break (EB) of different SPI-based films.

Films
TS (MPa) EB (%) Thickness (mm)

Average (SD) Average (SD) Average (SD)

A 1 2.84 (0.140) a 220.4 (4.0) a 0.239 (0.006) a
B 2 3.17 (0.132) b 221.8 (22.7) a 0.231 (0.021) a
C 3 3.63 (0.133) c 227.9 (8.8) ab 0.233 (0.017) a
D 4 3.38 (0.175) bd 271.8 (18.3) c 0.263 (0.009) b
E 5 3.75 (0.058) ce 257.3 (25.5) bc 0.207 (0.008) c
F 6 4.04 (0.171) f 270.4 (11.3) c 0.244 (0.015) d

Note: a,b,c,d Different letters in the same column indicate significant differences (p < 0.05); 1 the control; 2 add
1% HPC; 3 add 2% HPC; 4 add 5% HPC; 5 add 2% HPC and 10% ECOS; 6 add 2% HPC, 10% ECOS and alkenyl
succinic anhydrides (ASA).
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Figure 7. The stress-strain curves of the films. (A) the control, (B) add 1% HPC, (C) add 2% HPC,
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anhydrides (ASA).

EB of the films (films B and C) was not significantly altered in comparison to the control film
(film A) as shown in Table 3. This can be reasoned that the HPC addition amount was too little in
comparison to the SPI matrix [20]. When adding 5% HPC, EB of film D increased as a result of the
partial aggregated HPC, which allowed the free motion of the SPI molecule. EB of the films (film E
and F) increased as a result of the hydrogen bonding between ECOS and SPI and the long-chains of
ECOS [43,44].
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4. Conclusions

In this study, all-biomass SPI-based films were successfully prepared. The TS and flexibility
properties of the protein-based films increased with the addition of HPC. XRD results indicated that
HPC was completely compatible with the SPI matrix. ATR-FTIR results indicated that the opening
ring reaction between epoxy groups of ECOS and amino groups of SPI. Compared with the control
film, TS and EB of the film prepared from SPI, HPC, ECOS and ASA synchronously increased by 42.3%
and 22.7%, respectively.
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