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Abstract: The aim of this work was to evaluate the influence of specimen preparation and test
method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials
(Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental,
Pforzheim, Germany), and DD Bio zx? (Dental Direkt, Spenge, Germany)) were tested with three
different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen
preparation methods were applied: either dry polishing before sintering or wet polishing after
sintering. Each subgroup included 40 specimens. The surface roughness was assessed using
scanning electron microscopy (SEM) and a profilometer whereas monoclinic phase transformation
was investigated with X-ray diffraction. The data were analyzed using a three-way Analysis of
Variance (ANOVA) with respect to the three factors: zirconia, specimen preparation, and test method.
One-way ANOVA was conducted for the test method and zirconia factors within the combination
of two other factors. A 2-parameter Weibull distribution assumption was applied to analyze the
reliability under different testing conditions. In general, values measured using the 4-point test
method presented the lowest flexural strength values. The flexural strength findings can be grouped
in the following order: 4-point < 3-point < biaxial. Specimens prepared after sintering showed
significantly higher flexural strength values than prepared before sintering. The Weibull moduli
ranged from 5.1 to 16.5. Specimens polished before sintering showed higher surface roughness
values than specimens polished after sintering. In contrast, no strong impact of the polishing
procedures on the monoclinic surface layer was observed. No impact of zirconia material on flexural
strength was found. The test method and the preparation method significantly influenced the flexural
strength values.

Keywords: monolithic zirconia; flexural strength; biaxial strength; 3-point flexural strength; 4-point
flexural strength; specimen preparation

1. Introduction

Y-TZP (Yttria partially stabilized tetragonal zirconia) Zirconia has become of interest in dentistry,
because of its high flexural strength [1] and its well-known transformation toughening ability [2].
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Conventional zirconia (3Y-TZP: Yttrium-cation-doped tetragonal zirconia polycrystals, typically
2-3 mol% Y,0O3) shows translucency on human dentin level and is therefore not suitable for monolithic
tooth restorations from the esthetic point of view [3].

Modifications of the microstructure and composition were conducted in recent years to accomplish
an adequate esthetic appearance for full anatomical zirconia restorations. For example, the Al,O3
percentage was reduced from 0.25 to 0.05 wt % and customized with a smaller grain size. In addition,
the Al,O5; grains were positioned on the grain boundaries of the ZrO, grains. The survival time
of all-ceramic systems is strongly related to the flexural strengths of the restoration, which is the
result of the flexural strength of core and veneering material, and the bond strength between both
materials [4,5]. Although excellent strengths were reported for the zirconia core material, many
studies indicate fractures in the veneering ceramic [6,7]. To avoid this problem and to facilitate the
fabrication process, the demand for zirconia restorations in a monolithic design without veneering has
increased [8]. Different studies reported on a higher fracture resistance of monolithic zirconia crowns
compared to conventional veneered versions [8,9].

Many test methods have been introduced to measure the flexural strength of brittle ceramic
materials [10,11]. Among them biaxial, 3-point testing and 4-point testing have evolved to be the most
common. In 3-point testing a non-uniform stress field under the loading piston is created, whereas
in 4-point testing the stress field between the support rolls is uniform, which can lead to different
flexural strength findings. Variations in specimen sizes and testing-methods lead to different flaw
size populations and thus different strength measurements [11,12]. The problem with brittle ceramic
materials is that inherent material inhomogeneity can induce flaws such as micro-cracks or grain
pullouts throughout the volume or on the surface of a material. This can lead to catastrophic failure.
The Weibull distributional assumption with its parameters Weibull modulus m and characteristic strength
s tries to take the largest flaw population into account. Whereas s corresponds to the 63.2% failure
probability, a high Weibull modulus m is associated with a higher reliability of the material.

Regarding surface preparation methods, several studies showed that the preparation of the
specimen has an important influence on the obtained flexural strength data [13-18]. Therefore, the aim
of this study was to investigate the influence of specimen preparation and the test method on the
flexural strength and Weibull statistics of different monolithic zirconia materials. The underlying null
hypothesis was that zirconia materials, the specimen preparation methods, as well as the flexural
strength test methods do not influence the flexural strength values and the reliability of monolithic
zirconia materials.

2. Material and Methods

Three different pre-sintered zirconia materials for monolithic restorations were tested in this
study: Ceramill Zolid (C), Zenostar Zr (Z), and DD Bio zx? (D) (Table 1).

Table 1. Summary of materials used in the present study, their manufacturer with LOT number,
chemical components, and grain size.

e Zirconia . o Grain Size (um?)
Abbreviations Materials Manufacturers ~LOT Number  Chemical Components (%) Mean + SD [19]
Amann
. . ZI’OZ + HfOZ + Y203 >99;
C Ceramill Girrbach, 1111813 Y,0;: 4.5-5.6; HfO, < 5; 0.088 + 0.004 2
Zolid Koblach, ALO~ <05
Austria 228 s
Zenostar 7t Wieland+Dental, ZrO, + HfO; + Y203 > 99;
z Trans ¢ Pforzheim, 20120306-27 4,5 <Y,03 < 6; HIO, < 5; 0.092 £+ 0.003 2
ranstucen Germany Al O3 + other oxides < 1
Dental Direkt, ZrO, + HfO, + Y,03 > 99;
D DD Bio zx? Spenge, 30712803 Al,O3 <0.5; 0.124 + 0.006 ®
Germany other oxides < 1

ab Different letters present significant differences between materials.
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Two different polishing methods were applied. Manually dry polishing before sintering and
machine wet polishing after sintering. The zirconia groups (C, Z, D/dry and wet polished) were tested
for biaxial, 3-point or 4-point flexural strength. Each group contained 40 specimens. In summary,
720 zirconia specimens were fabricated (Table 2).

Table 2. Division of specimens with abbreviation used. TM: test method, SP: specimen preparation,
ZM: zirconia material.

Total ™M ™ SP Subgroup
biaxial dry-polished before sintering n =40
n =80 wet-polished after sintering n =40
CD,Zz 3-point dry-polished before sintering n =40
N=720 n =240 n =280 wet-polished after sintering n =40
4-point dry-polished before sintering n =40
n =280 wet-polished after sintering n =40

2.1. Specimen Preparation

All specimens were prepared in partially sintered state and in an enlarged size to compensate
sintering shrinkage. The specimen for biaxial flexural strength measurement required a disc shape
with a diameter of 16 mm. A CAM (computer aided manufacturing) machine (I-Mes 4030, Wieland
Dental + Technik, Pforzheim, Germany) was used to mill cylinders out of the zirconia blanks (Software:
Zenotec CAM 3.2 advanced V2.2017, Wieland Dental + Technik). A low speed (approximate 2.5 m/s)
diamond saw (Well Diamantdrahtsédgen, Mannheim, Germany; thread: type A 3-3) was used to cut the
cylinders into slices. The saw uses a fine 0.3 mm diamond thread with embedded diamonds (diameter
approximate 60 pm), the applied pressure was approximately 50 g. The specimens, for 3-point and
4-point flexural strength measurement were cut directly from the zirconia blanks with the diamond saw.

Manual polishing before sintering was done with SiC discs (Struers, Ballerup, Denmark).
The sequence was SiC P400, SiC P500, and SiC P1000. The grinding time was 5 s per specimen-side and
SiC disc. The load was applied by finger pressure and manual polishing was performed in small circles.

Machine polishing after sintering was performed with a water-cooled polishing machine (Struers
Abramin, Struers, Ballerup, Denmark). Up to six specimens were polished during a polishing cycle at
the same time. The polishing protocol consisted of coarse grinding with diamond pads of 40 um and
20 um for 6 min per each side (Pads: Code Granu 40 pm, Code Graku 20 pum, Struers; speed: 150 rpm;
applied pressure: 20 N) and fine polishing with subsequent polishing solutions and a polishing
plate for 6 min per side (Plate: MD-Largo (Struers, Ballerup, Denmark); Solutions (which are purely
water-based diamond suspensions): Dia Pro Allegro/Largo (9 um) and Dia Pro Largo (3 um), Struers,
Ballerup, Denmark). High polishing was conducted for 30 s per side, again with a polishing plate and
polishing solution (Plate: MD-Chem (Struers, Ballerup, Denmark); Solution (colloidal silica suspension
for final polishing): OP-S, Struers, Ballerup, Denmark; speed 150 rpm; applied pressure 200 N).

The zirconia materials were sintered (density from 3 g/cm?® presintered to 6 g/cm? fully
sintered) in a universal sintering oven (Nabertherm, Lilienthal/Bremen, Germany), according to
each manufacturer’s instructions (Table 3). The final dimensions DIN EN ISO 6872:2008 [20] were:
for biaxial flexural strength measurement 16 mm x 1.2 mm (4+0.05 mm), for 3-point flexural strength
measurement 1.2 mm x 4 mm x 25 mm (£0.05 mm) and for 4-point flexural strength measurement
3mm x 4 mm x 45 mm (+0.05 mm).



Materials 2016, 9, 180 40f 13

Table 3. Sintering parameters of all tested zirconia materials used in this study.

Heat Rate = Holding Temperature Final Temperature = Holding Time Cooling Rate

™M (°C/h) and Time (°C, h) (@) (h) (°C/h)
C 480 - 1450 2 300
900; 0.5 h;
Z 600 further with 200 °C/h 1450 2 600
900; 0.5 h;
D 480 further with 200 °C/h 1450 2 600

2.2. Flexural Strength Testing

Biaxial, 3-point, and 4-point flexural strength testing (Figure 1) are based upon DIN EN ISO
6872:2008 [20]. An appropriate sample holder was used for each specimen group to place it in a
Universal Testing Machine (Zwick, Ulm, Germany) at a crosshead speed of 1 mm/min until failure.
The specimens were tested dry at room temperature and dimensions were measured with a digital
micrometer (Mitutoyo Deutschland, Neuss, Germany) to a precision of 0.01 mm.

o o}

@) O

Figure 1. Schematic set up of biaxial; 3-point; 4-point test method.

The sample holder for the biaxial flexural strength test comprised three tempered steel balls with
a diameter of 3.2 mm. The steel balls formed an equilateral triangle with an edge length of 10 mm and
the ball support circle was 120°. The center of the specimens, which were put upon the steel balls and
the center of the equilateral triangle were aligned coaxially. After the positioning the specimen’s center
was loaded from above with a plunger with a diameter of 1.4 mm until failure. The flexural strength
was calculated according to the formula o = —0.25 N(X—Y)/d? (o: flexural strength; N: fracture load;
coefficients X and Y with:

X = (1 +v)In[(x2/r3)]* + [(1—v)/2](xr2/r3)?

Y = (1 + v)[1 + In(r1/r3)?] + (1 —v)(r1/r3)?
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where v: Poisson’s ratio (=0.25); r1: support (mean) contact diameter (mm); r2: (mean) loaded contact
diameter (mm); r3: diameter of the specimen (mm); and d: thickness of the specimen (mm).

For the 3-point flexural strength measurement the specimen was placed on two tempered steel
support rolls (diameter 1.6 mm). The distance between the two support rolls was 15 mm. Now a
plunger (diameter 1.6 mm) loaded the specimen until failure. The formula o = 3N1/(2bd?) (o flexural
strength; N: fracture load; 1: distance between supports (mm); b: width of the specimen (mm);
d: thickness of the specimen (mm)) was used to calculate 3-point flexural strength measurement.

The specimen for the 4-point flexural strength testing was placed on two tempered steel support
rolls (diameter 4.0 mm) with a distance of 40 mm between the exterior supports. The plunger apparatus,
consisting of two tempered steel rolls with a distance of 20 mm applied force until the specimens’
failure. The calculation formula was ¢ = 3N1/(4bd?) (o: flexural strength; N: fracture load; 1: mid to
mid distance between exterior supports (mm); b: width of the specimen (mm); d: thickness of the
specimen (mm)).

2.3. Profilometry

A profilometer (MarSurf 400 SD26, Mahr, Géttingen, Germany) was used to detect surface
roughness (R,) after preparation procedure. Six measurements for two specimens for each zirconia,
test and polishing method were recorded (A = 0.25 mm; L = 1.750 mm; pressure 0.7 mN) and a mean
value was computed.

2.4. Scanning Electron Microscopy (SEM)

Scanning electron microscopy (EVO MA 10, Zeiss, Oberkochen, Germany) was used to assess
the influence of specimen preparation on surface topography (15 kV, 150 mA, working distance of
10-12 mm). The specimens (1 = 3 per group) were ultrasonically cleaned (Sonorex RK 100H; Bandelin,
Berlin, Germany) and gold coated (Sputter Coater SC7640, Quorumtech, Newhaven, UK) before
SEM examination.

2.5. X-ray Diffraction (XRD)

X-ray diffraction analysis (D8 Advance, Bruker AXS, Karlsruhe, Germany; settings: Bragg-
Brentano Geometrie, Lynxeye-Dector in 1D-mode, nickel-k3-filter) was employed to identify surface
phase transformations. For each zirconia material, polishing and test method three specimens
underwent XRD. Diffraction data were collected with Cu-K« rays from the 20 range between 25° and
40° with 40 kV, 40 mA and a step size of 0.02° and a scan time of 1.0 s/step, specimen rotation was
60 rpm. Under this condition of measurement the analyzed layer was 4.0-6.5 um. The relative amount
of monoclinic phase was calculated by means of the Garvie-Nicholson Equation modified through
Toraya [21] (Equation (1)) using the maximum intensities of the reflexes It(101), I, (111) , und Iy (111).

X, 41”1(111) + Iy, (111) 1)
Ly (111) + L, (111) + I; (101)

The volume fraction (Vy,) is:
1.311 x X,

V, =~~~ M
" 140311 x X

2

2.6. Statistical Analysis and Methods

The power analysis was calculated in R (R, R Development Core Team, The R Foundation for
Statistical Computing) using the data from our previous studies [22,23]. A sample size of 40 in each
group will have 99% power to detect the difference of 200 MPa between two different flexural strength
methods assuming that the common standard deviation is 178 MPa using the Students two sample



Materials 2016, 9, 180 60f 13

t-test with the 0.017 two-sided significance level obtained after the Bonferroni correction (three tests
between three different flexural strength methods within one zirconia material).

Anderson-Darling goodness-of-fit estimates were computed and the best fitting distributional
assumption (normal or Weibull) was indicated by its smaller value. In addition, the assumption
of normality of the data was investigated by means of the Kolmogorov-Smirnov test. Descriptive
statistics mean, standard deviation (SD), and coefficient of variation (COV = SD/mean) together with
the 95% confidence intervals (95% CI) for the mean were computed. A three-way ANOVA for flexural
strength with respect to three factors: test method (TM: biaxial, 3-point, 4-point), specimen preparation
(SP: before, after sintering), and zirconia material (ZM: C, Z, D) was computed using SPSS Version 22.0
(IBM Deutschland GmbH, Ehningen, Germany). These results were amended by one-way ANOVAs
for test method and zirconia material factors within the combination of two other factors, separately.
The two-sample t-test with Welch adjustment for differing variances was used to identify the influence
of treatment within the combination of two other factors. In addition, the two-parameter Weibull
distributional assumption was used to compute Weibull parameters (modulus = m and characteristic
strength = s) with Least Squares and median rank plotting positions assumption [24,25]. Equal m,
s, SD, and mean Bartlett’s modified likelihood ratio tests together with the appropriate Bonferroni
post-hoc confidence interval were conducted with Minitab Version 14 (Minitab Ltd., Coventry, UK).
Associations between two continuous variables were characterized by the non-parametric Spearman’s
rho correlation. Results of statistical analysis with p-value smaller than 0.05, were considered to be
statistically significant.

3. Results

Table 4 depicts the Anderson-Darling goodness-of-fit estimates.

Table 4. Anderson-Darling goodness of fit estimates.

™ SP M Weibull Normal  Optimal Fit Optimal Fit Distribution
C 0.637 0.702 0.611 3-par Weibull
before V4 0.793 0.821 0.726 Logistic
.. D 1.102 1.735 0.947 SEV
Biaxial
C 2.405 0.799 0.482 3-par Log normal
after V4 2.070 0.713 0.593 3-par Log normal
D 1.111 1.589 0.940 SEV
C 0.916 0.455 0.434 3-par Log normal
before V4 0.613 0.594 0.536 3-par Weibull
3-poi D 0.577 0.508 0.480 3-par Weibull
-point
C 1.101 0.568 0.512 Logistic
after zZ 2.053 0.942 0.669 3-par Log logistic
D 0.946 1.412 0.835 3-par Weibull
C 1.024 0.488 0.472 3-par Log normal
before V4 0.946 0.746 0.743 3-par Log normal
. D 0.755 0.496 0.496 normal
4-point
C 0.693 1.033 0.691 SEV
after zZ 0.685 0.708 0.708 normal
D 0.625 0.698 0.625 Weibull

The Kolmogorov-Smirnov test showed that not all of the data were normally distributed (Table 5).
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Table 5. Descriptive statistics for flexural strength values of all measured groups. TM: test method;
SP: specimen preparation; ZM: zirconia material; SD: standard deviation; 95% CI: 95% confidence
interval; Min: minimum; Max: maximum; COV: coefficient of variation (%). If not otherwise indicated
all values are presented in MPa.

™ SP M SD 95% CI (SD) Mean 95% CI (Mean) COV %
ca/a  gla (64;102) 2 757 A (731;782) B 11
before Zz#/B 1152 (91;144) 2 891 A (855;927) € 13
Biaxi Da/B 1012 (80;126) 835 #A (803;866) © 12
iaxial
ca/A 1152 (91;145) 2 1077 B (1040;1112) B 11
after  Za/A 1162 (92;146) 1126 B (1090;1162) B 10
Db/B  212b (170;265) 2 1322 B (1256;1388) B 16
ca/A 1102 (87;139) 2 752 A (718;787) B 15
before ~ Z?3/A 1242 (98;156) 2 755 A (716;793) B 16
3-point Da/A  g7a (76;122) 2 743 A (712;773) B 13
Ca/AB  gpa (68;108) 1118 B (1090;1144) B 8
after ~ Za/A 1562 (123;196) 2 1039 B (990;1087) AB 15
Db/B 1732 (138;216) 2 1183 *B (1129;1237) B 15
ca/A 782 (61;99) 2 561 *A (536;585) A 14
before ~ z?3/B 882 (69;110) 2 646 A (618;673) A 14
4-point Da/AB 1122 (88;141)7 637 A (602;672) A 18
ca/A  q1pa (97;153)2 873 B (834;911) A 14
after Za/A  206b (163;260) 2 9228 (858;987) A 22
Da/A 1822 (144;228) 2 9478 (890;1004) A 19

* not normally distributed; 2 significant differences for SD values; column ZM indicates significant difference
between ZM within TM and SP; column SD indicates significant difference between SP within TM and ZM;
column 95% CI (SD) indicates significant difference between TM within SP and ZM; ABC significant differences
for mean values; column ZM indicates significant difference between ZM within TM and SP; column mean
indicates significant difference between SP within TM and ZM; column 95% CI (mean) indicates significant

difference between TM within SP and ZM.

Additionally, the 2-parameter Weibull analysis was used to describe the flexural strength (Table 6).
The data are presented in Figure 2. The 3-way ANOVA observed the impact of specimen preparation
method on the Weibull modulus: Zirconia C specimen tested in 3-point flexural strength had a
significant higher Weibull modulus when polished after sintering (p < 0.001).

1750
1500
g .
E 1250
=
-
=2
=
2 1000 - ?
=
[3]
E: i
2 750 é
i
"=
*
500 4 $
. ®
Zirconia C ZD C ZD c ZD cC ZD C ZD C ZD
Treatrment before after before after before after
Test Method Biaxial 3-point 4-paint

Figure 2. Influence of specimen preparation test method and zirconia material using different flexural
strength testing methods.



Materials 2016, 9, 180

8o0f13

Table 6. Weibull statistics for flexural strength values of all measured groups. TM: test method; SP:
specimen preparation; ZM: zirconia material; m: Weibull modulus; 95% CI: 95% confidence interval; s:
characteristical strength. All values are presented in MPa.

™ SP ZM m 95%CI () s 95%CI (s)
ca/a 11.22 (8.7;14.4) 2 791 A (768;814) A
before za/B 9.0 (6.9;11.6) 2 940 A (906;975) €
Biaxial Da/B 962 (7.1,13.1) 2 878 A (848;908) ©
ca/a 1242 (10.5;14.6) 2P 1120 B (1090;1152) B
after za/A 12.82 (10.7;15.2) b 1170 B (1139;1202) B
Da/B 732 (5.4,9.8) 2 1408 B (1346;1472) B
ca/a 852 (7.0;,10.4) 2 795 A (764;827) &
before ZalA 732 (5.7,9.5) 2 804 A (768;841) B
3-point Da/A 932 (7.3;11.8) 2 782 A (755;811) B
Cb/AB 165°  (14.1;19.1)P 1153 B (1129;1177) B
after Za/A 852 (7.1;10.2) @b 1097 B (1055;1142) AB
Da/B 792 (6.0;10.4) 2 1255 B (1204:1308) B
ca/a 912 (7.4;11.1) 2 591 A (570;614) B
before Za/B 8.82 (7.0;11.0) 2 6814 (656;708) &
4-point Da/B 712 (5.8;8.6)2 679 A (648;712) A
ca/a 842 (6.4;11.1)2 9238 (888;959) A
after za/A 5.12 (3.9,6.7) 2 1002 B (940;1069) A
Da/A 572 (4.2;,7.7)2 1023 B (965;1084) A

abe significant differences for m-values; column ZM indicates significant difference between ZM within TM

and SP; column m indicates significant difference between SP within TM and ZM; column 95% CI(m) indicates
significant difference between TM within SP and ZM; ABC significant differences for s-values; column ZM
indicates significant difference between ZM within TM and SP; column s indicates significant difference between
SP within TM and ZM; column 95% CI (s) indicates significant difference between TM within SP and ZM.

3.1. Influence of Test Method

The 4-point flexural strength test method indicated the lowest flexural strength values in all
groups, regardless of which zirconia material was tested and which specimen preparation method
was used (p < 0.001). An exception showed Z zirconia material polished after sintering. In this
group 4-point and 3-point results were in the same range of values, but significantly lower than the
biaxial values.

The biaxial strength test method provided the highest strength values. However, it was not
significantly different from the 3-point test within the wet polished groups and within the dry polished
zirconia C specimen (p > 0.05).

Regarding the Weibull modulus, 3-point testing showed a significantly higher Weibull modulus
for the wet polished zirconia C group than for 4-point testing and biaxial testing (p < 0.001). Specimens
tested in biaxial flexural strength presented a significantly higher Weibull modulus for wet polished
Zirconia Z than those tested in 4-point strength test methods (p < 0.001). Other groups showed no
influence of test method on the Weibull modulus (p > 0.05).

3.2. Influence of Specimen Preparation

The different polishing procedures greatly influenced the measured mean flexural strength
independently of which zirconia was tested and which test method was applied. After sintering the
wet polished specimen produced significantly higher flexural strength than specimens polished before
sintering (p < 0.001). Only one group showed the impact of the specimen preparation method on
the Weibull modulus. Zirconia C specimens tested in 3-point flexural strength (p < 0.001) provided a
higher Weibull modulus when polished after sintering.

3.3. Influence of Tested Zirconia Materials

No impact of zirconia material on flexural strength values was found for 3-point tested dry
polished specimen and 4-point tested wet polished specimen (p = 0.671).
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The biaxial test method showed considerably lower values for dry polished zirconia C material
than for material Z and D (p < 0.001). In contrast, wet polished Zirconia D presented noticeably higher
flexural strength values compared to C and Z (p = 0.034).

Within specimens polished after sintering and tested in 3-point flexural strength, material Z
showed significantly lower values than C and D (p = 0.046). Within specimens polished before
sintering and tested in 4-point flexural strength, material C indicated significantly lower values than Z
(p < 0.001). D was not different to Z. It is difficult to discern patterns in the ZM effect, as they seem to
act differently for each TM and SP combination.

An impact of tested zirconia materials on Weibull modulus was observed only for specimens
prepared after sintering and tested in 3-point test. In this group, a significantly higher Weibull
modulus for C than for Z and D was observed (p < 0.001). All other groups were in the same Weibull
modulus range.

3.4. Surface Roughness (Profilometer) and Surface Topography (SEM)

Dry polished specimens showed higher surface roughness compared to wet polished specimens.
The surface roughness R, values for the dry polishing method range from 0.31 to 0.41 um and
for the wet polishing method from 0.011 to 0.014 um. An impact of zirconia materials (C, Z, D)
was not observed. SEM pictures confirmed the results of the profilometric measurement (Figure 3).
Roughness of the tested specimen was found to be associated with Weibull modulus (m) (Spearman’s
rho correlation = 0.199, p = 0.428).

Figure 3. Scanning electron microscopy (SEM) pictures of dry and wet ground zirconia materials.

3.5. Characterization of Monoclinic Phase Transformation (X-ray Diffraction)

The volume fraction of the monoclinic phase at the surface was low (~2%) for all tested specimens
(Figure 4), no material was noticeable different.
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Figure 4. X-ray diffraction pattern example: Z, biaxial dry and wet.
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4. Discussion

To the knowledge of the authors, no data for monolithic zirconia are existent comparing the
different flexural strength test methods. For the discussion of our data we will also consider studies
with other ceramic materials.

The tested null hypothesis was that the flexural strength test methods would show no impact on
strength values. This has to be rejected. It could be clearly discriminated between biaxial and 4-point
tested groups, which presented the lowest flexural strength findings. In 4-point flexural strength
testing, a larger area of the material is involved in stress application. Thus, the probability of crack
initiation, reflected by lower flexural strength, is higher than for the 3-point test method [10]. In our
data, 4-point tested groups were in all but one group statistically different from 3-point tested groups.
This is in accordance with the data of a previous study, where veneering ceramics for zirconia have
been tested [26].

In another study with zirconia core materials, biaxial strength testing resulted in higher and
statistically different values compared to those, measured by 3-point flexural strength testing [27].
Except for one group, our data showed the highest mean biaxial flexural strength values, but we could
only observe a clear discrimination between 3-point and biaxial testing in two groups. The high values
in the biaxial test can be related to the negligible effect of undesirable edge failures [28,29]. Jin et al. [30]
used all of the three test methods on different ceramic types. Although no zirconia material was
included in this study, the authors also identified the lowest values for 4-point flexural strength
measurement and could not clearly differentiate between biaxial and 3-point testing. A ranking order
of the different flexural strength test methods can be described as the following: biaxial > 3-point >
4-point flexural strength measurement. Regarding the influence of the test method on the Weibull
modulus it was observed that only wet polished, 3-point tested zirconia C and wet polished, 4-point
tested zirconia Z had a higher Weibull modulus compared to other groups. Neither surface roughness
nor SEM pictures can explain these findings.

The second tested hypothesis was, that the specimen preparation methods do not influence the
flexural strength and the reliability of monolithic zirconia. The inherent reliability of the material can be
described with the Weibull modulus. A high Weibull modulus is associated with a statistically higher
reliability. It was found that specimen preparation after sintering showed significantly higher flexural
strength values whereas no general trend for the Weibull moduli was observed. The Weibull modulus
for 3-point tested Zirconia C polished after sintering was even higher, than for those polished before
sintering. Thus the first part of the second hypothesis could not be confirmed. Regarding the reliability,
the other part of the hypothesis is accepted within flexural strength test-groups and zirconia material.
In contrast to that, a statistically lower Weibull modulus was noticed in wet polished 4-point tested
groups for Zirconia C and Z. This indicates that polishing may induce flaws, but the probability of
critical flaw detection increases, when a larger volume of the material is involved in the testing method.
As failure is initiated by the largest flaw or element, this effect is also referred to as the weakest link
hypothesis [31]. The authors believe that surface scratches shown in the SEM pictures, functioned as
crack origin and led to significantly lower strength values of the 4-point tested specimen. The values
for Weibull moduli ranged between (5.1 and 16.5), which is in accordance with the values reported for
Y-TZP core materials tested in other studies [25,32]. In the present literature, contradictory findings are
reported for flexural strength of zirconia materials, dependent on different surface alteration methods
after the sintering process. Several authors described a decrease in flexural strength and Weibull
modulus of zirconia, when the surface underwent a grinding process [14,18,33,34]. On the other
hand, an increase in mean flexural strength and a decreased reliability was observed with the use of
fine-grained diamond burs [35] and with wet hand grinding [36] although in this study the Weibull
distribution was not discussed. When corund-blasting as a surface method is conducted, an increase
of strength is also reported associated with a reduction of the Weibull modulus [18]. The increase in
flexural strength can be explained with the phase transformation in zirconia materials. The amount
of the monoclinic phase was found to rise, when the surface was treated after sintering [18,37].
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This well-known transformation toughening mechanism of zirconia materials can lead to compressive
surface stresses and thus elevate the flexural strength [38,39]. In contrast to that, in the present study
no higher fraction of monoclinic zirconia on the surface of wet polished specimen was found. Thus
the polishing procedure must have removed the layer of monoclinic zirconia. This effect was also
observed by Guazatto et al. [17]. The above discussion of possible origins of the flaws is supported
by Anderson-Darling (AD) goodness of fit estimates in Table 4. Smaller AD values indicate a better
fit of the data by the assumed distribution. The authors were unable to find a single distributional
assumption of flexural strength values fitting optimally for all test configurations. However, both
Weibull and normal assumptions provided reasonable and useful approximations to compare all test
groups. This conclusion is supported by a strong negative association between Weibull moduli (m)
and COV (rho = —0.972, p < 0.001). Weibull modulus estimates ranged from 5.1 to 16.5 whereas those
of COV from 0.077 to 0.223 indicating that both Weibull and normal assumptions were applicable to
all test groups.

The third hypothesis was that different zirconia materials do not influence flexural strength. This
has to be accepted, as a general trend as the zirconia materials could not be identified. It was observed
that the zirconia materials used in this study act differently dependent on flexural strength test and
treatment methods. Literature shows [19] that D contains a significantly larger grain size compared to
zirconia C and Z. However, no association between grain size and all tested parameters was found in
our study.

5. Conclusions

Within the limitations of the laboratory investigation, the following conclusions can be drawn:

(1) The 4-point flexural strength testing shows the lowest flexural strength data; biaxial test
method the highest.

(2) The specimen preparation method significantly impacts the flexural strength findings; surface
roughness was higher with dry polished specimens.

(3) Flexural strength values of tested zirconia materials range within the same values and no clear
effect of the zirconia material could be observed.
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