Supplementary Materials: Simple One-Pot Syntheses and Characterizations of Free Fluoride- and Bifluoride-Containing Polymers Soluble in Non-Aqueous Solvents

Dominik Steinle, Laura Friedrich, Nico Bevilacqua, Elizabeth von Hauff and Fabienne Gschwind

Figure S1. Conductivity depending on solvent.

(**b**)

Figure S2. PXRD of PVP-F (with remaining starting product, before it was recrystallized) and PVAC-F. (a) PVCA with and without fluoride doping; (b) PVP pure polymer, PVP-F and starting material NH₄F₂H₂.

Figure S3. EDX-analysis of different electrolytes after synthesis and purification. (**a**) PVP-F; (**b**) PVAC-F; (**c**) Malto-F; (**d**) Xy-F [1].

(a)

Figure S4. Cont.

Figure S4. Cyclovoltagrams of the different electrolytes and MeCN as reference. (**a**) Reference MeCN, Reference TGBF, Xy-F and Reference Higlyme with bifluoride; (**b**) Malto-F, PEI-F, PVP-F, TEPA-F.

Figure S5. Carbon Fibers.

Discharge curve using carbon fiber fabric: Carbon fiber fabric (Kynol) was used as cathode material and coated with NH₄AlF₆, Mg was used as anode and Xy-F as electrolyte.

Figure S6. Evolution of ammonia: time-depending incoming of NH₃ evolution into a Cu(II)-containing solution, the formation of copper tetramine can be observed.

Reference

 Vandi, L.-J.; Truss, R.; Veidt, M.; Rasch, R.; Heitzmann, M.T.; Paton, R. Fluorine Mobility During SEM-EDX Analysis: A Challenge for Characterizing Epoxy/Fluoropolymer Interfaces. J. Phys. Chem. C 2013, 117, 16933–16941.