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Abstract: The present study is aimed at predicting downward flame spread characteristics
over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure
environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA
slabs were conducted at five locations with different altitudes, which provide different pressures.
Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed
at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance
on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially
with pressure, and the exponent of pressure further shows an increasing trend with the thickness
of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction,
which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures.
A global non-dimensional equation was proposed to predict the variation tendency of the angle of
the pyrolysis front with pressure and was found to fit well with the measured results. In addition,
the dependence of average flame height on mass burning rate, sample dimension and pressure was
proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11,
which is close to the theoretical value.

Keywords: downward flame spread; three-dimensional; poly(methyl methacrylate) (PMMA);
pressure; thermal transfer

1. Introduction

Poly(methyl methacrylate) (PMMA) is widely used as a building material due to its excellent
clarity and intensity. However, it easily becomes soft under heat and has a high flammability potential
(Limited Oxygen Index = 18). Under a certain external heat flux, PMMA begins to bubble and many
combustible gases will form. Once the temperature and concentration of the gases exceed the critical
values, solid PMMA will be ignited. After ignition, the flame may spread in different directions, which
may cause serious damage. Thus, prediction of flame spread rate is of great practical importance from
a fire protection point of view. In a real-fire scenario, prediction of downward flame spread over solid
combustibles is a complicated problem since it is not only related with the thermal properties of virgin
material but also changes with environmental conditions, such as temperature, pressure, wind velocity
and humidity. All these parameters have significant influences on heat and mass transfer processes,
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which are predominant in flame spread mechanisms. A number of experiments and simulations
on flame spread over solid combustibles have been performed. The dependence of flame spread
characteristics on related physical and ambient conditions has also been proposed [1–14].

Flame spread rate was one of the most studied parameters in previous studies. Numerical
simulation is an important method investigating fire spread mechanisms since it gives the detailed
information. Most theoretical models of downward flame spread reported in the literature can be
classified as two-dimensional (2-D) heat transfer models [1,3–5,8,9,12]. De Ris [1] firstly presented
an integrated theoretical description of flame spread rate over thin sheet and a semi-infinite fuel
bed. A significant difference was found between the two sizes of simulation objects. Fernandez-Pello
and Williams [3] optimized the model of gas phase flow and provided a detailed description of the
dependence of flame spread rate on ambient temperature, pressure, oxygen concentration, gravity
acceleration and sample thickness. In addition, Frey and T’ien [4] proposed that the dependence
of flame spread rate on pressure over a thermal thin slab away from the extinct limit was slight
and linearly proportional to oxygen concentration. Later, Delichatsios [8,9] developed a new
energy balance in consideration of chemical-kinetic effects, external heat fluxes and reradiation
losses. Altenkirch et al. [5] proposed a dimensionless flame spread rate for thermally thin paper
sheets with Damkohler under different oxygen concentrations and pressures. Recently, Pujol and
Comas et al. [15,16] derived analytical expression of flame front spread by focusing on the gas-phase
equations, which was much more simplified and accurate. Leventon et al. [17] developed a
comprehensive model to predict time to ignition and mass burning rate by coupling ThermaKin
with empirical model of heat transfer. In general, the common conclusion is that flame spread rate for
PMMA is closely related with sample thickness.

Apart from the theoretical predictions of flame spread rate mentioned above, many
investigators have concentrated on experimental and semi-empirical research method [2,7,10–14,18,19].
Ayani et al. [10] provided an empirical formula of two-dimensional downward flame spread rate over
PMMA through a heat transfer model, which was proved to predict flame spread rate accurately.
Mamourian et al. [11] conducted experiments on flame spread down over PMMA samples with various
ratios of sample width to thickness and revealed that flame spread rate was closely related to sample
dimensions. Experimental investigations were only concerned with downward flame spread over solid
combustibles in a 2-D situation, where sample was hypothesized to be infinite along the sample width
and pyrolysis front was linear and uniform. Very few papers [2,12,14] have addressed the flame spread
over uninhibited solid materials, where flame spread was unconstrained and should be considered
three-dimensional (3-D).

Flame height is another important parameter in estimating fire behavior. A number of experiments
had been conducted on wall fires, to investigate the dependence of flame height on various
parameters [20–24]. Delichatsios [20,21] proposed that flame height was independent of stoichiometry
and gave a non-dimensional correlation of flame height with total heat release rate per unit width for
a buoyant diffusion fire. Later, several studies [22,23] were carried out to optimize the flame height
correlation. A consistent conclusion is that the correlation between flame height and heat release
rate is related to the magnitude of the fire source. A power-law dependence of flame height on mass
burning rate is also proposed and verified. Recently, Gollner et al. [24] gave a specific correlation of
flame height with heat release rate for both laminar and turbulent wall fires, and proposed that the
theoretical exponent of heat release rate was within the range of 2/3 and 4/3.

A literature review reveals that few investigations have been performed on a 3-D downward
flame spread. The geometrical size of solid combustibles in actual use is not sufficiently wide, and the
sample is more likely to be in an uninhibited condition. Thus, dominant mechanisms of 3-D downward
flame spread need more experimental study. Heat transfer at the leading edge of the flame is enhanced
since the stand-off distance is smaller and oxygen supply is rich there [2,7,12,14]. Measured results also
clarified this point of view [7]. Therefore, the models of heat transfer for the leading edge and burning
region are different, needing separate treatment as a consequence. Ambient pressure is also one of the
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most important and the most studied factors influencing the flame spread behavior [6,13,25]. In fixed
boundary conditions, pressure has a significant influence on heat and mass transfer processes, which
in turn will change the flame spread rate. However, pressure effects are not involved in downward
flame spread over solid slab in free boundary conditions.

Thus, a series of experiments were conducted to investigate the effects of sample dimension and
ambient pressure on downward flame spread over uninhibited PMMA slabs in this paper. PMMA was
chosen as the fuel due to its common use in flame spread tests. Experiments of downward flame
spread over PMMA with various dimensions were conducted at five locations with different altitudes.
Experimental results will be compared with theoretical predictions to test the accuracy of the model.

2. Experimental

A schematic of the experimental apparatus is shown in Figure 1. Samples used are pure and
transparent PMMA slabs, with density ρs of 1.18 g/cm3. A series of experiments were conducted
on samples with different dimensions. Three sample thicknesses (δ) were involved, 2, 5, and 10 mm;
sample width (W) ranged from 3 to 18 cm with an interval of 3 cm; and the length (L) of the sample
was 35 cm, long enough to reach a steady stage. It should be noted that there is no strip along the
specimen which means that sample is absolutely free.

In order to record the mass loss history of PMMA, samples were mounted vertically on an
electronic scale with a resolution of ±0.01 g. Two K-type thermocouples with a diameter of 0.5 mm
were fixed close to the sample to measure the flame temperature. Samples were ignited at the top end
by a linear methane diffusion flame. After ignition, behaviors of spreading flame and the profile of the
burning sample were recorded with a digital camera at 30 fps located in front of the sample. Each test
was repeated at least three times to ensure repeatability.
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Figure 1. Schematic illustration of the experimental apparatus.

Experiments were conducted in five cities in China with different altitudes, Hefei, Xining, Geermu,
Lhasa and Yangbajain. The ambient temperature and pressure at each altitude is provided in Table 1.
Ambient temperature hardly changes with location, and is assumed to be negligible in this study.
It should be noted that oxygen volume concentration at different altitudes is almost the same, which
means that ambient pressure plays a significant role at plateau in this study.

Table 1. Atmosphere parameters at five different altitudes.

Location Altitude (m) Ambient Pressure (kPa) Ambient Temperature (◦C)

Hefei 30 102 11–15
Xining 2295 78.3 9–13

Geermu 2800 73.2 7–12
Lhasa 3650 66.3 9–13

Yangbajain 4300 62.2 7–10
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A visual measurement method was employed in this study to obtain the flame spread rate, flame
height and flame area using the recorded videos [14,24]. A total of 500 frames captured by KMPlayer
from the video recorded by front-view camera during steady-state stage were imported into MATLAB,
and were processed into binary images based on the gray-scaled pixel value. Flame spread rate was
obtained after dividing the displacement of the flame front in steady-state stage by the selected time
period. The mean value of flame area divided by the sample width was considered the averaged
flame height.

3. Results and Discussion

Due to the enhanced convective heat transfer and sufficient oxygen supply, flame at the edge
of each side spreads faster than center area after ignition [12,26]. As a result, the profile of flame
front changes constantly in the initial period, before reaching a steady-state stage. Flame spread rate,
profile of pyrolysis front and flame shape are invariable in this steady-state stage. It should be noted
that the duration in different cases is indefinite, half an hour to an hour. In addition, the duration
of the development stage changes regularly with sample dimension and pressure. As the sample
dimension increases, including both width and thickness, the duration of the development stage
increases. The time of development stage decreases as pressure increases. Figure 2 shows the mass loss
rate history and recorded images in different burning stages for three repeated tests of 2 mm slabs in
Hefei. It is seen that pyrolysis front in the steady-state stage appears as a flipped “V” shape, different
from that in the case of 2-D downward flame spread [10,11] where the pyrolysis front is linear and
straight in the whole spreading period. Unless specifically noted, all parameters in the text below are
defined for the steady-state stage.
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Figure 2. Mass loss rate histories and recorded flame profiles for 2 mm sample in 102 kPa.
The flame spread process is divided into three stages: (1) ignition stage; (2) development stage;
(3) steady-state stage.

3.1. Prediction of Flame Spread Rate

Our previous study [14] has built a predictive model of 3-D downward fire spread over PMMA in
free conditions, as shown in Figure 3. This model is proved to be accurate in predicting flame spread
rate under different sample thicknesses and widths. α, β, γ are characteristic angles that emerged on
sample residue in the steady-burning stage and they are unchanged with sample width according to the
experimental results and related studies [2,12,14]. α is the angle of pyrolysis front along the direction
of width and is directly linked to the flipped “V” shape. Figure 4 shows the averaged values of α for
three sizes of PMMA slabs at different pressure environments. Solid points in the figure denote the
mean values of α for sample with different widths. It is noticed that the variation tendency of αwith
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pressure is different for the three samples. In the case of the 2 mm thick sample, α is almost a constant.
In contrast, for samples with thicknesses of 5 and 10 mm, it decreases significantly with increasing
pressure. In addition, it can be seen that the variation of α with pressure is much more evident for the
thicker sample. According to the measured results, β and γ are insensitive with pressure, which rarely
changes, within two degrees. Mean values of β and γ are 20.6◦, 13.2◦, respectively, within the error
in 10%.
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Figure 3. Sketch diagram of the theoretical model in the steady-state stage. Heating region in the
model includes two parts, preheated region and pyrolysis surface. Total heat fluxes at preheated region
and pyrolysis surface are qs and qp, respectively. α, β and γ are characteristic angles that emerged
on sample residue in the steady-state stage.

.
mghp and

.
msh∞ refer to the variation of enthalpy of gas

phase and solid phase. Tp, T∞ and ε are pyrolysis temperature, ambient temperature and preheated
length, respectively.
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Extensive works indicate heat transfer from flame to the virgin fuel through the gas phase is the
most significant in downward flame spread over the surface of thin PMMA [6,25]. Thus, convective
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heat transfer through gas phase is considered the dominant mode of heat transfer in deciding flame
spread rate in this study, as reported in previous studies [4,10,13,18,25,27]. Samples considered in this
study are thermal intermediate according to Pello’s theory [6,25], which means heat transfer through
solid phase has certain effects on flame spread process. However, heat delivered from burning solid
to flame front (pyrolysis front) is hard to measure or calculate accurately. Thus, the whole sample is
taken as a control volume and the energy balance on the whole sample is considered in this study.
This method is verified to be able to predict downward flame spread rate [10,14]. Since the heat
delivered to the pyrolysis region and the region ahead of it (preheated region) are very different, their
heat transfer processes will be considered individually.

At the leading edge of the flame front corresponding to the preheated region in Figure 3, boundary
layer approximation is not applicable as the characteristic length (the length of preheated region, ε,
is approximately 2 mm [25]) is rather small. The calculated Grashof number Gr is less than 10, which
means that buoyancy induced by natural convection is of the same order of magnitude as viscous
force [28]. In other words, gas velocity in the gaseous thermal region at preheated region is negligible.
Thus, thermal conduction becomes the unique important heat transfer model in gas-phase [28], which
may be roughly estimated as

q′′s = kg
Tf − Tp

l
(1)

where Tf and Tp are flame temperature and pyrolysis temperature, respectively; kg is the thermal
conductivity; l is the normal distance from flame to preheated surface, which may be denoted by the
thermal diffusion length δ at the leading edge [8,15]. Based on the balance between convection and
conduction terms in energy equation under naturally convective flow [29,30], the thermal diffusion
length can be given by

δ =
φ

Ure f
(2)

where φ and Ure f are the thermal diffusion coefficient and the reference velocity at the leading edge.
Ure f is induced flow velocity due to density variation near the flame which can be equated from
conservation equations of buoyancy and inertia force [15,29,30] as

Ure f = (
g(ρ∞ − ρ f )φ

ρ
)

1/3

(3)

where ρ∞ and ρ f are the density of air at ambient temperature and flame temperature, respectively;
φ and ρ in Equations (2) and (3) denote the quantities evaluated at an arithmetical average of ambient
and adiabatic flame temperatures. Rearranging Equations (1)–(3), heat flux transferred to the preheated
region is estimated as follows:

q′′s = kg(Tf − Tp)[
g(ρ∞ − ρ f )

ρ
]

1/3

φ−2/3 (4)

Experimental results reveal that flame temperature hardly changes with altitude, remaining
approximately constant at 900 ◦C. Analogously, Liang et al. [31] found the temperature of burning
PMMA was unchanged with altitude and gave the explanation that the combined effect of low
oxygen concentration and less soot formation led to the invariable flame temperature with pressure.
In addition, pyrolysis temperature Tp (approximately 400 ◦C) and thermal conductivity of gas flow kg

are insensitive to pressure within the normal range of pressure [13,28].
Based on ideal gas law, ρ∞, ρ f and ρ are linearly proportional to ambient pressure. The term in

the brackets in Equation (4) is invariable with pressure as the counterbalance effect. Thus, it can be
deduced that q′′s is only related to thermal diffusivity φ according to Equation (4). Based on the thermal
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transfer theory, thermal diffusivity is estimated to be related with thermal conductivity, density of flow
and specific capacity [28,32] as

φ =
kg

ρcp
(5)

where cp is specific capacity, an inherent parameter. According to the ideal gas law, air density is
proportional to the ambient pressure. Therefore, the dependence of heat flux in the preheated region
on pressure can be simplified by inserting Equation (5) into Equation (4) as

q′′s ∝ ρ2/3 ∝ P2/3 (6)

Pyrolysis surface in this study is inclined. The orientation is defined as its inclination angle from
the vertical, which is denoted by θ. The value of θ can be interpreted from the simplified model, and
its resulting expression is presented in Equation (7),

cosθ =
√

1− (cos(α/2)sin(β/2))2 (7)

For an inclined surface, the gravitational acceleration in calculating the Grashof number must be
replaced by its streamwise component gcosθ [3,33–37]. As a result, the modified Grashof number Gr∗

is given by

Gr∗ =
gcosθ×ψ(Tf − Tp)L3

v2 (8)

where ψ is the volume thermal expansion coefficient; L is characteristic length along fire plume, which
can be estimated as the fire length of unit width, 1/sin(α/2) in this study; and v is kinematic viscosity.
The characteristic streamwise length is on the order of centimeter. As a result, the order of magnitude
of the modified Gr∗ is 104 according to Equation (8), which suggests that the approximation of laminar
convective boundary layer is valid here [28]. The convective heat transfer coefficient h using the
assumption of boundary layer can be evaluated by Nusselt number Nu, thermal conductivity and
characteristic length [28] as

h =
Nu× kg

L
(9)

For laminar flow, Nu is given by [28]:

Nu = (
Gr∗

4
)

1/4
× g(Pr) (10)

where g(Pr) is the function of Prandtl number Pr, 0.73 in air environment [28]. Thus, convective heat
coefficient is obtained from Equations (9) and (10)

h = kg[
gψ(Tf − Tp)

4v2 ]
1/4

g(Pr)L−1/4cosθ1/4 (11)

Kinematic viscosity v in Equation (11) is related to flow density, v = η/ρ, where η is dynamic
viscosity which is invariable with pressure. Convective heat flux q′′P is proportional to convective heat
transfer coefficient and the temperature gradient, and thus can be written as

q′′P = h(Tf − Tp) (12)

The correlation of convective heat flux at pyrolysis surface can be derived from Equations (11)
and (12) as

q′′P = kg[
gψ

4(η/ρ)2 ]
1/4

(Tf − Tp)
5/4g(Pr)L−1/4cosθ1/4 (13)
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As pointed out in previous sections, L and cosθ are changed with pressure. The variation of
L−1/4cosθ1/4 in Equation (11) is rather small, within 3%, which is negligible here. Apart from density
of the fire flume, other parameters in Equation (13) can be considered to be invariable with pressure.
Thus, Equation (13) can be simplified as

q′′P ∝ ρ1/2 ∝ P1/2 (14)

Heat flux distributions at the pyrolysis surface and preheated region in Hefei were deduced in our
previous study, which are 20.6 and 73.3 kW/m2, respectively [14]. According to Equations (6) and (14),
distributions of heat flux in other four pressure environments can be derived through Equations (15)
and (16) as

q′′s = 73.3(
P

102
)

2/3
, (15)

q′′P = 20.6(
P

102
)

1/2
, (16)

where the unit of P is kPa.
In our previous study [14], a calculating formula was proposed to predict the steady flame spread

rate based on heat transfer theory and energy conservation equation,

Vf = 4

[
δ2cotβ2

8sin(α2 −γ)
+ Wδ

4sinα
2 sinβ

2
− δ2cotβ2 sinγ

8sinα
2 sin(α2 −γ)sinβ

2

]
× q′′P + (δ2 + W

2sinα
2
)ε× q′′s

(hdeg + cP(Tp − T∞))× ρsWδ
(17)

where hdeg is the heat of degradation of solid PMMA. Plugging the measured characteristic angles
and the calculated heat fluxes into Equation (17), flame spread rates for different-sized samples in
five pressure environments can be estimated. Figures 5 and 6 show the comparisons between measured
and calculated flame spread rates for different dimensions and different pressure environments.
The solid points in two figures denote experimental results for three repeated tests and the dashed
lines represent the calculated results from Equation (17). It is seen that predicted values from theory
agree well with experimental results for the different-sized samples this paper concerns in different
pressure environments. Flame spread rate increases first and then tends to be unchanged with sample
width. Compared with sample width, pressure and sample thickness seem to have greater influence
on the flame spread rate.
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According to the scale modeling of surface combustion and flame spread over solid combustibles,
a power-law dependence of burning rate or flame spread rate on pressure is obtained [13,25,38].
In order to take a comprehensive consideration of three different thickness samples, a dimensionless
treatment is adopted here. Figure 7 shows the exponential fitted relationships between normalized
flame spread rate and normalized pressure. The fitted parameters for different sized samples are
presented in detail in Table 2. The superscript * denotes the relative quantity, which is equal to
the actual value at low pressure environment divided by the value at normal pressure (102 kPa),
Vf
∗ = Vf /VHe f ei, P∗ = P/PHe f ei. The solid points denote experimental results, and the solid lines are

fitted results for experimental results with the same dimension. It is seen that the exponent changes
regularly with the sample dimension. As sample thickness increases, the fitted exponent increases as
well, ranging from 0.45 to 1.08. In contrast, for sample with the same thickness, the fitted exponent is
nearly invariable. It can be deduced that width effect on heat transfer mechanism at each altitude is
marginal. Two dashed lines represent correlations of convection-controlling and radiation-controlling
flame spreads over solid surface with pressure in a 2-D case, and their slopes are 0.5 and 2 [3,18,19,39],
respectively. In this study, convective heat delivery through gas-phase is dominant for different sized
samples. Furthermore, the effect of pressure on thermal feedback mechanism at pyrolysis surface
and preheated region for different sized samples is taken as the same. However, the dependence of
flame spread rate on pressure appears to change significantly with sample thickness. This discrepancy
may be explained by the fact that the effect of angle of pyrolysis front on flame spread rate plays a
significant role in the 3-D case.

Table 2. Fitted parameters corresponding to Figure 7.

Sample Dimension (ffi−W) Slope (n) Standard Error Adjusted R-Square

2 mm–5 cm 0.45 0.041 0.954
5 mm–3 cm 0.79 0.018 0.995
5 mm–6 cm 0.79 0.026 0.989
5 mm–9 cm 0.79 0.029 0.986

5 mm–12 cm 0.71 0.045 0.963
5 mm–15 cm 0.70 0.045 0.962
5 mm–18 cm 0.65 0.050 0.946
10 mm–3 cm 1.08 0.012 0.999
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3.2. Prediction of Angle of Pyrolysis Front

In this study, the relationship among flame spread rate, angle of pyrolysis front, sample
dimensions and thermophysical parameters of solid PMMA is presented in Equation (17). Compared
with pressure, sample width has little effect on angle of pyrolysis front and the heat delivery mechanism
according to the experimental results. As a result, the angle of the pyrolysis front is invariable with
sample width. When sample width is much larger than thickness, Equation (17) reduces to

Vf = 4

Wδ

4sinα
2 sinβ

2
× q′′P + W

2sinα
2
ε× q′′s

(hdeg + cp(Tp − T∞))× ρsWδ
(18)

Thus, the sine of α/2 can be derived from Equation (18) as follows:
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α

2
= [

q′′p
sinβ

2 (hdeg + cp(Tp − T∞))ρs
+

2ε× q′′s
(hdeg + cp(Tp − T∞))× ρsδ

]/Vf (19)

The sum of the two terms in brackets in Equation (19) denotes flame spread rate normal to the
pyrolysis front (2-D). It can be indicated that the value of sin(α/2) equals to the ratio of flame spread
rate normal to the pyrolysis front to the downward flame spread rate. The first term in the brackets
tends to be much larger than the second term, especially for larger thickness. Thus, the relationship
between the sum of the two terms in bracket and pressure is simplified as that of the first term
with pressure, which means that flame spread rate normal to the pyrolysis front is proportional to
pressure with an exponent of 0.5 approximately. Similarly, Fernandez-Pello et al. [19] proposed that
2-D opposing flame spread rate over a cylinder of PMMA for diameters ranging from 0.8 to 12.7 mm
was proportional to environmental and thermal physical parameters as

V2D ∝ exp[−Eg/(RTf )]YO
2P0.5U∞

−1.5 (20)

where Eg, R, YO, and U∞ are activation energy for fuel pyrolysis, universal gas constant, mass fraction of
oxygen and ambient velocity, respectively. It shows that flame spread rate in a 2-D case is exponentially
proportional to pressure with an exponent of 0.5. Thus, Equation (19) reduces to

sin
α

2
=

C1P0.5

Vf
(21)
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where C1 is a parameter invariable with pressure. As pointed out in the previous section, flame
spread rate Vf is exponentially proportional to pressure for sample with the same thickness. Thus, the
correlation of sin(α/2) with pressure is given by

sin
α

2
=

C1P0.5

C2Pn (22)

where C2 is a parameter which is variable with sample thickness; n is presented in Table 2.
In order to get rid of the effect of sample dimension, a dimensionless variation tendency of the

angle of the pyrolysis front with pressure is derived as

(sin
α

2
)
∗
= P∗

0.5−n
(23)

where the superscript * denotes the relative quantity, which is equal to the actual value in various
pressure environments divided by the value at normal pressure (102 kPa) for the same experiment.
Figure 8 shows the comparison of the correlation between angle of pyrolysis front and pressure for
experimental and theoretical results. The colored points denote averaged experimental results over
sample width; the blue dashed line is the predicted tendency from Equation (23). It shows that
prediction from Equation (23) coincides fairly well with the experimental result.
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3.3. Prediction of Averaged Flame Height

Profile of burning residues in the steady-state stage appears as a flipped “V” shape, which in
turn forms a non-linear flame front. In order to remove the influence from the non-linear flame
front, averaged flame height denoted by the ratio of flame area to sample width is adopted in this
study. Previous studies revealed that flame height depended closely on the heat release rate for wall
fires [20–24]. Its specific relationship is concerned with the status of fire plume. The fire plume in this
study is assumed to be laminar according to Equation (8), which means that oxygen reaches the flame
region mainly by molecular diffusion. Gollner et al. [24] gave the relationship between flame height
and burning rate per unit width in laminar wall-fires as
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H f =

.
m′

4/3

(ρ∞ρ f f 2D
√

g)2/3 (24)

where f, D are the mass of fuel required to react with a unit mass of air and molecular diffusion
coefficient of gaseous fuel, respectively. Mass burning rate per unit width can be denoted as
.

m/[W ∗ sin(α/2)] in this study. According to the mass transfer theory, the diffusion coefficient is
relevant to system pressure and temperature as

D ∝ P−1Tf
3/2 (25)

The power-law dependence of flame height on mass loss rate can be simplified by plugging
the expressions of mass burning rate per unit width and the diffusion coefficient into Equation (24)
as follow

H f ∝ [

.
m

WP1/2 ]
4/3

(26)

Figure 9 shows the fitted correlation of averaged flame height with mass burning rate and pressure.
The solid points represent averaged data over width, as the averaged values of flame height and mass
burning rate per unit width change little with sample width according to the experimental results.
The index derived from the experimental data is 1.112 and is close to the theoretical result (4/3) [18],
which indicates that the correlation of flame height on heat release rate is valid in 3-D downward
flame spread as well. A smaller fitted exponent in comparison with theoretical result may result from
experimental error. In addition, the fire plume in the experiment is not completely laminar. It means
that air entrainment and eddy contribute the air supply to fire plume as well, which in turn weakens
the dependence of flame height on mass burning rate.
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Figure 9. Relationship between averaged flame height and burning rate: H f to
.

m
WP1/2 . The red line is

an exponential fit to the experimental data.

Mass burning rate is proportional to flame spread rate in the steady-state stage:

.
m = ρWδVf . (27)

Flame spread rate is exponentially proportional to pressure, Vf ∝ Pn, and the value of n is
presented in detail in Table 2. Thus, dimensionless correlation of flame height with pressure is given
by plugging Equation (27) into Equation (26),
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H f
∗ = P∗

4n−2
3 (28)

where the superscript * denotes the relative quantity, which is equal to the actual value in various
pressure environments divided by the value at normal pressure (102 kPa) for the same experiment.
Figure 10 shows the comparison of flame height between experimental results and theoretical
predictions from Equation (28). Solid points denote averaged experimental values over different
widths since flame height is unchanged with pressure. It can be seen that experimental results of flame
height are in reasonable agreement with theoretical predictions as well. As sample thickness increases,
the exponent n increases according to previous derivation. Thus, the exponent of non-dimensional
pressure in Equation (28) increases as well.
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4. Conclusions

Downward flame spread tests were conducted on PMMA with different dimensions at five
different altitudes. The main properties of the 3-D downward flame spread that were studied were
flame spread rate, angle of pyrolysis front and flame height. Their relationship and variation tendency
with pressure were proposed based on experimental results and theoretical interpretation. The main
results are summarized as follow:

1. Heat fluxes at the pyrolysis surface and preheated region increase exponentially with pressure,
with exponents of 1/2 and 2/3, respectively. Through the established 3-D theoretical model
and heat flux distributions, flame spread rate in different pressure environments was predicted
successfully. In addition, it was found that flame spread rate was exponentially proportional to
pressure, approximately. The fitted exponent increases with sample thickness. However, it merely
changes with sample width.

2. The changing trends of angle of the pyrolysis front with pressure for samples with different
thicknesses are distinctly different. For the 2 mm sample, the angle of the pyrolysis front hardly
changed with pressure. In contrast, for a larger sample width, this angle decreases significantly
with increasing pressure, which in turn will increase the length of the burning region. Through the
derived correlation of 3-D flame spread rate, a normalized formula for the angle of the pyrolysis
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front with pressure was proposed, (sinα
2 )
∗ = P∗

0.5−n
, which coincided well with experimental

results in this study.
3. A power-law dependence of averaged flame height on mass burning rate, sample dimension and

ambient pressure in downward flame spread was presented based on laminar diffusion theory
and confirmed through experimental results. The fitted exponent is 1.11, basically consistent with
the theoretical result. In addition, a normalized correlation of flame height with pressure was

proposed as well, H f
∗ = P∗

4n−2
3 .

This paper gives a method to help estimate characteristics of 3-D downward flame spread
in different pressure environments. Additional work on flame spread under complex boundary
conditions will be needed to understand the mechanisms of 3-D flame spread.
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