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Abstract: Hydrogel optimisation for biofabrication considering shape stability/mechanical properties
and cell response is challenging. One approach to tackle this issue is to combine different additive
manufacturing techniques, e.g., hot-melt extruded thermoplastics together with bioplotted cell
loaded hydrogels in a sequential plotting process. This method enables the fabrication of 3D
constructs mechanically supported by the thermoplastic structure and biologically functionalised
by the hydrogel phase. In this study, polycaprolactone (PCL) and polyethylene glycol (PEG)
blend (PCL-PEG) together with alginate dialdehyde gelatine hydrogel (ADA-GEL) loaded with
stromal cell line (ST2) were investigated. PCL-PEG blends were evaluated concerning plotting
properties to fabricate 3D scaffolds, namely miscibility, wetting behaviour and in terms of cell
response. Scaffolds were characterised considering pore size, porosity, strut width, degradation
behaviour and mechanical stability. Blends showed improved hydrophilicity and cell response with
PEG blending increasing the degradation and decreasing the mechanical properties of the scaffolds.
Hybrid constructs with PCL-PEG blend and ADA-GEL were fabricated. Cell viability, distribution,
morphology and interaction of cells with the support structure were analysed. Increased degradation
of the thermoplastic support structure and proliferation of the cells not only in the hydrogel,
but also on the thermoplastic phase, indicates the potential of this novel material combination
for biofabricating 3D tissue engineering scaffolds.

Keywords: sequential bioplotting; biofabrication; polycaprolactone; hydrogels; alginate dialdehyde;
gelatine; tissue engineering

1. Introduction

Considering the growing need for donor organs, biofabrication is a novel approach which can
accelerate the success of tissue engineering strategies to tackle the problem of shortage of organ
donors [1,2]. The use of additive manufacturing techniques to fabricate complex tissue equivalents
which combine living cells, extracellular matrix materials, growth factors and also structural elements
is receiving increasing research interest [3,4]. Hydrogels are the material class of choice for cell
immobilisation [5]. Thus, hydrogels are also chosen for the one-step additive manufacturing of
3D constructs containing homogenously distributed cells, which mimic the complex structure of
tissues [6,7]. Hydrogels, however, lack mechanical integrity for use in bone or cartilage tissue
engineering [8,9]. Hence, different approaches are being put forward to overcome this drawback
which should also take into account the viability of the immobilised cells. One possibility is changing
the hydrogels properties by addition of inorganic fillers [10]. Hydrogels with immobilised cells can be
also infiltrated in pre-fabricated 3D-structures, for example nanofibers fabricated by electrospinning
have been infiltrated [11]. Visser et al. used melt electrospinning writing to fabricate highly porous
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3D polycaprolactone (PCL) microfiber scaffolds, which were infiltrated in a second step with gelatine
methacrylamide loaded with human chondrocytes [9]. The dispense plotting of PCL was established by
Hutmacher et al. [12]. Several approaches have been put forward for coating plotted PCL scaffolds to
improve the cell response [13,14]. Instead of only changing the surface properties of PCL, modifications
to the bulk material have also been carried out, for example using PCL-PEG copolymers [15,16] and
PCL/PLA blends [17]. The use of sequential bioplotting technique for the creation of mechanically
enhanced 3D structures consisting of a thermoplastic hard phase (PCL) and a hydrogel (mostly alginate,
but also a mixture of gelatine, hyaluronic acid, fibrinogen and glycerol) with immobilised cells has
been also reported [18–21]. One advantage of this method is that the layer by layer approach enables
the freedom for designing constructs with different materials and cell types in pre-defined positions,
which are then fabricated in a one-step process [19]. Shim et al. adapted their process to fabricate
osteochondral constructs by using osteoblasts and chondrocytes in different areas of the scaffold [22].
The sequential bioplotting technique is superior to the cell-seeding method of PCL scaffolds concerning
seeding efficiency and cell distribution [20]. Grigore et al. showed in a comparative study that a system
of alginate dialdehyde crosslinked with gelatine (ADA-GEL) has favourable properties considering
the response of immobilised human osteoblast-like MG-63 cells compared to pure alginate [23].
The covalent crosslinking mechanism of alginate dialdehyde (ADA) and gelatine (GEL) happens over
Schiff’s base formation between the free amino groups of GEL and the available aldehyde groups of
ADA [24,25]. As like alginate, partially oxidized alginate (=ADA) can be ionically gelled using divalent
cations like Ca2+ [26].

In this study, a sequential bioplotting approach using a novel material combination of PCL-PEG
blend material and ADA-GEL was evaluated to fabricate advanced 3D cell containing constructs.
In a first step the material and plotting process parameters of different PCL-PEG blends in comparison
to pure PCL were evaluated as well as the degradation behaviour, mechanical performance and cell
attachment. In a second step, the pre-evaluated PCL-PEG blend was used for the sequential bioplotting
with ADA-GEL containing stromal cells (ST2 cells). In vitro characterisation of the fabricated constructs
was done considering cell viability, cell distribution and cell interaction with the PCL-PEG blend by
migration from the hydrogel phase.

2. Materials and Methods

2.1. Materials and Synthesis

PCL (Mn = 40,000 to 50,000) and PEG (Mn = 7000 to 9000) were purchased from Sigma Aldrich,
St. Louis, MO, USA. Granules of PCL and PEG were mixed in appropriate ratios in the cartridge of the
plotter system (Section 2.3) and heated up to 110 ◦C and mixed with a spatula to get PCL-PEG blends.

Sodium alginate (alginic acid sodium salt from marine brown algae, suitable for immobilization of
microorganisms, Sigma-Aldrich) with a molecular weight of 100,000 to 200,000 g/mol and a guluronic
acid content of 65%–70% and gelatine (Sigma-Aldrich, St. Louis, MO, USA) Type A, Bloom 300,
derived from porcine skin, were used. Calcium chloride di-hydrate and sodium metaperiodate were
obtained from VWR international, Radnor, PA, USA.

Covalently crosslinked alginate-gelatine (ADA-GEL) hydrogel was synthesized similar to the
description of Sarker et al. [24]. Shortly, ADA was prepared by oxidation of alginate using sodium
metaperiodate as an oxidising agent in ethanol-water mixture (1:1), for which 10 g of alginate dispersed
in 50 mL of ethanol was mixed with 2.674 g sodium metaperiodate dissolved in 50 mL deionised water.
This suspension was kept in the dark and stirred at room temperature for 6 h. The oxidation reaction
was stopped by adding ethylene glycol (equivalent to alginate) (VWR International, Radnor, PA, USA)
and stirring was continued for 30 min. Then the resultant suspension was filled into a semipermeable
membrane (MWCO: 6000–8000 Da, Spectrum Lab, Irving, TX, USA), which was dialyzed against
ultrapure water (Direct-Q®, Merck Millipore, Darmstadt, Germany). For ensuring the purification
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of the solution the water was changed several times during the 5 days of dialysis. In a next step,
the suspension was lyophilised for 4 days.

For the preparation of the ADA-GEL hydrogel, 7.5% (w/v) aqueous solution of gelatine was dropped
slowly into an ADA solution (7.5% (w/v)), in phosphate buffered saline (PBS, Life Technologies, Frankfurt,
Germany) with a pH of 7.3 under stirring. For cell culture experiments the ADA as well as the gelatine
solution were sterilized by filtration (0.45 µm and 0.22 µm pore size; Carl Roth, Karlsruhe, Germany).

2.2. Cell Culture and Cell Immobilisation

For cell culture studies bone marrow derived stromal cell line ST2 (German Collection of
Microorganisms and Cell Culture, Braunschweig, Germany) was used. Culture medium MEM alpha
(Life Technologies) supplemented with 10% (v/v) foetal bovine serum (FBS, Sigma-Aldrich) and
1% (v/v) penicillin/streptomycin (PS, Sigma-Aldrich) was chosen. The culture flasks (Greiner-BioOne,
Frickenhausen, Germany) were placed in an incubator at 37 ◦C in a humidified atmosphere of 95% air
and 5% CO2 with the cells growing for 48 h. For the biofabrication experiments the cells were washed
with PBS and detached from the flasks surface using Trypsin/EDTA (Sigma-Aldrich). For adjusting
the cell concentration they were counted with a hemocytometer (Carl Roth) and diluted with culture
medium. The cell concentration was set to 2 million cells per mL ADA-GEL.

2.3. Scaffold Fabrication

For scaffold fabrication a bioplotting system (type Bioscaffolder 2.1, GeSiM mbH,
Großerkmannsdorf, Germany) was used. The scaffold design was generated with the
“ScaffoldGenerator software” (GeSiM mbH). The scaffold geometry was set to 10 mm × 10 mm
× 4.5 mm. Scaffolds were built of 18 double layers, means each layer consists of two struts plotted
in reverse directions (as schematically shown in Figure 1). Subsequent layers were positioned in
a 90◦ pattern with either 10 or 14 parallel lines with equal interspace. A conic aluminium nozzle
(Vieweg GmbH, Kranzberg, Germany) with a diameter of 250 µm was used. The plotting speed was set
to 4 mm/s and pressure to 410 kPa for all PCL or PCL-PEG compositions. The processing temperature
was set at 120 ◦C for PCL, 110 ◦C to 100 ◦C for PCL-PEG 80-20 and 90 ◦C to 80 ◦C for PCL-PEG 70-30.
Further increase of PEG content resulted in scaffolds of inferior quality.
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Figure 1. Scheme of a hard-phase (PCL-PEG) scaffold with typical double-strut structure. 

The scaffolds of the sequential bioplotting process had two double layers in z-direction and the 
10 line design was used to guarantee a high volume share of ADA-GEL with immobilised ST2 cells, 
which was plotted in the interspace (as schematically shown in Figure 2). The ADA-GEL was plotted 
with 10 mm/s, 170 kPa and 200 µm needle (Nordson EFD, Oberhaching, Germany). Considering the 
improved cell response, according to the results of cell viability in Figure 51 using a PCL-PEG 7030 
blend, the hard-soft scaffolds were fabricated with this material composition. The plotting process of 
the ADA-GEL hydrogel was evaluated and described in more detail earlier [27]. 

Figure 1. Scheme of a hard-phase (PCL-PEG) scaffold with typical double-strut structure.

The scaffolds of the sequential bioplotting process had two double layers in z-direction and the
10 line design was used to guarantee a high volume share of ADA-GEL with immobilised ST2 cells,
which was plotted in the interspace (as schematically shown in Figure 2). The ADA-GEL was plotted
with 10 mm/s, 170 kPa and 200 µm needle (Nordson EFD, Oberhaching, Germany). Considering the
improved cell response, according to the results of cell viability in Figure 1 using a PCL-PEG 7030
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blend, the hard-soft scaffolds were fabricated with this material composition. The plotting process of
the ADA-GEL hydrogel was evaluated and described in more detail earlier [27].Materials 2016, 9, 887 4 of 17 
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2.4. Hard-Phase Evaluation

2.4.1. FTIR

A Fourier transform infrared (FTIR) spectrometer (Nicolet 6700, Thermo Scientific, Dreieich,
Germany) was used to evaluate the material composition of plotted planar structures (10 mm × 10 mm)
with different material compositions. A wave number range from 650 cm−1 up to 4000 cm−1 was used.

2.4.2. Contact Angle Measurement

Contact angle measurements were done by the sessile drop method using ultrapure water.
The resulting contact angle was determined by a drop shape analyser (DSA30 Kruess GmbH, Hamburg,
Germany). Planar structures were plotted with the different material compositions.

2.4.3. Cell Behaviour on Different PCL-PEG Blends

Planar structures of PCL, PCL-PEG 8020 and PCL-PEG 7030 were plotted and seeded with ST2
cells in a concentration of 100,000 cells/mL alpha-MEM cell culture medium and incubated for a period
of 21 days.

For investigating cell morphology and distribution, cells were labelled with Vybrant (DiI)
(Life Technologies) by adding 5 µL to 1 mL cell culture media and incubating for 30 min at 37 ◦C.
Afterwards samples were washed three times with PBS. Fluorescence fixing solution was added
for 15 min. For staining the cell nucleus DAPI was used with a concentration of 1 µL per mL cell
culture medium. Fluorescence microscope (FM, Scope.A1, Carl Zeiss, Oberkochen, Germany) was
used for imaging.

Cell viability was determined using WST-8 assay kit (Sigma-Aldrich). WST-8 assay solution and
cell culture medium were mixed in a ratio of 1:100 and 1 mL was added to each sample. After 2 h
of incubation at 37 ◦C, the absorbance at 450 nm was analysed using spectrophotometer (PHOmo,
Anthos Mikrosysteme GmbH, Krefeld, Germany). The measurements were repeated after 2 days,
7 days, 14 days and 21 days of incubation.

2.5. Hard-Phase Scaffold Characterisation

2.5.1. Strut Size and Pore Size

Images were obtained using bright field microscopy (BF, Scope.A1, Carl Zeiss). The width of the
struts from the top scaffold-layer in z-direction was measured using ImageJ (open source Java image
processing program) software. In the same manner, the pore size was also obtained.
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2.5.2. Porosity

Porosity was determined by measuring the density of the samples using density kit of analytical
balance (Kern, Germany). The weight of the samples was measured in air and in 99.8% ethanol,
with ethanol density set to 0.800 g/cm3. Based on the results, the volumetric mass density was
calculated. The exterior dimensions of the samples were measured using a calliper (accuracy of 50 µm).
Using this data, the total porosity was calculated.

2.5.3. Mechanical Testing

Mechanical properties of the samples were investigated using a compression testing machine
(Zwick Z050, Zwick Roell GmbH, Ulm, Germany). The upper force limit was set to 1 kN,
the compression rate to 1 mm/min and the maximum deformation to 3 mm. The compressive
stiffness of the scaffolds was determined from the initial linear region of the stress–strain curve.

2.5.4. Degradation Study

Samples with 14-line-design of each composition were incubated in Hank’s balanced salt solution
(HBSS) (Sigma-Aldrich) for three days at 37 ◦C. After drying the samples for 24 h, the weight was
measured to examine the mass loss.

2.5.5. Scanning Electron Microscopy (SEM)

For characterisation of the morphology of PCL and PCL-PEG scaffolds SEM (Auriga CrossBeam,
Carl Zeiss Microscopy GmbH, Oberkochen, Germany) was used.

2.6. Hard-Soft Phase Scaffolds: In-Vitro Characterisation

2.6.1. Optical Microscopy

Over the whole incubation period, cell development in the hydrogels was observed by light
microscopy (Primo Vert, Carl Zeiss, Oberkochen, Germany).

2.6.2. Cell Viability

Cell viability was investigated with WST-8 assay kit as described in the previous section.
Incubation period was set to 4 h.

2.6.3. Cell Adhesion

For staining the actin filaments of cells and the cell nuclei, phalloidin (red) (Life Technologies)
and sytox (green) (Life Technologies) were used, respectively, as described earlier [27].

2.7. Statistical Analysis

For statistical analysis of the differences the one-way analysis of variances and Tukey post-hoc
comparison was used, which is implemented in Origin 9.0G (OriginLab Corporation, Northampton,
MA, USA) software. The significance level was set as p < 0.05 = *, p < 0.01 = ** and p < 0.001 = ***.
The number of samples for the cell viability studies was N = 4 with cells on PCL and PCL-PEG plates
and N = 8 in hard-soft constructs. For the mechanical analysis, 6 samples per group, except for the
PCL-PEG 8020 group with 10 strut design with 7 samples, were used.

3. Results and Discussion

3.1. Hard-Phase Evaluation

3.1.1. FTIR

In Figure 3, the FTIR spectra of PCL, PCL-PEG blends and PEG plotted plates are presented.
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in the text).

It is shown that typical PCL absorption bands attributed to the C-O and C-C stretching in the
crystalline phase (at ~1295 cm−1) [28], the C=O carbonyl stretching (at ~1730 cm−1) [28,29] are visible
for pure PCL and the PCL-PEG blends, but not for pure PEG. The peak at around 1287 cm−1 is sharper
for pure PEG and PCL-PEG blends [30]. The peak at around 1158 cm−1 attributed to ether groups [31]
is sharp for the pure PEG and it is also present in the spectra of PCL-PEG blends. For pure PCL, there is
a slightly shifted peak at 1171 cm−1, which could be ascribed to the C-O and C-C stretching in the
amorphous phase [28]. Peaks of both pure materials were found in the blend compositions, but there
are no shifts or new peaks visible indicating possible intermolecular interactions [29,32].

3.1.2. Contact Angle Measurements

The contact angle of the PCL-PEG blends (ratio 8020 = 58◦ ± 3◦, ratio 7030 = 65◦ ± 1◦) was reduced
compared to pure PCL (78◦), which is comparable for values reported by Won et al. [14] (80◦).
This could be explained by the hydrophilic properties of PEG [33] compared to the hydrophobic
PCL [34]. The increase of contact angle for blends 8020 to 7030 is possibly caused by not completely
homogenous mixing. Hoque et al. [15] reported that a PCL-PEG copolymer had a contact angle of
around 40◦ in comparison to 90◦ for pure PCL. The decrease in the contact angle has a very positive
effect on the wettability of the samples, as also shown in Figure S1.

3.1.3. Cell Adhesion and Cell Viability

PCL has been modified in form of PCL-PEG diblock and triblock [15] copolymers and by using
blends of PCL/PLA [17] and PCL/PLGA [19] to successfully improve the cell response by overcoming
the hydrophobic properties of PCL. In Figure 4, fluorescence microscopy images of ST2 cells on PCL
and PCL-PEG blends with different composition are shown after two days of incubation. The cells are
attached on all three materials. On pure PCL (Figure 4a), a higher number of single cells is visible in
comparison to the blends, whereas on the 7030 (Figure 4c) composition the cells show a more dense
and more homogenous distribution than on the 8020 (Figure 4b) composition. This result indicates
that cell adhesion is possible on all compositions and is consistent with previous results for PCL-PEG
copolymers [15].
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cytoplasm (red) and cell nuclei (blue) after two days of incubation: (a) PCL; (b) PCL-PEG 8020;
and (c) PCL-PEG 7030.

In Figure 5, the viability of ST2 stroma cells seeded on PCL and PCL-PEG plotted plates
is presented. The results of cell viability kinetic at several time points during the 21 days of
incubation indicate that the PCL-PEG blend of 7030 composition is superior to pure PCL and PCL-PEG
8020 blend. One possible explanation, regarding the contact angle measurements, is the improved
wetting behaviour comparing pure PCL. Nevertheless, the similar contact angle of the two blend
materials does not explain the cell viability of the 8020 composition in comparison to pure PCL. Thus,
additionally topographic structure changes in the surface could explain the improved behaviour of the
7030 composition considering the degradation behaviour of the materials (data shown later in this
article). Patrício et al. [35] showed that the blending method of PCL/PLA had influence on the surface
roughness of plotted scaffolds and so possibly on the cell performance.
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3.2. Hard-Phase Scaffold Characterisation

3.2.1. Scaffold Design Data

Scaffolds consisting of pure PCL and PCL-PEG blends with a composition of 8020 as well
as 7030 and with two different design approaches by varying the number of struts per layer were
plotted. The process parameters were adjusted to achieve scaffolds within a comparable range
considering strut width, pore size and porosity. Therefore, the processing temperature was adjusted,
whereas plotting speed and pressure as two further defining processing parameters, which influence
the size dimensions of a plotted strut, were kept constant [15,16,21]. The temperature was constantly
decreased from 120 ◦C for pure PCL, 110 ◦C to 100 ◦C for PCL-PEG 8020 and 90 ◦C to 80 ◦C for
PCL-PEG 7030. The temperatures for the PCL-PEG blend are in the range of the PCL-PEG copolymer
processing done by Hoque et al. [15]. The temperature was decreased instead of increasing the speed
or decreasing the pressure for adjusting the strut width. This was because for the later approach of
sequential processing together with the hydrogel/cell solution, a low temperature is beneficial to
ensure cell viability [36]. Images of a fabricated scaffold with a 14 lines per layer design are shown
in Figure 6a,b.
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Figure 6. Stereomicroscope images of a plotted PCL-PEG (7030) scaffold as fabricated: topview (a);
and side view (b) (scale bar = 2 mm).

In Table 1, scaffold geometry data for the different scaffolds produced are listed.

Table 1. Scaffold geometry data for PCL and PCL-PEG blend scaffolds for two different design set-ups
using 14 or 10 lines per layer.

Design (Lines Per Layer) Material Strut Width (µm) Pore Size (µm) Porosity (%)

14 PCL 358 ± 15 401 ± 20 41 ± 3
14 PCL-PEG 8020 425 ± 118 318 ± 123 33 ± 13
14 PCL-PEG 7030 313 ± 73 434 ± 67 52 ± 9
10 PCL 313 ± 72 801 ± 67 65 ± 5
10 PCL-PEG 8020 380 ± 79 712 ± 76 46 ± 5
10 PCL-PEG 7030 307 ± 84 794 ± 104 65 ± 10

With the chosen processing parameters, scaffolds of all material compositions had an average
strut width (nozzle diameter 250 µm) in the range of 307 µm–425 µm. The pore size depending on the
strut width was between 318 µm and 434 µm for the 14 struts per layer design. The porosity of these
scaffolds is between 33% and 52%. In addition, the 10 struts per layer design was evaluated to increase
the porosity and so the volume, which can be filled with the cell/hydrogel solution for the later
sequential bioplotting process. For this design the pore size increased for all material compositions,
which is consistent with the constant strut width. Pore sizes were between 712 µm and 801 µm.
The porosity increased from 41% to 64% for pure PCL, from 33% to 46% for PCL-PEG 8020 and from
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52% to 65% for PCL-PEG 7030. The strut width, pore sizes and porosity are in typical range for PCL
and modified PCL scaffolds fabricated by bioplotting reported in literature [15,17].

3.2.2. Degradation Study: Mass Loss

The degradation of the scaffolds was investigated by measuring the mass loss during three days of
incubation at 37 ◦C in a physiological buffer solution. Previous experiments have shown that the mass
loss remains constant after an initial drop. The results of the mass loss study are shown in Figure 7.
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Figure 7. Mass loss of PCL and PCL-PEG blend scaffolds after three days of incubation at 37 ◦C.

The pure PCL, as expected, showed no mass loss during three days of incubation as PCL is
known to have a total degradation time up to two years depending on its initial molecular weight [34].
The PCL-PEG blends showed a fast degradation and a mass loss tending to be almost equal with
the corresponding content of PEG being ~14% for the PCL-PEG 8020 and ~23% for the PCL-PEG
7030 compositions.

Thus, it is obvious that most of the hydrophilic PEG is released within the first three days causing
the rapid mass loss. The results are consistent with a study of Cheng et al. [33] using PCL-PEG blends
to establish a drug delivery system. Degradation studies on PCL-PEG and PCL-PEG-PCL copolymers
showed first mass loss after nine weeks and up to 3.3% and 7.5% weight loss at Week 60, whereas pure
PCL showed no weight loss at all [37]. The blending enables a fast early degradation. Lam et al. [38]
showed that a PCL blending with TCP increases the degradation of the composite. TCP particles act as
“defects” in the polymer matrix causing enhanced water absorption and so increasing the surface area
of the degradation attack. The increased surface area by the PEG release could possibly have the same
effect and increase the long-term degradation of PCL. The accelerated degradation of the PCL-PEG
support structure will reduce the volume occupied by it in early stages and so it will give space for
tissue formation [9].

3.2.3. Scanning Electron Microscopy

For illustrating the influence of the rapid mass loss on the external and internal morphology of
the scaffold struts, SEM images are presented in Figures 8 and 9. In Figure 8a,d overview images of the
scaffold structures and, in Figure 8b,e detailed spot images of PCL pure and PCL-PEG 7030 scaffolds
after fabrication are shown. The surface of PCL appeared smooth, whereas the blend showed a rougher
surface. The images in Figure 8c,f indicate the differences after the three days incubation period at
37 ◦C. The pure PCL surface is still smooth, but the blend surface shows pores and an even rougher
structure. This enhances the results of the mass loss study and the fast release of the PEG content.
The increased surface roughness could possibly influence the increase in the cell viability shown in
Figure 5. The development of an interconnected pore structure after the PEG release from PCL-PEG
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blends is also reported by Cheng et al. [33]. The morphology of the pore structure in this study was
dependent on the PEG content, causing discrete pores with lower PEG content and an interconnected
pore structure with an increased PEG content of up to 10%–30%. Further images showing cross-sections
of the struts are presented in Figure 9. The cross-sections of PCL and PCL-PEG 7030 scaffolds are
shown after fabrication and after three days incubation in HBSS at 37 ◦C. There is no apparent difference
in the internal structure of the PCL scaffolds before (Figure 8b) and after (Figure 8c) the incubation.
The cross-section shows a homogeneous and dense morphology. However, the cross-section of the
blend appears inhomogeneous, showing two phases before the incubation (Figure 8e). The morphology
shows distributed round drops, possibly PEG, surrounded by a main phase, which is the PCL matrix.
After the incubation, which goes along with the mass loss, the round drops are almost not visible and
a porous internal structure remains (Figure 8f).
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Figure 8. Electron microscopy images of the surfaces of PCL scaffolds as fabricated (a,b), and after
three days of incubation in HBSS (c); and PCL-PEG 7030 scaffolds as fabricated (d,e), and after
three days of incubation in HBSS (f) at 37 ◦C.
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Figure 9. Electron microscopy images of the cross-sections of PCL scaffolds as fabricated (a,b), and after
three days of incubation in HBSS (c); and PCL-PEG 7030 scaffolds as fabricated (d,e), and after
three days of incubation in HBSS (f) at 37 ◦C.

3.2.4. Mechanical Testing

The influences of the rapid mass loss and the differences in the material composition on the
mechanical properties of the scaffolds are shown in Figure 10a.
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dependence of: (a) storage time in HBSS at 37 ◦C; and (b) different scaffolds design. Asterisks denote
significant difference of pairwise comparison. * p < 0.05; ** p < 0.01; *** p < 0.001.

The trend of a decreasing average stiffness for incubated scaffolds in comparison to as fabricated
ones for both blend compositions was not significant. The PCL structure showed no decline in stiffness
with values of 53 ± 13 MPa before and 60 ± 14 MPa after the incubation period. The range of values
of the stiffness of PCL scaffolds are fitting with a study of Domingos et al. [39] reporting a compressive
modulus of 52.5 ± 4.5 MPa for scaffolds with a comparable lay down pattern (0◦/90◦) and a strut
distance of 550 µm. Hutmacher et al. [12] measured a compressive modulus of 41.9 ± 3.5 MPa for PCL
scaffolds. This slightly decreased value could be caused by a varied lay down pattern of 0◦/60◦/120◦,
as also reported by Domingos et al. [39] decreased the stiffness in comparison to a 0◦/90◦ pattern,
which was used in our study. No differences in the mechanical properties of pre-conditioned PCL
scaffolds have been also reported by Domingos et al. [39]. This issue is discussed controversially in the
literature as Hutmacher et al. [12] showed an influence of the pre-treatment of the scaffolds on their
mechanical properties. PCL scaffolds were not stiffer than PCL-PEG 8020 scaffold before incubation,
but afterwards as the stiffness of the blend dropped from 46 ± 15 MPa to 29 ± 6 MPa, the difference
was significant. Moreover, PCL scaffolds were significantly stiffer than PCL-PEG 7030 scaffolds before
(21 ± 5 MPa) as well as after (11 ± 5 MPa) the incubation. There was also a significant difference
between PCL-PEG 8020 and PCL-PEG 7030 scaffolds before incubation. In Figure 10b, the stiffness of
scaffolds with 14 struts or 10 struts per layer is shown. In general, the scaffolds with a higher number
of struts show a higher stiffness, but this difference is only significant for the PCL scaffolds. This result
can be explained by the fact that the change in the porosity caused by the switch from the 14 strut to
the 10 strut design is the highest for PCL. Thus, a critical increase of the porosity leads to a decrease of
the scaffolds stiffness [39]. Scaffolds with a higher number of struts have a higher number of junctions
between adjacent struts, which define the resistance against the compression force in the beginning of
the test [15,39]. An increasing amount of PEG reduces the stiffness of the scaffolds. A possible reason
could be a change in the crystallization behaviour of the PCL phase as the crystallisation and phase
separation in PCL-PEG blends is a competitive process [40]. Schuurman et al. [18] investigated the
mechanical properties of PCL and PCL/alginate scaffolds fabricated via a sequential plotting process
showing that the PCL phase dominates the mechanical stability of such scaffolds and that there is
no significant difference. Only compared to pure alginate bulk material the mechanical stability is
increased for both types of scaffolds.

3.3. Hard-Soft Phase Scaffolds: In-Vitro Characterisation

3.3.1. Cell Viability

In Figure 11, the cell viability of the PCL-PEG ADA-GEL scaffolds over an incubation time
of 28 days is shown. The cell viability increased constantly from Day 3 to Day 21 with significant



Materials 2016, 9, 887 13 of 17

differences and balanced after Day 21. The results indicate that the processing conditions of the
sequential bioplotting process are biocompatible [18,36]. The elevated temperatures for processing the
PCL-PEG blend were not too critical as the cooling time for plotted PCL is quite short [36] (additional
information in Figures S2 and S3). The cells are able to proliferate and the assay signal increased
over time.
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Hybrid constructs fabricated of PCL and cell-loaded alginate also showed an increase in cell
number over an incubation period of 14 days [36]. This result of the cell viability kinetic is consistent
with similar studies done with human osteoblast-like MG-63 cells, which were encapsulated in
ADA-GEL hydrogel bioplotted structures [27] as well as in microcapsules [41]. Bioplotted ADA-GEL
structures loaded with HCT116 cells also showed high cell viabilities after the plotting process [42].

3.3.2. Optical Microscopy

The samples were observed over the whole incubation time by optical microscopy. In Figure 12,
a selection of images starting right after the fabrication, at Day 14 and at Day 28 of the incubation
period are presented.
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Right after the fabrication single, round shaped cells are visible in the hydrogel phase.
With on-going incubation time, at Day 14, the cells proliferated. Thus, cell agglomerates and cells with
spreading morphology became visible. An interaction of the cells with PCL-PEG phase was observed,
indicating cells migrating from the hydrogel to the support structure. This interaction and adhesion
of the cells with the hard phase increased over time and can be seen after 28 days of incubation.
The proliferation of the cells is possibly the reason for the increase of the cell viability in Figure 11.

3.3.3. Cell Distribution and Cell Morphology

For imaging the cell adhesion and cell distribution after 28 days of incubation staining of the
actin cytoskeleton (red) and the cell nuclei was performed as shown in Figure 13. In agreement with
the results of optical microscopy, the fluorescence microscope images confirm that the cells migrated
and proliferated on and along the PCL-PEG support structure and completely covered it, as shown
in the overview images in Figure 13a,b. The detailed spot image in Figure 13d shows that the cells
have a spreading morphology on the hard phase. Furthermore, the images emphasise that the cells
proliferated and that also in the hydrogel phase area very large cell agglomerates could be seen in
Figure 13a,c the whole area in between the hard phase is densely populated with cells. Figure 13e
shows a cell agglomerate and also single spread cells in the hydrogel phase. These results indicate
that a combination of PCL-PEG 7030 blend and ADA-GEL hydrogel enables movement of the cells
from the hydrogel phase to the support structure. Thus, the hard phase is not only essential for the
mechanical support, but also for the cellular response. This result is in contradiction to studies using
PCL and cell-loaded pure alginate as in this case no influence or interaction of the immobilised cells
with the PCL structure was reported [36]. The results could be explained by favourable properties
of the ADA-GEL in comparison to pure alginate considering a faster degradation, influencing cell
mobility, and cell-material interaction [23,41].
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Figure 13. Fluorescence microscope images (a–f) of the actin cytoskeleton (red) and the cell nuclei
(green) of ST2 cells in a PCL-PEG ADA-GEL construct after 28 days of incubation of different
magnification: (a,b) overview images; (c) densely packed area of the cells covering both materials;
(d) cell morphology on the hard phase; (e) cell agglomerate and spread single cells in hydrogel;
and (f) densely packed area of cells (hydrogel phase).

4. Conclusions

It was shown that PCL-PEG blends are appropriate for sequential bioplotting applications and
scaffolds were produced at relatively reduced temperatures in comparison with pure PCL. The wetting
behaviour and the cell behaviour were improved in comparison to pure PCL. A disadvantage of
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PCL is its long-term stability of several years, which eventually hinders the ingrowth of tissue [43].
The short-time degradation behaviour was increased by PEG blending in comparison to pure PCL.
It remains an interesting task for the future to evaluate the long-time degradation of the scaffolds
(several months). The mechanical properties were adjusted by varying the PEG content. The use of
ADA-GEL instead of pure alginate enables cells to migrate causing an effective interaction of cells
also with the PCL-PEG support structure. Possibly, this behaviour is beneficial for the establishment
of the interface between new developed tissue and the support structure, which will only degrade
over a longer time period providing sustained (time-dependent) mechanical support for the newly
formed tissue.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/9/11/887/s1.
Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering.
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