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Abstract: Mixed conducting perovskite oxides and related structures serving as electrodes for
electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells,
respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements
in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic),
and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of
the impact of both bulk and surface chemistry on these properties. This review highlights selected
work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University,
set in the context of work in the broader community, aiming to characterize and understand
relationships between bulk and surface composition and oxygen electrode performance. Insights into
aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that
impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion
coefficients are emerging. At the same time, an understanding of the relationship between bulk
and surface chemistry is being developed that may assist design of electrodes with more robust
surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques
(e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with
high surface sensitivity and increasing lateral resolution are proving useful for measuring surface
exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to
typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or
a high density of active interfaces also show promise for enhancing performance.

Keywords: solid oxide fuel cell (SOFC); solid oxide electrolysis cell (SOEC); perovskite; oxygen
exchange; defect chemistry; conductivity; chemical expansion; surface chemistry; segregation; strain

1. Introduction: Solid Oxide Fuel and Electrolysis Cells

Fuel cells directly convert the chemical energy of fuel and oxygen to electrical power with potential
for significantly higher efficiency than conventional heat engines [1–5]. Among the various types of
fuel cells, solid oxide fuel cells (SOFCs), using oxide ion (or proton) conducting ceramic electrolytes,
operate at high temperatures (around 873–1273 K), thus providing the ability to directly use a variety
of hydrocarbon fuels with high fuel-to-electricity conversion efficiency (>55%, lower heating value
(LHV)) [2]. Moreover, when the waste heat is utilized, in combined heat and power (CHP) applications,
they can exceed 85% efficiency [6], unmatched by any other energy conversion technology. Therefore,
SOFCs are now attracting much interest for power generation. Components of SOFCs include the
cathode (oxygen electrode), anode (fuel electrode), and ionically conducting electrolyte between
them; see Figure 1a. Individual SOFC cells are electrically connected in series by interconnects,
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leaving space for gas channels, to create an SOFC “stack” [1–5]; parallel connection of cells may
also be incorporated for stack lifetime considerations. For several decades, Y2O3 stabilized ZrO2

(YSZ) has been the workhorse SOFC electrolyte, because of its reasonably high ionic conductivity,
very low electronic conductivity, low cost, and mechanical strength [1–3]. Owing to YSZ’s limited
ionic conductivity, early SOFCs operated at ~1273 K. While such high temperatures can boost the
thermally-activated oxide ion transport, they also result in high cell costs, long start-up and shut down
cycles, and unacceptable performance degradation rates. Therefore, at present, improvement in long
term stability is an important issue for SOFC development. Contributing factors to power density
degradation in SOFCs [7] include (1) poisoning of the electrodes by chemical impurities such as S or Cr;
(2) reactions between components; (3) sintering or aggregation; and (4) delamination. Degradation
modes specific to the oxygen electrode are discussed in more detail later, but for all of these factors,
clarifying the mechanisms and driving forces is a subject of ongoing research [8–11].

On the other hand, recently, there has also been strong interest in reversible operation of SOFCs,
i.e., as “Solid Oxide Electrolysis Cells (SOECs)” from an energy storage point of view. Since the use
of renewable energy, such as wind or solar power, is increasing, the generated electrical power may
not match demand, because the renewable electric power supply fluctuates. In order to store and
average electric power, electrolysis of water into chemical fuel is now attracting interest. There are
several types of electrolysis cell, including alkaline, polymer, and high temperature ceramic cells.
Here, conversion efficiency from electricity to hydrogen is also important. The conversion efficiency
increases in the following order: alkaline (ca. 70%) < polymer (ca. 80%) < high temperature (ca. 90%).
In high temperature electrolysis, the Gibbs free energy required for the water splitting reaction,
which corresponds to the required applied voltage, decreases with increasing temperature because
of the increased heat energy (TdS). Therefore, extremely high efficiency can be achieved in high
temperature electrolysis. However, there are still many issues to address for SOECs; in particular,
degradation of the cell is more significant compared with SOFCs. At present, the materials used for
SOECs are similar to those of SOFCs; however, compared with SOFCs, greater tolerance for severe
oxidation and tight gas sealing are required [12,13].

For both types of cell, oxygen electrodes play a highly important role in determining efficiency,
and superior catalytic activity, transport properties, and stability are required. In this non-exhaustive
review, the role and fundamental properties required of oxygen electrode materials in SOFC and SOEC
modes are explained, examples of oxygen electrode chemistries are given, and then investigations into
the impact of both bulk and surface chemistry (such as surface segregation) in determining performance
and degradation are summarized. The paper primarily focuses on some of the work in progress in this
field within the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) at Kyushu
University, and additionally, selected work from the broader community is discussed and highlighted.

2. Role and Required Properties of Oxygen Electrodes

Oxygen electrodes for solid oxide fuel/electrolysis cells (SOFCs/SOECs) mediate the
electrochemical reduction of gaseous oxygen into oxide ions (SOFC cathode) or oxidation of oxide
ions into gaseous oxygen (SOEC anode), respectively, at elevated temperatures (typically 873–1273 K).
The former process, the oxygen reduction reaction (ORR) at the cathode of SOFCs, is given below
in Kroger-Vink (point defect) notation, where the main symbol indicates the species (O = oxygen,
e = electron, V = vacancy, and h = hole), superscript indicates the relative charge (′ = negative,
× = neutral, · = positive) and subscript indicates lattice site (O = oxygen site, i = interstitial site).
The ORR reaction can be written:

1
2

O2 (g) + 2e′ + V··O → O×O or
1
2

O2 (g) + V··O → O×O + 2h· (1)

if the electrode conducts oxide ions by an oxygen vacancy mechanism, and

1
2

O2 (g) + 2e′ + V×i → O′′i or
1
2

O2 (g) + V×i → O′′i + 2h· (2)
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if the electrode conducts oxide ions by an oxygen interstitial mechanism. The former process
would be typical of oxygen sub-stoichiometric perovskites with formula ABO3−δ, whereas the latter
process would be more typical of oxygen super-stoichiometric Ruddlesden-Popper phases A2BO4+δ,
for example. (Often A = La, Sr, Ca, or Ba and the B site is at least partially occupied by a multivalent
cation, such as Ni, Fe, Co, Mn, or Cr) The oxygen evolution reaction (OER), taking place at the anode
of SOECs, is essentially the reverse reaction.

As these reactions involve gaseous oxygen, electronic charges, and oxide ions, the oxygen
electrode should ideally be capable of transporting all of these species. Sometimes this reaction
occurs locally at “triple phase boundaries (TPBs)”, where a gas channel (or pore), an electronic
conducting phase, and an oxide ion conducting phase contact each other, for example in composite
electrodes or in purely electronically conducting electrodes at the interface with the ionically conducting
electrolyte. On the other hand, in many mixed ionic and electronic conducting (MIEC) materials,
i.e., oxides that can conduct both electronic species and oxygen vacancies or interstitials within their
lattice, the reaction may take place over the full surface area of the electrode, depending on the
availability of charge carriers. Figure 1b illustrates these different pathways for the ORR [14]—the
“bulk pathway” incorporating oxygen over the full electrode surface, and the “surface pathway” where
oxygen first diffuses and then reacts at a TPB, the electrode/ electrolyte/gas phase interface.
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Figure 1. (a) Schematic of reversible solid oxide fuel/electrolysis cell; (b) two possible oxygen
incorporation and reduction pathways in the oxygen electrode (SOFC mode).

When the “bulk pathway” is operating, fast bulk chemical diffusion is also essential for efficient
transport of oxide ions between the electrode surface and the electrolyte; this factor becomes
more important for thicker electrodes and is considered performance-limiting for electrodes with
thicknesses significantly above the “critical length”, Lc = k/D, where k is the (temperature- and
oxygen partial pressure (pO2)-dependent) surface exchange coefficient, and D is the (temperature- and
pO2-dependent) diffusivity. Alternatively for very thin (or nanostructured, high surface area) electrodes
well below the critical length, and often at lower temperatures, the surface exchange process becomes
performance-limiting. Therefore, in addition to these transport requirements, the electrode surface
must possess catalytic activity to enable the various steps of the surface ORR/OER reactions, such as
adsorption/desorption, dissociation/association, charge transfer, and lattice incorporation/excorporation,
to progress with low activation energies, and to give a high overall value of k.

For practical long-term operation, the electrodes should maintain both high D and k for
long periods of time (several years), including start/stop cycles; values of tracer diffusivity,
D* ≥ 10−6 cm2/s and tracer surface exchange coefficient, k* ≥ 10−4 cm/s have been suggested [15].
Therefore one final requirement for electrode materials is thermo-chemo-mechanical stability over
the range of operating conditions. While higher temperatures are beneficial for enhancing the
thermally-activated surface exchange and diffusion processes, the kinetics of performance degradation
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processes may also be increased at higher temperatures where ions are more mobile. (On the other hand,
thermodynamic driving forces for degradation processes may not share this activated temperature
dependence). Potential instabilities may arise from: decomposition, ordering, or crystal structure
changes of the electrode phase itself if it is metastable in the operating conditions; reactions between
composite electrode phases or between electrodes and other cell components; changes in surface
chemistry arising from intrinsic surface segregation, extrinsic surface poisoning, or a combination of
both; microstructural coarsening; delamination from the electrolyte in SOEC mode when high oxygen
chemical potentials occur; and stresses arising from thermal and/or chemical expansion. The latter
effect is particular to materials that can change stoichiometry during operation, typically oxygen
loss/gain, resulting in localized lattice distortions and macroscopic strain [16]; the corresponding
chemical stresses may exceed the strength of the brittle ceramic components [17] and cause mechanical
damage [18]. In the case of SOECs, the function of the oxygen electrode is opposite to that of
the SOFC cathode, i.e., combination of oxide ions to form gaseous oxygen molecules (reverse of
Equations (1) and (2)). Therefore, the high oxygen pressures experienced by the electrode in this
mode can lead to unique degradation mechanisms at the oxygen electrode-electrolyte interface,
such as chemical strains owing to changes in lattice defect chemistry at high oxygen pressures
(e.g., cation vacancies, oxygen interstitials), grain boundary fracture, formation of secondary phases,
and delamination [19]. Degradation modes for oxygen electrodes are illustrated in Figure 2.
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In this review, the roles of bulk and surface chemistry in impacting the aforementioned electrode
properties, particularly the oxygen surface exchange process, will be discussed. The review is
limited to oxide ion, rather than proton, conducting electrodes, and focuses on perovskite and
perovskite-related structures.

3. Example Electrode Chemistries

Traditionally, perovskite-structured oxides (ABO3) have been considered the most suitable
materials satisfying these requirements for oxygen electrodes, and LaFeO3, LaCoO3, or LaMnO3

doped with Sr or Ca have been widely used. In the early stages of SOFC development, La0.8Ca0.2MnO3

or La0.6Sr0.4MnO3 oxygen electrodes were commonplace; however, because of the low oxide ion
conductivity in Mn-based perovskites, the ORR/OER reaction is typically (though not exclusively [20])
limited to the TPB shown in Figure 1, resulting in large cathodic overpotentials (SOFC mode).
However, several more complex perovskite oxides have been reported to show very high oxygen
surface exchange rates. Baumann et al. [21] compared several Co- and Fe-based perovskites with
controlled geometries/morphologies, finding that Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) shows 100 times
smaller electrochemical resistance than that of La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), which is often used for
intermediate temperature SOFC cathodes. One reason for such high cathodic activity is the high mixed
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conductivity, enabling a large reaction area to be available for oxygen incorporation, i.e., the two phase
boundary route (“bulk pathway”) in Figure 1. Another highly active oxygen electrode composition
is Sm0.5Sr0.5CoO3−δ which also demonstrates high oxide ion conductivity [22]. However, the most
popular composition used for SOFC cathodes still remains La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), for the
reasons of high surface activity, good mixed conductivity, high stability, and moderate cost. Recently,
research has shifted to perovskite-related structures such as double perovskites (A2B2O6−δ) and layered
Ruddlesden-Popper compounds (An+1BnO3n+1), e.g., n = 1 K2NiF4-related structures. Examples of
double perovskites reported to exhibit promising oxygen electrode properties include ABaCo2O6−δ
(A = Nd, Pr, Sm, Gd) [23–25] and Ba2Co2−xBxO6−δ (B = Sc, Bi) [26], and so not only perovskites but also
perovskite-related phases, in particular, highly oxygen deficient perovskite phases, are now attracting
much attention as the active oxygen electrode materials for intermediate temperature operation.

Beyond changing the crystal structure, increasing the mixed conductivity, and increasing the
oxygen deficiency, another strategy to improve oxygen electrode performance is nanostructural
engineering. Making use of highly active interfaces between phases or within the same phase is
one approach; for example Sase et al. [27] reported that the presence of the (La,Sr)2CoO4 phase
on (La,Sr)CoO3 electrodes enhances the oxygen exchange reaction rate, and Yildiz et al. [28,29]
have proposed explanations for the enhanced ORR activity at the interface between these phases.
More recently, grain boundaries in the predominantly electronically conducting LSM have been
demonstrated to be active paths for oxygen incorporation, with higher k* and D* than in the grains [30].
Using techniques such as pulsed laser deposition (PLD), it is possible to create thin film electrodes with
controlled nano-architectures, exhibiting a high density of interfaces parallel to the direction of oxygen
incorporation. In Figure 3, one example of such an approach, named a “double columnar system” or
sometimes “vertically aligned nanostructure (VAN)”, is shown schematically [31]. In this structure,
nano-sized columns of Sm doped CeO2 and Sm0.6Sr0.4CoO3 have been deposited by the PLD method.
High resolution transmission electron microscope (TEM) images of the prepared “double columnar
system” are shown in Figure 3b,c, where it can be clearly seen that a columnar structure consisting of
two different compositions was successfully deposited on the electrolyte substrate.
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metallic anode substrate, Sm doped CeO2 buffer layer, La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) oxide electrolyte 
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Figure 3. (a) Schematic of a double columnar oxygen electrode interlayer containing columns of
Ce0.8Sm0.2O2 and Sm0.6Sr0.4CoO3 (b) TEM image of the prepared double columnar structure (c) High
resolution TEM image. Taken with permission from [31] by Ju et al., with one modification: scale bar
labels have been enlarged in this version for clarity.

Figure 4 shows the power generation ability of a SOFC single cell with and without a double
columnar interlayer between the electrolyte and porous oxygen electrode [31]. In this cell, a Ni-Fe
metallic anode substrate, Sm doped CeO2 buffer layer, La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) oxide electrolyte
(500 µm thickness), and porous Sm0.5Sr0.5CoO3 electrode were used. Although the double columnar
layer is nominally dense (i.e., does not presumably have a high surface area), the observed open circuit
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potential is close to the theoretical one (1.10 V) suggesting its reasonable activity for the ORR process.
Obviously, because of the thin LSGM electrolyte film, a high power density close to 2 W/cm2 at 973 K is
achieved. By comparing the performance of the two cells, it is clear that the power density is increased
by using a double columnar structured cathode interlayer. A detailed analysis of the internal resistance
suggests that the increased power density can be assigned to the decreased cathodic overpotential.
Therefore, control of nano-structure within the oxygen electrode, in this case the increase in two phase
boundary area between the mixed conductor and the ionic conductor, can be important for tailoring
the ORR/OER activity.
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4. Role of Bulk Chemistry

With the ultimate goal of optimizing electrode performance by tailoring its chemistry, much work
has focused on trying to elucidate relationships between overall (bulk) electrode chemistry,
defect chemistry, electronic structure, and electrode properties. Ultimately such descriptors could
enable rational design and high throughput search and discovery of superior electrode chemistries.
Nonetheless, since many properties must be simultaneously satisfied, and there are usually trade-offs
involved, the “ideal” electrode chemistry may depend on particular requirements of an application.
Point defect chemistry of bulk electrodes can be inferred from fitting thermogravimetric measurements
of oxygen content [32], electrical conductivities [33,34], and/or lattice parameters [35] as a function of
temperature and oxygen partial pressure with interrelated mass action expressions of defect generating
equations. In thin film electrodes, additional techniques include chemical capacitance and optical
absorption measurements [36], which can both indirectly provide information about oxygen content.

4.1. Bulk Chemistry Impact on Transport

Oxide ion conductivity, in general, requires both oxygen non-stoichiometry to provide charge
carriers (V··O or Oi

′′) and high mobility of these carriers. Since oxygen ion conduction takes place
in the ABO3 perovskites by hopping through a triangle made up of two A-site and one B-site
cations, the radii (rA, rB) and relaxations of these cations during oxygen migration impact the oxide
ion mobility [37]. Cherry et al. have noted that a tolerance factor, t = (rA + rO)/

√
2(rB + rO),

of 0.81 corresponds to the minimum calculated oxygen migration energy, thought to be due to an
optimum balance of relaxations between the A and B cations for this size ratio (i.e., smaller A-site
cations and larger B-site cations) [38]. Oxygen vacancy mobility may also be enhanced by more facile
reduction of B site cations since transfer of some electron density from oxygen makes it smaller and
more able to pass through the A-A-B cation triangle [39,40]; in this sense migration enthalpies may
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scale with oxygen vacancy formation enthalpies. Tensile strain has also been calculated to decrease the
migration barrier for oxygen hopping in perovskites [41]. The presence of cation vacancies and their
induced disorder has additionally been suggested to increase the ionic mobility [42].

On the other hand, one must also consider the possibility for trapping of carriers. Oxide ion
mobility tends to be decreased when the oxygen defects (e.g., VO) are associated with other defects
(e.g., acceptors) or otherwise ordered, e.g., by more non-uniform energy landscapes, such as created by
cations with different sizes or electronegativities occupying a sublattice. Such effects add a dissociation
enthalpy to the migration enthalpy in the conductivity exponential term, which may be overcome
at high temperatures where the defects become dissociated or disordered. Larger binding energies
of oxygen vacancies and acceptor dopants can contribute to larger overall conductivity activation
energies at lower temperatures, and minimizing these binding energies (e.g., as for Sr′La-V··O pairs vs.
other dopants in LaGaO3 and LaCoO3) requires optimizing both elastic strain and electrostatic effects
of the dopant [37].

Oxygen non-stoichiometry generally occurs as an ionic compensation mechanism to maintain
charge neutrality upon introduction of charged point defects, such as aliovalent dopants,
cation vacancies, anti-site defects, or change in valence state of multivalent cations. Many perovskite
electrodes therefore intentionally contain acceptor dopants, such as Sr2+ on a La3+ site, having a relative
negative charge, which can be ionically compensated by positively-charged oxygen vacancies:

M2O3 + 2SrO
LaMO3−−−−→ 2Sr′La + 2M×M + 5O×O + V··O (3)

Such substitution can also be electronically compensated, in this case resulting in the formation of
positively charged holes:

1
2

O2 + M2O3 + 2SrO
LaMO3−−−−→ 2Sr′La + 2M×M + 6O×O + 2h· (4)

The presence of multivalent cations can support the electronic compensation mechanism and
the electronic conductivity, though holes may not necessarily localize exclusively on the multivalent
cation. Again, high mobility of the electronic carriers is also important for high electronic conductivity,
and significant variety in the extent of charge localization on multivalent cations can be observed
in perovskite electrodes. Increasing the concentration of multivalent cation is one way to increase
the electronic mobility as the electronic states contributed by these ions broaden or overlap as the
concentration increases. For example in the perovskite SrTi1−xFexO3−α, increasing the Fe content from
x = 0.05 to 0.35 increases the hole mobility by about a factor of 10 [32,33,43]. Similarly, in the perovskite
La0.9Sr0.1Ga1−xNixO3−δ, the conductivity changes from predominantly ionic, to electronic hopping,
to apparently metallic (electronic) upon increasing the Ni content to x = 0.5 [44]. Aside from acceptor
doping, smaller thermal band gaps can increase the intrinsic concentration of electronic carriers.

4.2. Bulk Chemistry Impact on Oxygen Surface Exchange

In terms of oxygen surface exchange, the key to improving performance is to identify and improve
the rate-limiting step, whether chemisorption/desorption, charge transfer, dissociation/association,
or lattice incorporation/excorporation, since the slowest step dominates the reaction kinetics.
Complicating factors include the issues that (1) these steps may occur somewhat simultaneously,
such as in charge-transfer assisted adsorption or charge-transfer assisted dissociation; (2) many
possible detailed reaction pathways exist; and (3) the rate-limiting step can change with operating
conditions or over time, and is not always the same across different material systems. Therefore,
creating comprehensive “design principles” or chemical descriptors for rapid oxygen surface exchange
is not a simple process. Five approaches taken to tackle this challenge are given below with
characteristic examples. Please note that these examples are intended as case studies of each approach
but are not a comprehensive or exhaustive summary of work performed in this area.
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4.2.1. Experimental Studies Seeking to Identify the Rate-Limiting Step for Particular Chemistries
under a Limited Range of Conditions

Merkle and Maier have demonstrated a method for homing in on the rate-determining step
(RDS) for surface oxygen incorporation by combining spectroscopic information with both equilibrium
and non-equilibrium measurements of oxygen exchange kinetics as a function of variables including
oxygen partial pressure, temperature, and applied UV light intensity [45]. Their method was applied
to Fe-doped SrTiO3 single crystals, and the interpretations of the experimental results are enabled
by a thorough understanding of the defect chemistry and electronic structure of this composition.
Nonetheless, a similar experimental approach may be applied to other materials, bearing in mind that
results and interpretations will necessarily be different in materials with different defect chemistry
and electronic structures. The general approach is as follows: Intermediate adsorbed oxygen states
such as the superoxide O2

−, (more controversial) peroxide O2
2−, and O− radicals may be identified

from techniques such as electron paramagnetic resonance (EPR), X-ray or Ultraviolet photoelectron
spectroscopy (XPS/UPS), infrared (IR) spectroscopy, and electron energy loss spectroscopy (EELS),
giving some insight into observable species present during the reaction. A selective dependence
of the reaction kinetics on the intensity of UV light irradiation (with higher energy than the band
gap) can indicate the role of electronic carriers in the RDS or a prior step (whether electrons or holes
depends on which is the minority carrier that will be relatively more enhanced by exposure to UV
light). The measured oxygen partial pressure (pO2)-dependence of the reaction rate for small pO2 steps
(in equilibrium) and of the initial reaction rate for large pO2 steps (out of equilibrium) can be compared
to what is predicted for each possible mechanism to provide information on the molecularity of oxygen
(O2

n− vs. On−) in the RDS and of the number of electrons transferred in or up to that point. For this
SrTiO3:Fe system their results suggested the presence of O2

n− in the RDS with one electron transferred;
further, if the bulk and surface defect concentrations share the same pO2 dependence, those authors
concluded that formation of O2

2− by electron transfer or dissociation of O2
2− is the most likely RDS

under the measurement conditions. An important point from their work and that of others [46,47] is
that the pO2 dependence of the reaction rate in equilibrium alone may not be sufficient to identify the
fundamental, detailed RDS, since many mechanisms can share the same equilibrium pO2 dependence.

4.2.2. Experimental Studies Chemically Varying Point Defect Concentrations or Aspects of Electronic
Structure to Identify Controlling Factors for the Surface Exchange Rate for a Particular
Chemical System

Tuller, Jung, Kim, Perry, and co-workers have also applied Sr(Ti,Fe)O3 as a model system for
probing which aspects of bulk defect chemistry or the related electronic structure are key to fast
oxygen surface exchange in this system [34,48–51]. Isovalent or aliovalent substitution on the A- and
B-sites of this perovskite results in changes in oxygen non-stoichiometry and electrical properties
that can be measured and modeled to understand the changes in defect concentrations and Fermi
level (from the electron and hole concentrations). Dense thin film electrodes deposited by pulsed
laser deposition on electrolyte substrates have well-defined geometries enabling comparisons of
electrochemically-measured surface exchange kinetics among different compositions (Figure 5).

To date, work along these lines has demonstrated only very weak dependencies of kq

(electrically or electrochemically driven surface exchange constant) on the ionic and (p-type) electronic
conductivities, while the activation energy for kq scales with the position of the Fermi level relative to
the conduction band (varied by changing the Fe content on the B site) [48]. Since the minority electron
concentration in the conduction band is exponentially dependent on the Fermi level position in this
strongly p-type material, the result suggested that electron transfer from the electrode conduction
band to the adsorbed oxygen was limiting the exchange kinetics. Subsequent work aimed at increasing
the minority electron concentration through enhancing reducibility (via Ba substitution on the
A-site) [32,50] and through donor doping (via La on the A-site) [34]; in both cases the apparent
activation energy for kq was lowered. This result was attributed to the rise in bulk Fermi level,
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though bulk substitution may also change the surface catalytic activity by changing the cations in
the outermost surface and sub-surface. Additionally, any expected small changes in absolute values
of kq are difficult to measure owing to rapid “aging” of the electrodes [34,50], attributed to surface
segregation (see also Section 4.4 and figure therein). Effects such as these will be discussed further in
the section on surface chemistry. More recent work has aimed at modifying the mobility of the minority
electrons in the conduction band, rather than their concentration, e.g., through substitution of Sn for
Ti on the B-site [51]. These controlled studies are important for identifying key defects and aspects
of electronic structure; however, they do not indicate a detailed reaction mechanism. Additionally,
Merkle and Maier have suggested that for this system, charge transfer is only limiting for low Fe
contents [52], consistent with the caveat that key factors identified for a particular chemical system
may not be broadly applicable; on the other hand, as for the approach in Section 4.2.1, this chemical
substitution approach itself can be more broadly applied to various systems.
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Figure 5. Overview of use of model thin film electrodes with controlled geometries for study of impact
of bulk defect chemistry on surface exchange kinetics. (a) Schematic of asymmetric cell used for
electrochemical impedance measurements of kq for thin film (Sr,A)(Ti,Fe)O3−δ electrodes; (b) Example
impedance spectrum of cell in (a) showing equivalent circuit; (c) Calculated change in point defect
concentrations at 873 K upon La doping, [La] = 0.2 in color vs. [La] = 0 in grey, using model in [34]
by Perry et al.; (d) Change in activation energy for surface exchange coefficient kq for various doping
levels; Ba data from [50] by Kim et al. and La data from Perry (unpublished).

4.2.3. Compilations of Experimental Data, for a Variety of Electrode Materials, on Surface Exchange
Coefficients as a Function of Materials Properties in Order to Find Correlations

In an effort to identify more broadly which defect species or properties are predictors of, or limit,
fast surface exchange, some reviews have compiled data from many electrode chemistries to identify
correlations. Kilner may have been the first to point out a relationship between the tracer oxygen
self-diffusion coefficient (D*) and tracer surface exchange coefficient (k*) both for fluorite-structured
and perovskite-structured materials [53]. Log(k*) showed, on average, a linear dependence on log(D*),
though with different slopes for the two different structure types. Generally speaking, therefore,
electrodes with higher oxygen self-diffusion may also exhibit higher surface exchange coefficients;
however, there is considerable scatter in such plots. Wang et al. more recently published a similar
plot of log(k*) vs. oxygen ion conductivity for various perovskites, showing again correlation but
with wide scatter, particularly at lower ionic conductivity or k* values [54]. Such studies broadly
suggest the importance of oxygen vacancy availability for the surface exchange reaction (in oxygen
sub-stoichiometric compounds), whether as a site for incorporation or as a donor enabling more
facile charge transfer at the surface, assisting chemisorption and/or dissociation. Other early work
by Boukamp et al. [55] noted the importance of electronic charge transfer in the surface exchange
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reaction broadly, comparing electronic conductivities and values of k for two fluorite compositions
and mixed conducting perovskites in general. Though these data are limited, a plot of log(k*) vs.
log(electronic conductivity) also suggests a linear relationship when plotted over a wide enough
range. More recently, De Souza introduced an empirical expression for k* which indicated that high
concentrations of electronic carriers (electrons and holes) and low concentrations of oxygen vacancies
would lead to fast oxygen reactions at the surface, i.e., that donor-doped low band-gap materials or
those with oxygen interstitial conduction would be better [56].

4.2.4. Computational Studies of a Limited Range of Chemistries to Identify Key Aspects of Bulk
Chemistry and Electronic Structure Vital for the Exchange Reaction

Computational approaches have the advantage of being potentially a more rapid method to
investigate structure-property relationships relating to surface reactions with atomistic insight and
the disadvantage of being more challenging to apply to high temperature situations of potentially
ambiguous surface chemistry. As an example of work in this area, density functional theory (DFT)
calculations by Morgan’s group combined with electrochemical measurements in Shao-Horn’s group
have suggested a correlation between the calculated bulk O 2p band center (vs. the Fermi level) of
the electrode and its measured high temperature surface exchange kinetics (k* or kq), including the
activation energy [57]. Their work has so far encompassed several Ruddlesden-Popper and perovskite
compositions. These groups suggested that this aspect of the bulk electronic structure could be
a predictive descriptor for rapid surface exchange; on the other hand, a broad set of experimentally
measured surface exchange data from the literature did not correlate clearly with the calculated
bulk O 2p band centers, possibly due to variations in sample preparation or measurement approach.
DFT simulations combined with nudged elastic band calculations have also provided more atomistic
insight into the reaction pathway and energetics for oxygen incorporation for selected perovskite and
Ruddlesden-Popper phases. Such work is described in detail in the later section on surface chemistry.

4.2.5. Computational Materials-by-Design Approaches to Identify with New Chemistries Predicted
High Surface Exchange Rates on the Basis of Previously Identified Descriptors

Once structure-property relationships, i.e., descriptors relating bulk chemistry to defect chemistry
and electronic structure and ultimately to surface exchange kinetics, have been identified, the logical
next step is to conduct computational searches for chemistries that exhibit this particular descriptor.
Searches may make use of databases of both existing and predicted (but not synthesized) stable
chemistries. Such studies can be accompanied by high-throughput experimental screening for suitable
performance over a wide range of chemistries. Similar approaches have been applied recently to
identify candidate perovskite chemistries for thermochemical water splitting [58] and metal alloy
anode catalysts for low temperature fuel cells [59]. D. Morgan’s group recently reported screening
candidate SOFC cathode materials on the basis of the O 2p band center (for surface exchange kinetics),
thermodynamic stability, and band gap (for electronic conductivity) [60].

4.3. Bulk Chemistry Impact on Thermo-Chemo-Mechanical Stability

A number of degradation mechanisms may take place within or around the oxygen electrode
over time at elevated temperatures or during start-stop cycles, as described previously in Section 2
and Figure 2. One significant mechanism under investigation is the induction of stresses owing to
chemical expansion, when electrode materials undergo changes in oxygen content (∆δ) causing
local lattice dilation/contraction and chemical strain (εC) [16]. For example, during the oxygen
evolution reaction in sub-stoichiometric materials (reverse of Equation (1)), materials typically expand,
as an oxygen vacancy is created and the compensating electronic charge concentration changes.
Localization of electrons on multivalent cations (such as creating Ce3+ in place of Ce4+) drives the
expansion. Failure modes including cracking and delamination can result [18], since the stresses
generated can be significantly larger than the strength of the materials (particularly if flaws are already
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present) [17]. Chemical stress mitigation may be achieved through altering operating/start-stop
conditions, engineering component morphologies, or changing intrinsic materials properties including
the strength, toughness, surface exchange coefficient, oxygen diffusivity, and coefficient of chemical
expansion, CCE = εC/∆δ. Perry, Bishop, Marrocchelli and co-workers have been investigating which
factors impact CCEs in the perovskite structure [16,35,43,61,62] which is currently the most widely-used
structure in oxygen electrodes. Such factors may span many length scales, so a combination of atomistic
simulations (density functional theory (DFT), molecular dynamics) with experiments at both the crystal
structure (in situ X-ray diffraction, neutron diffraction) and macro-structure levels (thermogravimetric
analysis, dilatometry) is applied. To date, some factors that have been identified as significantly
impacting CCEs in perovskites include charge localization on cations [43,61], size of the oxygen
vacancies [35], temperature [62], and crystal symmetry [61,63]. Of these, charge delocalization may
be the most promising approach, as it can be accomplished easily by increasing the concentration of
the multivalent cation, which lowers the CCE [43,61] and simultaneously increases both the electronic
conductivity and (at least sometimes) the surface exchange kinetics [33,44,49]. On the other hand,
such materials with higher concentrations of multivalent cation also typically exhibit larger changes
in stoichiometry (∆δ) for a given pO2 or temperature change, which also contributes to the chemical
strain [43,61]. Figure 6 shows the impact of increasing the multivalent cation, to delocalize charge,
on CCEs of two mixed conducting perovskite electrodes.
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between charge delocalization and decreased CCEs. Data from [43,61] by Perry et al.

The effective size of oxygen vacancies is also an important factor, since smaller oxygen vacancies lead
to smaller CCEs upon oxygen loss by counteracting some of the cation expansion [64]. A combination of
first principles calculations, experimental data, and development of an empirical model recently led to
some of the first determinations of the effective size of oxygen vacancies in perovskite oxides [35];
on average the vacancy tends to be about 97% the size of the oxide ion (cf. 72% in the fluorite
structure [65]) but with considerable variation among different compositions. Learning how to tailor the
oxygen vacancy size via bulk chemistry could enable better control of CCEs in this structure.

4.4. Relationship between Bulk and Surface Chemistry

As described above, bulk chemistry is known to impact many oxygen electrode properties,
including the oxygen surface exchange kinetics, but since this latter property takes place at the surface,
the local chemistry in the outer atomic layers of the electrode should be considered. Surface chemistry
can differ from bulk chemistry via effects including surface reconstructions, space charges, modified
point defect formation energetics, polarity, segregation, and extrinsic adsorption and reactions forming
new phases, but in each case, there is a relationship between the bulk and surface chemistries.
(If bulk and surface chemistries were not somehow related, bulk chemical descriptors for fast surface
exchange would not exist.) Both experimental and computational approaches are providing insight
into this relationship.
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For example, recent computational work by Lee and Morgan has demonstrated how different
transition metal cations’ redox activity and surface polarity of different compositions lead to very
different surface defect chemistry and surface properties of perovskites [66]. Another example relating
bulk and surface chemistry is the case where elastic and electrostatic effects within the bulk of
the electrodes can contribute to the driving force for intrinsic surface segregation, where excess
A-site cations enter the surface region as enrichment or secondary phases. Lee et al. (different
authors) demonstrated the important roles of both elastic and electrostatic effects in A = (Sr, Ca, Ba)
segregation in acceptor-doped (La, A2+)MnO3 both computationally using DFT and experimentally
using analysis of thin film electrode surface morphology, chemistry, and electronic structure after
high temperature anneals [67]. In this composition, as with many oxygen electrodes, some A-site
cations are acceptor dopants exhibiting a relative negative charge within the lattice, so they can be
electrostatically attracted to positively-charged oxygen vacancies in the surface region. Additionally,
the results demonstrated the clear influence of elastic effects, as segregation was more severe the larger
(more size-mismatched vs. La) the acceptor cation was, i.e., in the order Ba > Sr > Ca, and segregation
was less severe when the lattice expanded in lower oxygen partial pressures, better accommodating the
larger dopants. More recently, preliminary studies by Perry indicate that electrochemically measured
deterioration of surface exchange coefficients (kq)—see Figure 7—occurs more rapidly for larger A-site
cations even when the cation is not an acceptor dopant (i.e., isovalent substitution) within thin film
(Sr,A)Ti0.65Fe0.35O3−δ, A = Ba, Sr, Ca. In this latter case, different mechanisms of aging among these
various cations on the surface could also influence the results, in addition to the degree of segregation.
Nonetheless, results such as these suggest that smaller A-site cations may thermodynamically limit
segregation or deterioration of surface exchange kinetics, even though from a kinetic perspective
they should be able to diffuse to the surface faster. A-site cation deficiency has also been used as
a method both of intrinsic acceptor doping and surface segregation prevention [68]. However when
some intrinsic or extrinsic surface poisoning is unavoidable, introduction of “gettering” species within
the electrode composition is a promising alternative method to counter the negative effects of surface
chemical changes on surface redox kinetics. Recent work by Zhao et al. demonstrated this approach,
where La was introduced both on the surface and in the bulk of a (Ce,Pr)O2−δ electrode to react with
Si poisoning on the surface and restore fast oxygen exchange kinetics; a further catalytic effect of La
cannot be ruled out, however [69]. Further details concerning characterization of surface chemistry in
general are given in the section below.
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Figure 7. (a) Example impedance spectra changes of asymmetric cell with dense thin film (~ 100 nm
thick) SrTi0.65Fe0.35O3−δ electrode over time at 873 K and 0.21 atm O2 by Perry (unpublished;
see Figure 5 for cell geometry and equivalent circuit and [34] for more details on the general approach).
The rapid increase in area specific resistance (ASR) obtained by fitting the low frequency arc corresponds
to a decrease in electrode surface exchange coefficient kq, shown in (b).
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5. Role of Surface Chemistry

Surface chemistry is expected to play a critical role in the oxygen surface exchange process,
yet relatively more attention has in the past focused on bulk electrode chemistry, with the implicit
assumption that the surface is a simple termination of the bulk, containing transition metal cations for
catalytic activity. However, recent focused studies of electrode surface chemistry, taking advantage of
advances in surface characterization techniques, have enabled identification of significant differences
in surface and near-surface compositions vs. the bulk, particularly after or during exposure of electrode
materials to typical operation temperatures [70–73].

A number of techniques have been developed to probe, in situ or in operando, the bulk and surface
chemistry of oxygen electrodes during exposure to realistic operating temperature, gas atmosphere,
and/or polarization conditions. Techniques include those based on X-ray diffraction [74–76],
X-ray fluorescence [77], X-ray absorption spectroscopy [78], neutron diffraction [79] (largely for
bulk information), “ambient pressure” X-ray photoelectron spectroscopy [80] and photoelectron
microscopy [81], Raman spectroscopy [82], scanning probe microscopy [83], and environmental
scanning or transmission electron microscopy [84]. Each of these methods may be coupled
with simultaneous ac-impedance spectroscopy measurement of half or full cells to correlate the
electrochemical performance and degradation of the electrodes with the changes in local chemistry
and structure [79]. A comprehensive review of results from all of these techniques is beyond the
scope of the present paper, and the interested reader is directed to the references mentioned herein for
further information.

Among recent developments in surface analysis and ion scattering methods, ion beam-based
techniques including low energy ion scattering (LEIS) and time-of-flight secondary ion mass
spectrometry (SIMS) techniques have proved to be particularly useful probes of the surface composition.
Beneficial features of ion beam-based techniques include: (1) shallow (surface-sensitive) information
depths because ions in the relevant energy ranges do not penetrate into a solid as far as X-ray or
electron beams and (2) mass-sensitivity, thus enabling identification of isotopes as well as elements.
Indeed, SIMS analysis of 18O isotopic tracer diffusion profiles in samples having undergone anneals
in gaseous 18O at high temperatures has been used for several decades to derive the tracer oxygen
exchange coefficient (k*) and diffusivity (D*) in ionic and mixed conductors [85,86]. I2CNER in
Kyushu University provides a unique environment for ion beam surface analysis. In this section,
examples of results of surface analysis of oxygen electrodes will be briefly introduced, mainly focusing
on (La,Sr)(Co,Fe)O3 perovskite oxide. As mentioned earlier, the composition La0.6Sr0.4Co0.2Fe0.8O3−δ
(LSCF), which shows good ionic and electronic conductivities [87], along with high diffusivity and
surface exchange coefficients, is a popularly used oxygen electrode of intermediate temperature
SOFCs [88]. This material is adopted as a model system to demonstrate ways in which LEIS and SIMS
techniques can assist investigations of the relationship between surface chemistry and oxygen surface
exchange kinetics.

5.1. Application of 18O Diffusion Profile Measurements by SIMS

One question in the study of electrode surfaces is the extent to which crystal orientation or surface
termination influences the surface exchange kinetics and diffusivity in the electrode, determining
its performance. This question has been addressed for the highly anisotropic Ruddlesden-Popper
structured electrodes by SIMS analysis of 18O profiles in epitaxial thin films grown with different
orientations. For example, by this approach (La,Sr)2CoO4 was demonstrated by Chen et al. to exhibit
faster oxygen diffusion along the ab-plane than the c-axis, but the surface exchange kinetics of films
grown in the (001) and (100) orientations were not significantly different. The result was attributed
to Sr segregation on both terminations, slowing oxygen incorporation [89]. Another approach to
study this question is to take advantage of finer focusing of the SIMS incident ion beam (e.g., Ga ion
gun in FIB-SIMS) to enable depth profiling within individual grains presumably exhibiting different
orientations in polycrystalline ceramic samples (it should be noted that a conventional SIMS primary
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ion beam analyzes areas on the order of hundreds of microns, much larger than the size of typical
ceramic grains or electrode particles). One limitation with this approach is that the depth that can
be measured is limited to approximately the lateral dimensions of the sputtered crater, owing to loss
of signal for deeper craters. An example of this method applied to a dense LSCF ceramic, with 18O
exchange at 723 K, is shown in Figure 8, after [90] by Druce et al. While not nearly as anisotropic as
the aforementioned layered structures, the perovskite LSCF exhibits slight rhombohedral distortions,
and different surface terminations of different grains, having different sites and energetics for oxygen
adsorption, dissociation, and incorporation may be possible. Further details of the analysis and fitting
are given in [90].

Fits to the depth profiles within the grains and a macroscopic profile are shown as solid lines in
Figure 8b, and the D* and k* values extracted from these fits (from [90]) are summarized in Figure 9.
While the k* values within individual grains are slightly higher than the macroscopic k* value, they and
the D* values do not vary much from grain to grain. Again, similar surface chemistry as a result of Sr
segregation may be a factor in this result, as discussed in the later section on LEIS.
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Figure 8. Depth profiling within individual grains in a polycrystalline LSCF sample exchanged at 450 ◦C
in 18O-enriched O2 gas for 3721 s, using focused ion beam-secondary ion mass spectrometry (FIB-SIMS).
(a) Microstructure, showing analyzed areas by ion-induced secondary electron image. Number labels
in (a) identify grains from which the profiles plotted in (b) were obtained. Reprinted with permission
of The Electrochemical Society, from [90] by Druce et al.
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While the results in Figures 8 and 9 were obtained using a relatively high energy Ga ion beam,
better depth resolution in addition to the already higher lateral resolution, may be obtained in some
materials systems using Cs+ or C60

+ sputtering [91,92].
Another question relating to electrode surface chemistry and performance is the extent to which

strain state may be tuned to optimize surface exchange kinetics. Again epitaxial thin film model
electrodes, such as deposited by PLD, are an asset in performing fundamental studies, as strain can be
induced by the energetic growth process and/or by coherent lattice mismatch with the substrate or
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adjacent layers (accounting for thermal and chemical expansion). Beyond enhancements in oxide ion
mobility [41] or incorporation kinetics that may be derived by stretching the lattice through which
the ion passes, there is also a chemo-mechanical coupling in many systems, whereby the applied
strain can lead to changes in point defect chemistry [93]. Both of these effects could, in principle,
alter surface oxygen incorporation/excorporation energetics. Again, tracer 18O isotope diffusion
profiles, measured ex situ by SIMS, as well as electrochemical impedance measurements, are providing
some insight into the magnitude of the effect. For example in-plane tensile strain has been shown
to accelerate both k* and D* into (100)-oriented epitaxial La1−xSrxCoO3−δ [94] and to improve kq,
increase the oxygen interstitial concentration, and stabilize the surface chemistry in the anisotropic
Nd2NiO4+δ Ruddlesden-Popper phase with tensile strain along the c-axis [95]. Multilayer electrode
structures are also the subject of research into strain effects; for example, Hyodo et al. fabricated
a “laminated film” with layers of Cu and Ga-doped Pr2NiO4 (PNCG) and Sm-doped CeO2 (SDC),
where the former phase was expected to be in compression and the latter in tension on the basis of
lattice parameters [96]. Using 18O tracer diffusion, the results suggested that mechanical strain has
a large influence on the oxygen diffusivity; however, the enrichment in surface 18O concentration was
more significant. Therefore, surface activity seemed to be more sensitively affected by mechanical
strain effects in that system.

5.2. Evaluation of Surface Chemistry by LEIS

LEIS measurements are able to identify elements in the outermost atomic monolayer, and this
extreme surface sensitivity is of interest for understanding the composition immediately in contact
with gaseous oxygen during the exchange process. Like SIMS, LEIS is often performed ex situ, where it
can be applied to study electrode materials after treatment in high temperatures and gas atmospheres
typical of operation conditions [70,97–100]. While one expects qualitative similarities in the ex situ
results on polycrystalline, dense ceramics or thin films and the surface chemistry of real, porous ceramic
electrodes in operando, some differences owing to the microstructure and environment changes
(e.g., surface-to-volume ratio, surface curvature, grain boundary density, impurity gas concentration,
impact of adjacent cell layers, etc.) may be possible. In this regard, an additional advantage of LEIS
is that there are few limitations in the form of the sample; real porous electrodes may be studied
as well as model systems such as dense ceramics or thin films. One outcome of the model sample,
ex situ studies has been the confirmation of A-site cation termination/segregation widely observed
in the SOFC/SOEC/catalysis community using a variety of other approaches that have slightly
less surface sensitivity, such as total reflection X-ray fluorescence, nanoprobe Auger spectroscopy,
SIMS, scanning electron microscopy with energy-dispersive spectroscopy, and X-ray photoelectron
spectroscopy [73,101–104]. For example, Figure 10, taken from [97], shows a series of LEIS spectra of
LSCF ceramic samples; one has been measured after polishing, and the others were measured after
annealing for 8 h at different temperatures.

In Figure 10a, the peaks in the spectrum for the as-polished sample correspond to all the elements
present in the bulk composition—O (1181 eV), Fe (2311 eV) and Co (2342 eV; these cannot be resolved
with the He beam due to similar masses), Sr (2541 eV), and La (2701 eV). (Peak energies quoted
correspond to the high energy onset of the peaks, and the peak apexes appear at slightly lower energies
due to inelastic scattering processes.) Peak intensities for surface elements are proportional to their
coverage (by a sensitivity factor dependent on the element’s mass), and so changes in their intensities
are indicative of changes in outermost surface coverage. From the other spectra in Figure 10a, it can
be seen that with progressively higher annealing temperatures, the coverage of Sr increases at the
expense of those of La and the transition metal cations. In Figure 10b, quantified peak areas from
Figure 10a are plotted to show the evolution of surface coverage in terms of cation ratios for given
annealing temperatures. The increase of Sr coverage is most pronounced between 673 and 873 K under
these conditions; this result helps to explain the relative insensitivity of k* to LSCF grain orientation
discussed earlier, since that sample was at 723 K for the 18O exchange.
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Figure 10. (a) LEIS spectra using 3 keV 4He+ primary beam for LSCF ceramics annealed for 8 h at
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Sr on A-site and B:A cation ratio quantified from spectra in (a).

A sequence of LEIS spectra can also be obtained after stepwise removal of material by low
energy (500 eV) Ar ion sputtering to provide depth profiles of elements. By this approach, one may,
for example, study not only the outer monolayer chemistry but also the sub-surface region after
Sr surface enrichment/segregation has occurred. Figure 11 (from [98]) shows sample LEIS spectra
(partial energy range) at different depths and a resulting depth profile measured on a LSCF ceramic
sample after annealing for 12 h at 1273 K.

While the outermost surface is characterized by an absence of La or transition metal cations in
Figure 11a (though there is evidence for sub-surface La indicated by the rise in background signal
below 3500 eV), the La, Co, and Fe peaks appear in the outer monolayer analyzed after removal of
some material. The depth profile in Figure 11b demonstrates not only the B-site deficient surface
region but also a sub-surface region slightly enriched in the B-site cations. This enrichment was
shown to be more pronounced in GdBaCo2O5+δ (GBCO) and La2NiO4+δ (LNO) [98], which also
lacked transition metal cations in the initial outer monolayer. Interestingly, various oxide structures
(perovskite, double perovskite, Ruddlesden-Popper, fluorite) and chemistries exhibit surfaces enriched
with rare earth or alkaline earth cations with larger ionic size and smaller oxidation number than
their hosts. As discussed earlier in the section discussing the relationship between bulk and surface
chemistry, this surface enrichment phenomenon may in principle be explained by a combination of
elastic and electrostatic effects with possible influence from extrinsic factors, such as gas atmosphere.
It should also be noted that while these particular LEIS measurements have been performed on
ceramic pellets after heat treatments, they may also be carried out on electrochemical cells after
testing, to provide some insight into the impact of surface chemistry on actual electrode performance,
particularly oxygen surface exchange rate.

Finally, surface chemistry studies by other methods have also indicated that the intrinsic
segregation phenomena may interact with extrinsic poisoning effects to alter surface chemistry.
A common impurity in the gas stream for the SOFC cathode is S. Although the aforementioned
LSCF composition is now popularly used as the oxygen electrode of SOFCs and SOECs, this oxide
is sensitive to the presence of the S impurity, with which it reacts, resulting in the electrode surface
deactivation. Figure 12 shows scanning electron microscopy (SEM) images of LSCF electrodes having
been exposed to impurity sulfur during power generation and degradation measurements [105].
Evidently, regions appearing to have partially melted, where high amounts of S and Sr are detected,
are observed (these are the darker spots in Figure 12a). Therefore, it appears that surface segregated Sr
may easily react with SO2 in the air to form SrSO4 which easily sinters and blocks the surface from
participating in efficient oxygen reduction. Therefore, one reason for degradation of oxygen electrodes
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is caused by a combination of intrinsic surface segregation of Sr and extrinsic S poisoning, and this
process appears relatively acute for LSCF.Materials 2016, 9, 858 17 of 24 
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Figure 11. LEIS measurements with 20Ne+ primary beam at 6 keV at different depths of an LSCF
ceramic annealed for 12 h at 1273 K. (a) Selected partial spectra corresponding to the very outer surface,
the sub-surface and “bulk” regions; (b) Depth profile of Sr site fraction (solid circles) and B:A cation
ratio (open diamonds). Reproduced from [98] by Druce et al. with permission of The Royal Society
of Chemistry.
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5.3. Modeling of Oxygen Dissociation on Surfaces Absent of Transition Metal Cations

In light of the emerging experimental evidence among the ionics community of A-site segregation
and AO termination in perovskites and related structures under typical SOFC/SOEC operating
conditions, computational simulations have been applied to understand the mechanism of oxygen
exchange on surfaces absent of transition metal cations. Density functional theory calculations can
estimate the energy of various configurations of an electrode slab interacting with oxygen, to determine,
for example, the lowest energy oxygen adsorption site(s), whether those configurations indicate
associated or dissociated oxygen, and whether such a process is energetically spontaneous. In addition,
transition state analysis by nudged elastic band calculations can indicate the activation energy barriers
for moving between one step in the reaction to the next. These approaches have recently been applied
to study oxygen chemisorption and dissociation on SrO-terminated SrTiO3 and LaO-terminated
La2NiO4, both for the stoichiometric and oxygen-deficient compounds, where oxygen vacancies are
introduced via ionically compensated acceptor doping with Fe in the case of SrTiO3. Details of the
calculation approaches are given elsewhere [106,107]. Both oxygen chemisorption and dissociation
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may be enabled by charge transfer to the oxygen, so the presence of accessible electron density in or
near the surface can help these processes to occur. In both SrO-terminated SrTiO3 and LaO-terminated
La2NiO4, the presence of oxygen vacancies near the surface was shown to facilitate (lower the
energy barrier for) oxygen adsorption and dissociation on the surfaces, by enabling charge transfer.
In the case of SrO terminated stoichiometric SrTiO3, oxygen chemisorption and dissociation was not
energetically favorable, since the closed-shell configuration of Sr2+ does not contribute electron density
that would interact with chemisorbed oxygen. For LaO-terminated stoichiometric La2NiO4, however,
oxygen chemisorption was shown to be exothermic (−0.73 eV and−0.59 eV for chemisorption on a slip
position and La-La bridge position, respectively), because the extra 5d electron in La3+ can polarize
its 6s valence orbitals and enable charge transfer from the surface, destabilizing the oxygen molecule.
Calculated energetics for dissociation of oxygen after chemisorption on the aforementioned surfaces
are summarized in Table 1.

Table 1. Calculated Energy of Oxygen Dissociation on Simulated Surfaces (lowest energy
configurations) vs. the Chemisorbed State, from [106,107] by Akbay et al. and Staykov et al.

State
SrO-Terminated SrTiO3 LaO-Terminated La2NiO4

Defect Free With VO (and Fe) Defect Free With VO

Transition barrier
for dissociation - 0.50 eV (iii) 1.35 eV (i)

1.10 eV (ii) 0.28 eV

Dissociated state
(vs. chemisorbed state) 3.4 eV (not stable) −2.38 eV 1.10 eV (i)

0.56 eV (ii) −0.93 eV

(i) Chemisorption on slip position and dissociation on La-La bridge site; (ii) Chemisorption on La-La bridge
position and dissociation on La-La bridge site (wider O separation); (iii) Dissociation into nearby surface oxygen
vacancies; requires 1.02 eV for surface VO migration to be in that configuration, so surface oxygen migration
becomes rate-limiting.

6. Conclusions

6.1. Summary

Oxygen electrodes, typically mixed conducting perovskites and related structures, play a vital
role in impacting the efficiency and lifetime of SOFCs/SOECs as the location of electrochemical
oxygen incorporation or evolution. They need to demonstrate excellent catalytic activity for rapid
surface oxygen exchange, good bulk transport properties (electronic and ionic), and maintain
thermo-chemo-mechanical stability in contact with other cell components and often impure gas
atmospheres for multiple years of operation including start-stop cycling. In this non-exhaustive review
we have highlighted some of the work at I2CNER, Kyushu University, set in the context of work
in the broader community, which seeks to understand the roles of bulk and surface chemistry in
these aspects of oxygen electrode performance. Understanding the impact of bulk composition on
carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients
remains an active area of research, both experimentally and computationally. At the same time,
an understanding of the relationship between bulk and surface chemistry is being developed through
computational simulations and experimental high resolution and/or operando surface chemistry
studies, that may assist design of electrodes with more robust surface chemistries that are impurity
tolerant or do not show rapid surface segregation. As cross-cutting approaches, the use of strain
and/or a high density of active interfaces show promise for enhancing bulk transport and surface
exchange kinetics.

6.2. Outlook

Although fuel cells using solid ceramic electrolytes have been in development for over 60 years,
there remain significant opportunities for improving the efficiency and durability of oxygen electrodes
in these SOFCs and in the newer SOEC technologies.
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Concerning bulk chemistry, the area of “electro-chemo-mechanics”, i.e., the coupling between
mechanical, chemical, and electrical states of materials, is an emerging research theme underlying
electrode performance improvements, including (1) enhancements in transport and surface reactivity
realized by tailoring strain state (mechano-electrical and mechano-electrochemical coupling) as well as
(2) mitigation of deleterious chemical expansion during operation, induced by stoichiometry changes
(chemo-mechanical coupling). In the case of intentionally applied strain (1), an understanding of how
to realize high levels of durable strain in the appropriate direction(s) in real electrodes under operating
conditions should be pursued, and an understanding of what magnitude of enhancements in oxide
ion mobility, non-stoichiometry, and surface exchange kinetics can be accomplished realistically in
devices, given the modest strain levels that can be realized in brittle ceramics, should be developed.
At a fundamental level, partial understanding of oxygen mobility in perovskites has been developed,
but further insight into how cation polarizability, ionic radii, tolerance factor, free volume, lattice strain,
interfacial effects, and other factors can be optimized for the fastest possible ionic mobility should be
developed in the future. Concerning chemical expansion (2), further insight into factors impacting
the magnitude of coefficients of chemical expansion is needed, and modeling of chemical stress
development spanning atomic to device length scales would help to mitigate these stresses and
maximize device mechanical integrity for high durability.

Regarding surface chemistry and oxygen surface exchange kinetics, areas of particular interest
are: (1) clarifying rate-limiting steps and mechanisms of oxygen incorporation/excorporation with
atomistic insight both experimentally and computationally; (2) exploiting the unique properties of
hetero-interfaces, grain boundaries, and other long range defects intersecting the surface; (3) identifying
the theoretical optimal composition(s) for the outermost atomic monolayers; and (4) learning how to
control the outermost chemistry in operating conditions via bulk and surface chemical tailoring. Each of
those areas is particularly strategic because the high activation energy of the oxygen exchange process
limits the operating temperature range of the devices at present and can dominate efficiency losses
at lower temperatures. For practical use of SOFCs/SOECs, an additionally important challenge
is increasing the long-term stability. Therefore many research efforts are aimed at identifying,
understanding, and addressing degradation mechanisms that lead to increases in internal resistances
and overpotentials during operation. For example, learning how to control and mitigate electrode
surface poisoning, either by intrinsic large cation segregation or by extrinsic species depositing or
reacting with the surface is a particularly significant area of research along these lines. Overall,
oxygen electrode development remains a very active field, and continued effort to understand
fundamental structure-property relationships in both the bulk and surface of electrodes is needed for
development of descriptors for rational design and discovery of superior electrode chemistries.
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