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Abstract: Increasing urbanization and industrialization lead to the release of metals into the biosphere,
which has become a serious issue for public health. In this paper, the direct electrochemical reduction
of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy
carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method
and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from
0 to ´1.5 V. The modification was optimized and properties of electrodes were determined using
electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of
Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter
electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified
GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of
reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection
limit 5 ng¨mL´1 was obtained.

Keywords: carbon; cyclic voltammetry; electrochemical impedance spectroscopy; electrochemistry;
graphene oxide; heavy metal detection; reduced graphene oxide

1. Introduction

Heavy metal pollution has become a major concern all over the world. Anthropogenic processes like
urbanization and industrialization have led to their release from Earth’s crust and their accumulation
in the biosphere. The long-term monitoring of heavy metal pollution is the only way to meet the
legislative demands and decrease pressure on the environment. However, most heavy metals like
lead or cadmium are toxic even at low concentrations, others, which belong to a group of essential
micronutrients, pose health risks in high supplementation only, but their monitoring is also needed [1–3].
Among essential micronutrients, zinc(II) plays one of the most important role. Zinc analysis is appealing
not only from the environmental point of view but also from the biochemical one. Zinc(II) ions play
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an important role in cell replication and nucleic acid metabolism, and its deficiency is connected with
some pathological processes like retarded growth and immunity dysfunction [4]. As was shown
recently, the enhanced zinc intake by drinking water in the case of mice caused zinc deficiency in
the hippocampus, associated with memory deficit and decreased expression levels of learning and
memory related receptors [5]. Zinc has these important roles and effects mainly as a co-factor of
numerous proteins, therefore it is not surprising that metallomics and proteomics of zinc-containing
proteins are emerging fields of science [6–8]. From these, metallothioneins are highlighted as
maintainers and transporters of these proteins and their importance in zinc metabolism belongs to the
interest of numerous researchers [9–18].

Atomic absorption spectrometry (AAS) and inductively coupled plasma mass spectrometry
(ICP-MS) represent a gold standard in detection of trace heavy metals concentrations. Nevertheless,
they require expensive instrumentation, experienced operators, and the analyses are time-consuming.
On the contrary, electrochemistry offers superior features like portability, easy use, low price, miniaturization,
and high sensitivity [19–23]. The great advantage of electroanalysis is also the possibility of electrode
surface modification [24].

Mercury electrodes have been widely used in trace heavy metal analysis for decades; however,
they do not correspond with current trends including miniaturization. Whereas material sciences are
a rapidly developing field of science, several micro to nanosized materials like liquid metals/metal
oxides in order to improve electrode properties are attracting the attention of analysts [25–28].
Graphene, theoretically perfect two-dimensional (one-atom-thick) material, is the ideal choice for
electrochemistry since it possesses unusual electronic conductivity and high surface area [29]. However,
it is worth noting that a one-atom-thick, defect-less graphene monolayer is difficult to prepare and
standard graphene materials are far from perfectly structured, and therefore more often reduced
graphene oxide (rGO) is used. The procedure of GO reduction influences subsequent rGO properties.
Electrodes modified with rGO obtained using constant potential chemical and thermal reduction was
previously compared [30]. From electrochemical methods for GO reduction cyclic voltammetry was
also used [31]. Electrodes modified with rGO are not only desirable for just electroanalytical chemistry,
but also for the removal of organic pollutants from wastewaters [32]. Various methods have been
used to prepare electrodes modified with GO [33–36]. Among others, electrodeposition of GO or rGO
attracted interest due to its efficiency, ease of use, and rapid procedure [37]. Potentiostatic methods
and cyclic voltammetry (CV) were shown to be suitable tool for electrodeposition of these materials
on electrodes [38,39]. Recently, pulse potential method based on changing of anodic deposition and
cathodic reduction periods was developed too [40]. Moreover, an electrode surface modification
with biomolecules or graphene-like nanomaterials can significantly improve detection sensitivity and
selectivity [41–43].

In this work the GO film on glassy carbon electrode (GCE) was fabricated by the potentiostatic
deposition of GO. Electrochemically deposited GO was subsequently subjected to electrochemical
reduction to produce electrochemically reduced graphene oxide (ERGO) using CV. The properties
of this modified electrode were compared with standard bare GCE using CV and electrochemical
impedance spectroscopy (EIS). [Fe(CN)6]3´/[Fe(CN)6]4´ was used as a redox probe for electrode
characterization and the performance of GCE/ERGO on detection of Zn(II) using differential pulse
voltammetry (DPV) was examined.

2. Results and Discussion

2.1. Preparation of GCE/ERGO

Since the discovery of graphene, it has been attracting great attention due to its high conductivity
and surface to volume ratio [44]. However, from an electrochemical point of view graphene suffers from
a limited number of hydrophilic moieties and electroactive sites [45]. GO with randomly distributed
oxygen groups benefits from structural similarity with graphene, nevertheless structure breaks cause
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the decrease of conductivity [46]. Partially reduced GO represents an intermediate between ideal
graphene structure and GO, whereas the amount of electroactive surface and reactive functionalities
(epoxy, hydroxyl, carboxyl) are balanced.

The common method to fabricate rGO is exfoliation of graphite to produce GO followed by
thermal or chemical reduction [47]. ERGO represents an alternative since no expensive equipment or
use of toxic compounds is needed during its fabrication. Several procedures have been introduced to
cover electrodes with a GO or GO/ERGO layer [34,38,48,49]. Direct electrodeposition from solution or
drop-casting of GO or rGO on the surface of electrode can be used. If GO is used as a source material
for electrode modification, deposition is followed by electrochemical reduction of GO to prepare
ERGO. Previously, CV, potentiostatic or pulsed methods (several cycles of deposition in positive
potential followed by GO reduction in negative potential) were used in order to cover the electrode
with ERGO [50,51].

Here, GO was prepared according to the simplified Hummer’s method (Figure 1A). It was revealed
that our GO sample contains particles with hydrodynamic diameter of 848 ˘ 290 nm (Figure 1B).
Negative charge of GO was confirmed using measurement of zetapotential (ζ = ´43 mV), which
enables to deposit GO particles on the electrode using application of positive potential on it. This value
also suggests that GO particles possess good stability in colloid phase.
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Figure 1. (A) Micrograph of GO used to modify GCE obtained by SEM; (B) GO size distribution
including zetapotential; (C) Raman spectra of GCE, GCE modified with GO and GCE modified with
ERGO; (D) AFM image of GO and (E) the height profiles along lines displayed in AFM image.

For the fabrication of GCE/ERGO, the constant potential +1.0 V vs. Ag/AgCl/3 M KCl reference
electrode were applied to GCE in a previously sonicated water solution of GO (0.5 mg¨mL´1). Due to
the presence of oxygen-containing functionalities negatively charged GO is electrostatically attracted
to positively charge electrode. Subsequently, the working electrode was gently rinsed with water,
transferred to acetate buffer and five CV cycles (from 0 to´1.50 V) were performed [52]. The irreversible
reduction signals at ´1.05 V and ´0.85 V were observed in first cycle and completely disappeared in
subsequent cycles (Figure 2A). It was shown previously that reduction of GO provides peak around
´1.10 V [8,45,51]. Nevertheless different oxygen-containing moieties can be presented within GO,
which can result in different reduction signals. The deposition (0–480 s) time of GO on electrode was
optimized using detection of 20 µmol¨L´1 Zn(II) signal and the deposition for 60 s was found as
an optimal (Figure 2B). It was shown that although deposition of GO increased reduction signal of
zinc slightly for 15 s, deposition of GO increased signal nearly three-fold for 30 s when compared
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with bare GCE cathodized for precise time in water. The deposition time 60 s was able to sufficiently
modify the surface of GCE with GO, and the increase of deposition time did not result in the increase
of detection signal.Materials 2016, 9, 31  4 of 12 

 

 

Figure 2. (A) The CV (0 − (−1.5) V) of GCE/GO in acetate buffer; (B) Dependence of Zn(II) reduction 

signal obtained using GCE/ERGO on deposition time of GO (0.5 mg∙mL−1) on the electrode (deposition 

time selected as optimal is marked with star); (C) CV of 2 mM [Fe(CN)6]3−/[Fe(CN)6]4− in 0.1 M KCl   

(50 mV∙s−1) recorded on bare GCE (blue  line), GCE/GO (red  line) and GCE/ERGO (green  line) and 

corresponding peak  current  levels;  (D) The dependence of  [Fe(CN)6]3−/[Fe(CN)6]4− anodic  (Ia) and 

cathodic (Ic) peak heights on the square root of scan rate; (E) Nyquist plot, detail of nyquist plot high 

frequency region and equivalent circuit used for data evaluation in insets; (F) Bode modulus plot of 

bare GCE (blue line), GCE/GO (red line) and GCE/ERGO (green line); and (G) corresponding Bode 

phase diagram (same colours as previous figure). 

Further, we analyzed the surface of the modified electrode by Raman spectroscopy. The D and 

G Raman bands were detected at 1355 cm−1 and 1595 cm−1 for GO and 1348 cm−1 and 1600 cm−1 for 

ERGO, both deposited on GCE. The Raman intensity ratio of the D and G bands (ID/IG) is increased 

in the case of GCE/ERGO (1.19) compared to GCE/GO (0.98) (Figure 1C), which is in accordance with 

literature  [53,54].  It  is attributed  to  the modification of  the GO structure by reduction resulting  in 

removal of functional groups and creation of defects between the sp2 domains [55]. Change of full 

width at half maximum (FWHM) was observed from 115 cm−1 for GO towards 78 cm−1 in the case of 

ERGO for D band. The value for ERGO points at high disorder with low distances between defects [55]. 

The  image of GO obtained using AFM suggests  that GO  is presented within sample  in sheet‐like 

Figure 2. (A) The CV (0 ´ (´1.5) V) of GCE/GO in acetate buffer; (B) Dependence of Zn(II) reduction
signal obtained using GCE/ERGO on deposition time of GO (0.5 mg¨ mL´1) on the electrode (deposition
time selected as optimal is marked with star); (C) CV of 2 mM [Fe(CN)6]3´/[Fe(CN)6]4´ in 0.1 M KCl
(50 mV¨s´1) recorded on bare GCE (blue line), GCE/GO (red line) and GCE/ERGO (green line) and
corresponding peak current levels; (D) The dependence of [Fe(CN)6]3´/[Fe(CN)6]4´ anodic (Ia) and
cathodic (Ic) peak heights on the square root of scan rate; (E) Nyquist plot, detail of nyquist plot high
frequency region and equivalent circuit used for data evaluation in insets; (F) Bode modulus plot of
bare GCE (blue line), GCE/GO (red line) and GCE/ERGO (green line); and (G) corresponding Bode
phase diagram (same colours as previous figure).

Further, we analyzed the surface of the modified electrode by Raman spectroscopy. The D and G
Raman bands were detected at 1355 cm´1 and 1595 cm´1 for GO and 1348 cm´1 and 1600 cm´1 for
ERGO, both deposited on GCE. The Raman intensity ratio of the D and G bands (ID/IG) is increased
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in the case of GCE/ERGO (1.19) compared to GCE/GO (0.98) (Figure 1C), which is in accordance
with literature [53,54]. It is attributed to the modification of the GO structure by reduction resulting
in removal of functional groups and creation of defects between the sp2 domains [55]. Change of
full width at half maximum (FWHM) was observed from 115 cm´1 for GO towards 78 cm´1 in the
case of ERGO for D band. The value for ERGO points at high disorder with low distances between
defects [55]. The image of GO obtained using AFM suggests that GO is presented within sample in
sheet-like shapes (Figure 1D). The thickness of GO, deduced from the height profile of AFM image, is
about 1 nm, which is comparable to GO monolayer thickness published previously [56,57].

2.2. Characterization of GCE/ERGO

In order to characterize GCE/ERGO, cyclic voltammograms of equimolar 2 mmol¨L´1

[Fe(CN)6]3´/[Fe(CN)6]4´ as a redox probe was measured using bare GCE and GCE/GO and compared
with the record measured using GCE/ERGO. As it is shown in Figure 2C, deposition of GO on GCE
reduces the peak current by 5%. On the contrary, GCE/ERGO exhibited better detection properties by
10% (inset in Figure 2C). Based on these data, the Randles-Sevcik equation (Equation (1)) was used to
calculate the electroactive surface area of bare GCE and subsequently compare it with GCE/ERGO.
The areas of 6.4 mm2 and 7.0 mm2 were acquired, respectively, which means increase for about
9.4% and confirm successful deposition and reduction of GO. The values of reduction and oxidation
peaks of [Fe(CN)6]3´/[Fe(CN)6]4´ were plotted against the square root of scan rates (Figure 2D).
The linear dependence revealed diffusion controlled processes for both GCE and GCE/ERGO and
slightly improved sensitivity of detection in case of GCE/ERGO. These results were also confirmed by
EIS (Figure 2E).

The Randles circuit was used as an equivalent circuit for fitting the EIS data. It consisted of
solution resistance Rs, charge transfer resistance Rct, double layer capacitance Cdl and Warburg
impedance ZW (inset in Figure 2E). Nyquist diagram showed in case of bare GCE depressed semicircle
with charge transfer resistance 2.1 kΩ¨ cm´1. After deposition of GO on GCE, charge transfer resistance
increased four-fold to 8.5 kΩ¨ cm´1. Very small depressed semicircle was observed in the case of
GCE/ERGO, where Rct decreased to 0.6 kΩ¨ cm´1 (32% of GCE Rct). Significantly lower charge
transfer resistance of GCE/ERGO in comparison with GCE/GO was previously reported [58]. In Bode
diagram the frequency dependence on absolute magnitudes of impedance modulus |Z| was plotted
(Figure 2F). The peaks of Bode phase diagram in case of GCE and GCE/GO (1–3 kHz) suggests that
charge transfer resistance takes place in the electrode/electrolyte interface. Phase peak of Bode plot
of GCE/ERGO disappeared at higher frequencies as a result of high electron transfer, where charge
transfer resistance decreased (Figure 2G).

2.3. Detection of Zn(II)

The detection of Zn(II) was performed using DPV. Firstly, deposition potentials ((´1.45) ´ (´0.65) V)
of Zn(II) on the surface of GCE/ERGO was optimized. As it can be seen in Figure 3A, the obtained
Zn(II) signal increased from potential ´0.65 to ´1.25 V. At potential ´1.25 V the Zn(II) signal reached
its higher value and was choose as an optimal. As the next step, deposition time (0–90 s) of Zn(II) was
optimized (Figure 3B). It was revealed that the signal increased by 73% using deposition time 60 s and
deposition potential ´1.25 V in comparison with deposition time 0 s. After this optimization, different
concentrations of Zn(II) were measured using GCE/ERGO and calibration curve was determined
(Figure 3C). It exhibited linear section between 1.0 µmol¨L´1 and 62.5 µmol¨L´1 and other analytical
parameters of detection are displayed in Table 1. The modification of GCE with ERGO improved the
detection of zinc ions (35 µmol¨L´1) four-fold in comparison with bare GCE and slightly shifted peak
potential from ´1.18 V to ´1.2 V (Figure 3D). Using GCE/ERGO, we obtained limit of detection (LOD)
0.1 µmol¨L´1 Zn(II) (~5 ng¨mL´1).



Materials 2016, 9, 31 6 of 12

Table 1. Analytical parameters of electrochemical detection of Zn(II).

Substance Working
Electrode

Regression
Equation

Linear Dynamic
Range (µmol¨ L´1) R2 a LOD b

(µmol¨ L´1)
LOQ c

(µmol¨ L´1) RSD (%)

Zn(II) GCE/ERGO y = 0.1608x ´ 0.1231 62.5 – 1.0 0.9999 0.1 0.4 4.8
Zn(II) GCE y = 0.0539x ´ 0.0916 500.0 – 2.0 0.9992 0.5 2.0 5.2

a Regression coefficient; b LOD (S/N = 3); c LOQ (S/N = 10).
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Figure 3. Dependence of Zn(II) reduction signal on deposition potential (A) and deposition time
(B) of Zn(II) (35 µmol¨ L´1) on GCE/ERGO (parameters marked with star was selected as an optimal);
(C) Dependence of electrochemical signal on Zn(II) concentration (1.0–62.5 µmol¨ L´1) and comparison
of DPV reduction signals of Zn(II) (4 µmol¨ L´1) (D) obtained using GCE/ERGO (red line) and bare
GCE (blue line); (E) DPV voltammograms ((´1.40) ´ (´0.70) V) and comparison of Zn(II) and Cd(II)
peak heights (F) of Zn(II) solution (1 µmol¨ L´1) with different concentrations of Cd(II) (0–64 µmol¨ L´1).
Comparison of 10 µmol¨ L´1 Zn(II) electrochemical signal in acetate buffer with added 50 µmol¨ L´1

K(I), Ca(II) and Mg(II) in inset.

As the final step, the effect of interference with Zn(II) detections was examined. We chose Cd(II)
since it is quite often presented in environmental samples and may affect Zn(II) detection [41,59].
Zn(II) solutions (1 µmol¨L´1) with different concentrations of Cd(II) (0–64 µmol¨L´1) were measured
and the peak heights of Zn(II) (potential´1.15 V) were compared (Figure 3E). As it can be seen, peak of
Cd(II) (about potential´0.80 V) is well separated from Zn(II) peak and did not significantly affect Zn(II)
peak heights even at a 64-times higher concentration (Figure 3F). In addition, other monovalent and
bivalent ions were tested as a possible interference in real sample. To Zn(II) solution five-times higher
concentrations of K(I), Ca(II), and Mg(II) ions were added and their effects on Zn(II) were evaluated.
All Zn(II) analysis presented here were performed in the acetate buffer where Na(I) ions were present
in high concentration. Other tested ions showed no apparent interference in Zn(II) detection (Figure 3F inset).
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3. Experimental Section

3.1. Chemicals and Material

ACS purity (i.e., chemicals meet the specifications of the American Chemical Society) sodium
acetate trihydrate, acetic acid, zinc nitrate, potassium hexacyanoferrate(III), potassium hexacyanoferrate(II)
trihydrate, potassium chloride, water, and other chemicals were purchased from Sigma-Aldrich
(St. Louis, MO, USA) unless noted otherwise.

3.2. Preparation of GO

GO was synthesized using chemical oxidation of graphite flakes (5.0 g, Sigma-Aldrich, and
100 mesh, ě75% min) in a mixture of concentrated H2SO4 (670 mL, ACS reagent 95.0%–98.0%) and
30.0 g KMnO4 (>99%) according to the simplified Hummer’s method [60]. The reaction mixture was
stirred vigorously. After four days, the oxidation of graphite was terminated by slow adding of H2O2

solution (250 mL, 30 wt % in H2O) and the colour of the mixture turned to bright yellow, indicating
high oxidation level of graphite. Formed graphite oxide was washed three times with 1 M of HCl
and washed with water several times (total volume used 12 L) until constant pH value (4–5) was
achieved using a simple decantation. Then, it was possible to centrifuge this solution. During the
washing process with deionized water, exfoliation of graphite oxide led to the thickening of solution
and formation of a stable colloid of GO.

3.3. Glassy Carbon Electrode Modification with Graphene

GCE was mechanically polished by the 1.0 µm and 0.3 µm alumina suspension (CH Instruments,
Austin, TX, USA) on polishing cloth to produce mirror-like surface. Then, the electrode was sonicated
for 3 min in distilled water (25 ˝C) and acetone successively in the Sonorex digital 10 P ultrasonic
bath (Bandelin, Berlin, Germany). As prepared, the electrode was rinsed with water solution of
GO (0.5 mg¨mL´1) and potential +1.0 V was applied on working electrode vs. Ag/AgCl/3 M KCl.
The deposited film of GO was reduced by performing CV from 0.0 V to ´1.5 V in acetate buffer (0.2 M,
pH = 5) to produce ERGO.

3.4. Instrumentation

Determination of Zn(II) and [Fe(CN)6]3´/[Fe(CN)6]4´ by DPV and CV respectively was performed
using PGSTAT302N (Metrohm, Herisau, Switzerland) using a three electrode system. A 3 mm diameter
GCE (CH Instruments, Austin, TX, USA) was employed as the working electrode. An Ag/AgCl/3 M
KCl electrode was used as the reference and platinum wire served as auxiliary. For data processing
NOVA 1.8 (Metrohm, Herisau, Switzerland) was employed. Acetate buffer (0.2 mol¨L´1 CH3COONa
and CH3COOH, pH = 5) and 0.2 mol¨L´1 KCl were used as a supporting electrolyte in cases of Zn(II)
and [Fe(CN)6]3´/[Fe(CN)6]4´ determination, respectively.

The parameters of the measurement by DPV were as it follows: initial potential ´1.3 V, end
potential ´1.0 V, deposition time 60 s, time interval 0.03 s, step potential 5 mV, scan rate 50 mV¨ s´1.
Parameters of the measurement by CV were as it follows: initial potential of ´0.3 V, upper vertex
potential 0.7 V, lower vertex potential ´0.3 V, step potential 2.4 mV, scan rate 50 mV¨ s´1. All measurements
were carried out at 25 ˘ 1 ˝C.

The value of formal potential of [Fe(CN)6]3´ in 0.1 mol¨L´1 KCl was 0.25 V and we also adopted it
at impedance measurements. Impedance spectra were measured from 0.1 Hz to 105 Hz with alternating
current (AC) amplitude of 10 mV. PGSTAT302N (Metrohm, Herisau, Switzerland) was used for
impedance measurements with the same three electrode system as mentioned previously. Individual
elements of equivalent circuit were calculated using NOVA 1.8 (Metrohm, Herisau, Switzerland).
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3.5. The Electroactive Surface Determination

In order to determine electroactive area of GCE and to compare it with GCE/ERGO, cyclic
voltammograms of 2 mM [Fe(CN)6]3´/[Fe(CN)6]4´ in 0.1 M KCl were recorded using the
aforementioned electrodes. Electroactive surface was calculated according to Randles-Sevcik equation:

Ip “ 2.69¨ 105 A¨D
1
2 n

3
2 ν

1
2 C (1)

where Ip is anodic current peak (A), A is the electroactive area (cm2), D is the diffusion coefficient
of [Fe(CN)6]4´ in solution (6.1 ˆ 10´6 cm2¨ s´1 was taken according to Prathish et al. [61]), n is the
number of electrons transferred in half-reaction (1 in case of [Fe(CN)6]4´), ν is scan rate (0.05 V¨s´1

was chosen) and C is [Fe(CN)6]4´ concentration (mol¨L´1).

3.6. Scanning Electron Microscopy (SEM)

Structure of carbon materials were characterized by SEM. For documentation of the structure,
a MIRA3 LMU (Tescan, Brno, Czech Republic) was used. The SEM was fitted with In-Beam SE detector.
For automated acquisition of selected areas a TESCAN proprietary software tool called Image Snapper
was used. The software enabled automatic acquisition of selected areas with defined resolution.
An accelerating voltage of 15 kV and beam currents about 1 nA gave satisfactory results.

3.7. Dynamic Light Scattering (DLS)

Average particle size, size distribution, and particle zetapotential were determined by dynamic
light scattering method by Zetasizer Nano-ZS (Malvern Instruments Ltd., Worchestershire, UK) with
a scattering angle θ = 173˝. Samples were measured in water solution.

3.8. Raman Spectroscopy

All carbonaceous materials, bare GCE, GO, and ERGO deposited on GCE were characterized
by Raman spectroscopy. Measurements were performed on a Renishaw InVia Reflex Raman
microspectrometer equipped by the 514.5 nm line of an argon laser for excitation. A Leica microscope
equipped with a standard 50ˆ objective were used. The laser power was set to 1–2 mW at source
to obtain an optimal Raman signal and simultaneously avoid any thermal alteration of the sample.
Scans of 5–8 s were accumulated 10 times. Resulting spectra were baseline-corrected in GRAMS/AI 9.1.

3.9. Interference Measurement

Zn(NO3)2 was mixed with KCl, CaCl2, and MgCl2 to obtain a final concentration of 10 µmol¨L´1

Zn(II) and 50 µmol¨L´1 K(I), Ca(II) and Mg(II), respectively, in acetate buffer. Obtained Zn(II) reduction
signals were compared with a signal of 10 µmol¨L´1 Zn(II) in acetate buffer.

3.10. Atomic Force Microscopy Measurement

3.10.1. GO Immobilization

GO was immobilized on freshly cleaved mica surfaces grade V-1 (Structure Probe/SPI Supplies,
West Chester, PA, USA). The mica surface was first modified by silanization in vapours of
N-aminopropyldimethylethoxysilane (APDMES) with catalysis of N,N-diisopropylethylamine (DiPEA,
both from Sigma Aldrich). Fifty microliters of GO stock solution 10-times diluted in double distilled
water was subsequently transferred onto the modified mica surface and left to incubate for 15 min in
a wet chamber under laboratory temperature. Then the surface was carefully washed with double
distilled water and left to dry in desiccators for another 30 min (10 Pa vacuum).
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3.10.2. Visualization of GO

The AFM images of GO fixed on mica sheets were taken by Bruker Dimension FastScan
atomic force microscope (Bruker Nano Surface, Santa Barbara, CA, USA) operated in tapping mode.
Basic parameters of the visualization process were as follows: set point value 3.5 nm, iGain 0.8,
PGain 5.5, piezo Z scale range 500 nm. All images were collected under ambient conditions at
38% relative humidity and 22.5 ˝C with a scanning raster rate of 2.0 Hz. Silicon nitride triangular
cantilevers “FastScan A” (Bruker Nano Surface) characterized by spring constant of 17 N/m and
resonant frequency of 1397 kHz equipped with tetrahedral silicon tip with nominal tip radius 5 nm
were used for imaging.

Gwyddion software [62] version 2.43 was used for AFM data post processing and for graphical output.

4. Conclusions

Modifications of electrode surface, where redox processes in electrochemical measurements
take place, are promising techniques to improve detection sensitivity. Nanomaterials and different
carbon materials among others are nowadays frequently used to meet this goal. As it was evident
from our measurements, graphene modification of working electrodes is an easy way to enhance
electrode properties. GO was electrodeposited from solution on GCE at constant positive potential
and subsequently electrochemically reduced using cyclic voltammetry measurement at negative
potentials. Proved by Raman and electrochemical impedance spectroscopy, successful modification of
the electrode resulted in an increase of electroactive surface area by 9.4% compared with bare GCE.
We found that GCE/ERGO possesses three-fold higher sensitivity for zinc ions in comparison with
bare GCE. Acceptable selectivity towards interfering ions, such as K(I), Cd(II), Mg(II), and Ca(II)
was achieved.
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