Supporting Information

Element	GGA		HSE06	
	O-rich	Ti-rich	O-rich	Ti-rich
0	-434.006	-439.243	-427.883	-433.623
Ti	-1613.601	-1603.126	-1583.821	-1572.341
Be	-36.742	-31.505	-38.155	-32.416
Mg	-979.835	-974.598	-1602.834	-1597.095
Ca	-1008.095	-1002.858	-1004.297	-998.557
Sr	-842.413	-837.176	-844.573	-838.833
Ba	-704.929	-699.692	-699.695	-693.955

Table S1. The calculated chemical potential values (in eV) of Ti, O, and alkaline-earth metals (AEM) for AEM-doped anataseTiO₂. The larger difference of chemical potential for Mg results from the different valence electron configurations for pseudopotential.

Figure S1. The spin density differences of undoped and doped TiO₂, calculated by using the PBE and HSE06 functionals, and the dopant atom was highlighted (isodensity contour = 0.05 a.u.): (a) undopedTiO₂; (b) Be-doped TiO₂; (c) Mg-doped TiO₂; (d) Ca-doped TiO₂; (e) Sr-doped TiO₂; (f) Ba-doped TiO₂.

Figure S2. The electron densities of doped and undoped TiO_2 cut along 001 surface through dopant atom, and the dopant atom was highlighted.

Figure S3. The electron density differences of doped and undoped TiO₂ cut along 001 surface through dopant atom, and the dopant atom was highlighted.