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Abstract: Implantable devices may provide a superior means for hormone delivery through
maintaining serum levels within target therapeutic windows. Zero-order administration has
been shown to reach an equilibrium with metabolic clearance, resulting in a constant serum
concentration and bioavailability of released hormones. By exploiting surface-to-molecule
interaction within nanochannel membranes, it is possible to achieve a long-term, constant
diffusive release of agents from implantable reservoirs. In this study, we sought to
demonstrate the controlled release of model hormones from a novel nanochannel system.
We investigated the delivery of hormones through our nanochannel membrane over a period
of 40 days. Levothyroxine, osteocalcin and testosterone were selected as representative
hormones based on their different molecular properties and structures. The release
mechanisms and transport behaviors of these hormones within 3, 5 and 40 nm channels were
characterized. Results further supported the suitability of the nanochannels for sustained
administration from implantable platforms.
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1. Introduction

Unbalanced natural hormone production is a pervasive condition typically treated with hormone
replacement therapy (HRT) [1–3]. HRT is usually performed through a series of oral tablets or injections
to mimic physiological cycles, as each administration results in a rapid increase and decrease of the
blood serum concentration levels. However, these wide fluctuations do not accurately mimic healthy
physiological hormone availabilities [4]. Furthermore, treatment outcomes are heavily dependent
on patient compliance to prescribed regimens [5]. Long-term HRT is used to treat a variety of
diseases, including renal failure, cardiovascular diseases, and hormonal contraception [6–9]. The
protection of these agents from physiological interactions is crucial for maintaining stability and
treatment efficacy [10]. To address these needs within the field of hormone delivery, several groups
have developed sustained administration approaches capable of maintaining more consistent serum
concentrations than traditional methods while reducing the total number of treatments given [11,12].
Several systems have been developed, including long-acting injections, biodegradable polymers, and
conjugated nanocarriers [13–17]. However, studies have shown that these approaches suffer from
inconsistent dosage maintenance [5]. For example, release from biodegradable polymers has been
demonstrated to lead to a front-loaded, exponential delivery rate based on the diminishing surface area
of the degrading implant [18].

These shortcomings, when paired with the particular needs of many HRT regimens requiring
life-long treatment, motivate the development of novel drug delivery strategies. Our research group
developed a nanofluidic membrane providing controlled release of therapeutics through physically
and electrostatically constraining molecular diffusion at the nanoscale [19–21]. Constant, zero-order
release is achieved by tailoring the height of the nanofluidic channels to near the hydrodynamic radii
of the diffusing molecule of interest [22–26]. No pumping mechanisms or valves are required to
drive transport through the membrane structure, as the system relies on the concentration gradients of
diffusing molecules between an inner reservoir and the external environment. Therapeutic proteins,
such as hormones, present unique and interesting characteristics influencing their transport under
nanoconfinement conditions [27]. As sustained and controlled delivery of hormones addresses a current
clinical need, this study focuses on the characterization of hormone transport across the nanochannel
system. The nanofluidic membranes do not mimic natural hormone secretion, which occur at different
levels throughout the day. However it has been shown that, constant delivery is clinically acceptable and
more desirable than multiple bolus administrations [22,28].

In this work, we hypothesize that long-term, zero-order hormone release can be achieved through
the use of our novel drug delivery platform. To test this hypothesis, the nanoconfined diffusive
transport of three model hormones was studied within nanochannel membranes. These hormones
were selected based on their size, charge, and distribution ratio (logD): levothyroxine, osteocalcin,
and testosterone. Experiments leveraged silicon membranes incorporating 349448 identical and parallel
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nanochannels. Different membranes with nanochannels heights ranging from 3 to 40 nm were used to
evaluate diffusive transport. Further analysis of the transport behavior and intrachannel distribution
of these model hormones enabled evaluation of this nanochannel platform’s utilization for clinical
hormone administration.

2. Results and Discussion

Based on physicochemical properties of the three agents, nanofluidic membranes possessing negative
surface charge and nanochannel heights including 3, 5 and 40 nm were employed to study their transport
mechanisms in the context of controlled release.

2.1. Levothyroxine

Levothyroxine is a small, negatively charged (´0.5e at pH 7.4, Table 1), and hydrophobic molecule
(logD 1.76, Table 1) used to treat several forms of hypothyroidism [29–31]. Levothyroxine was released
from implantable capsules maintained under simulated physiological conditions. The cumulative release
curves for levothyroxine are shown in Figure 1.

Table 1. Properties of released molecules. LogD: distribution ratio.

Properties Osteocalcin Levothyroxine Testosterone

Mass (Da) 5929 777 288

Net Charge (pH 7.4) ´6 ´0.5 0

Radius (Å) 10 4.3 4.1

LogD (PH 7.4) „´6 1.76 3.16
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Figure 1. Levothyroxine cumulative release from 3 and 40 nm nanochannel membranes and
their linear fits (blue and red dotted lines).

Spatial confinement by the nanochannels seemed to linearize levothyroxine’s diffusive transport
(Figure 2). This linearization may have been more attributable to direct spatial confinement than to
ionic redistribution within the channel [23,32]. Due to a nearly equivalent presence of two stable
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levothyroxine configurations, neutral and negatively charged (´1e), the overall charge is approximately
´0.5e (Table 1). Therefore, electrostatic interactions affect about half of the population, leading to
an accumulation of charged species towards the channel center, a distribution previously termed gated
diffusion (GD). The behavior of the neutral molecules would most likely be attributable to their positive
logD, as water interaction minimization would lead to aggregation at the nanochannel surfaces (ANS).
Leveraging these experimental values, it was possible to develop an empirical approximation of the flux
contributions between the GD and ANS for the smallest nanochannels as:

GD “ J´ANSandANS “ DˆGD (1)

where J is the diffusion rate of levothyroxine, and D is the distribution ratio calculated from logD.
Assuming a proportional correlation between the area of the nanochannel, the bulk diffusion and ANS
being constant, it is possible to normalize the diffusive rate (GDN) from the surface (A) as:

J “ ANS ` GD “ ANS ` GDNˆA (2)

Equation (2) can decouple the role of the bulk diffusion from the near-surface diffusion. By
incorporating the value for diffusive rate determined from the release through 3 nm nanochannels,
it is possible to predict the release rate for the 40 nm nanochannels. The experimental value is
comparable, within 10% of the prediction, additionally supporting the hypothesis of both phenomena
being present. An alternative explanation for the similar release is attributable to the consistent inlet and
outlet microchannel network for all membranes tested. These may present a significant contribution to
the overall effective “diffusive resistance” of the system and reduce the contribution of nanochannels in
determining the overall membrane’s release rate.
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Figure 2. Nanochannel cross (CS) sections depicting levothyroxine distributions within
3 and 40 nm nanochannel membranes are shown. Neutrally charged molecules move near
the wall surface while negatively charged molecules tend to migrate towards the center of the
nanochannel. Please note that the aspect ratio was lessened for better visual representation
of the molecular distribution.
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2.2. Osteocalcin

Osteocalcin is a large, negatively charged, osteoclast-derived hormone that is most abundant in the
noncollagenous protein of bone matrix. Studies have revealed it to be a multifunctional hormone that
promotes insulin secretion and testosterone biosynthesis, among other activities [33]. A low LogD value
(„´6, Table 1) at neutral pH renders osteocalcin very hydrophilic and homogeneously distributed in bulk
solution. Osteocalcin was released from implantable capsules under simulated physiological conditions,
sampling its release for 10 days. Samples were analyzed with a micro-bicinchoninic acid (BCA) protein
assay kit.

The release behavior (Figure 3) is consistent with the zero-order release trend observed in
levothyroxine and previous studies for negative transport under nanoconfinement [23,34]. However,
it demonstrated a much greater dependence on nanochannel size than leveothyroxine. Osteocalcin
molecules are repelled from the negative surfaces of the nanochannel, leading to high concentrations
in the center that decrease towards the walls. This is exhibited in Figure 4, which provides a qualitative
estimate of osteocalcin redistribution through a cross-section of the channel. Over the 10 day period,
approximately 78% of the loaded hormone released from the 5 nm membranes, while only 28% released
from the 3 nm. There was also a significant difference in release rate, as the osteocalcin transport
through the 5 nm membranes was approximately 3 times the rate through the 3 nm. This difference
cannot be explained by the previous Equations (1) and (2) describing gated diffusion. We speculate that
this behavior can be primarily attributed to the tight spatial confinement of diffusing molecules provided
by the nanochannels. As osteocalcin has a relatively large molecular weight (5929 Da, Table 1) and
hydrodynamic radius (1.0 nm), we suggest this transport to be defined by the ratio between nanochannel
height and molecular diameter, which approaches unity for the 3 nm case with our innovative, nanofluidic
membrane. These results are highly interesting and motivates additional questions on whether the
platform can be leveraged for filtering and sorting applications. Since osteocalcin molecules express
high negative charge (´6e), they lend themselves to the enhanced release control attainable with our
next generation nanochannel membranes, which incorporate platinum electrodes to provide an overt,
additional electrostatic potential for ion manipulation [35–37].
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nanochannel. Please note that the aspect ratio was lessened for better visual representation
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2.3. Testosterone

Testosterone is a small molecule of comparable size and charge with levothyroxine (4.1 Å of radius
and neutral charge, Table 1), but with substantially lower mass (288 Da, Table 1). The standard clinical
intervention for low natural secretion of testosterone is frequent injections for replacement. Similar
to osteocalcin and levothyroxine, testosterone was released from implantable capsules under simulated
physiological conditions. The cumulative release of testosterone is exhibited in Figure 5.
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nanochannel membranes. The grey lines highlight the standard deviation. Theoretical fitting
value is report for both releases.
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Figure 6. (a) Cross section of a nanochannel highlighting the testosterone distribution during
its release across 5 and 40 nm nanochannels membranes. Please note that the aspect ratio
was lessened for better visual representation of the molecular distribution; (b) Testosterone
single monolayer on a silica (SiO2) surface.

This molecule is approximately a billion times more hydrophobic than osteocalcin and 25 times
more than levothyroxine. Testosterone’s high hydrophobicity and lack of charge would likely cause
molecules to separate from the aqueous solvent to aggregate at the hydrophobic silica surfaces [38],
forming two different and immiscible phases. The results plotted in Figure 5 clearly demonstrate a
comparable release from 5 and 40 nm nanochannel membranes. A parallel computational study analyzed
the testosterone properties in aqueous solution both with and without the presence of nanochannels.
Testosterone aggregates under aqueous conditions, hiding the hydrophobic carbon cores and exposing
oxygen terminals to reduce its thermodynamic energy [39]. These configurations were found to be
very stable, which would prevent molecule aggregation. In addition, the mass ratio found between the
surface monolayer in the nanochannel and the bulk volume is 2% for a 5 nm nanochannel and 20% for
a 40 nm nanochannel (surface absorption was neglected in this computational model), as represented in
Figure 6a. In order to increase the release rate of testosterone, two approaches may be adopted: employ
nanochannels with a height significantly larger (ě200 nm) to permit bulk diffusion at the channel’s center
or increase the number of nanochannels.

3. Materials and Methods

3.1. Nanochannel Membrane Fabrication

Structure and fabrication protocols for manufacturing nanochannel membranes have been presented
previously [40,41]. Briefly, the membranes were 6 ˆ 6 mm wide and 730 µm in height (Figure 7).
To clearly present the structure of the membrane, a cross-section has been shown in Figure 7. The
membrane presented 161 macrochannels (MCh), each 200 ˆ 200 µm wide and 670 µm height. Every
MCh contained 38 ˆ 37 (1406) inlet microchannels (µChIN), each 3 ˆ 3 µm wide and 30 µm in height.
Every µChIN ended in two nanochannels, each being 3 µm in length and width, and the nominal number
of nm in height. The nanochannels were connected to outlet microchannels (µChOUT) 3 ˆ 3 µm wide
and 1.7 µm height. To develop nanochannel membranes for hormone delivery, nanochannels sizes of
3, 5 and 40 nm were utilized. The total number of nanochannels in a membrane is 349,448.



Materials 2015, 8 5283

Materials 2015, 8 5281 

 

found to be very stable, which would prevent molecule aggregation. In addition, the mass ratio found 

between the surface monolayer in the nanochannel and the bulk volume is 2% for a 5 nm nanochannel 

and 20% for a 40 nm nanochannel (surface absorption was neglected in this computational model),  

as represented in Figure 6a. In order to increase the release rate of testosterone, two approaches may be 

adopted: employ nanochannels with a height significantly larger (≥200 nm) to permit bulk diffusion at 

the channel’s center or increase the number of nanochannels. 

3. Materials and Methods 

3.1. Nanochannel Membrane Fabrication 

Structure and fabrication protocols for manufacturing nanochannel membranes have been presented 

previously [40,41]. Briefly, the membranes were 6 × 6 mm wide and 730 μm in height (Figure 7).  

To clearly present the structure of the membrane, a cross-section has been shown in Figure 7.  

The membrane presented 161 macrochannels (MCh), each 200 × 200 μm wide and 670 μm height. 

Every MCh contained 38 × 37 (1406) inlet microchannels (μChIN), each 3 × 3 μm wide and 30 μm in 

height. Every μChIN ended in two nanochannels, each being 3 μm in length and width, and the nominal 

number of nm in height. The nanochannels were connected to outlet microchannels (μChOUT) 3 × 3 μm 

wide and 1.7 μm height. To develop nanochannel membranes for hormone delivery, nanochannels 

sizes of 3, 5 and 40 nm were utilized. The total number of nanochannels in a membrane is 349448. 

 

Figure 7. Cross section of the nanofluidic membrane. The membranes used in the 

manuscript have nanochannels with 3 μm width and 3 μm length. The microchannels 

(μChIN) and outlet microchannels (μChOUT) were 30 and 1.7 μm in length, respectively.  

The nanochannel (nCH) employed presented height ranging from 3 to 40 nm. 

3.2. Levothyroxine Release 

Levothyroxine (Sigma-Aldrich Inc., St. Louis, MO, USA) release tests were performed employing 

fully assembled and loaded nanochannel capsules [22]. 3 nm (n = 1) and 40 nm (n = 1) membranes 

were used. Two capsules with integrated membranes expressing nanochannels 3 nm in height and a 

third with 40 nm channels were loaded with approximately 900 μL of 20 mg/mL levothyroxine 

solution. For the release experiment, each capsule was immersed in a borosilicate glass bottle containing  

50 mL of Millipore water. Samples were taken daily with replacement. Constant homogenization of 

the sink solution was performed by magnetic stirring at 300 rpm. Absorbance measurements of  

the samples were taken with a UV/Vis spectrophotometer (Beckman Coulter, Inc., DU 730, Brea, CA, 

USA) at a wavelength of 240 nm. Data were normalized with respect to absorbance at t = 0, and the 

cumulative release of the agents were obtained through comparison to a standard curve.  

Figure 7. Cross section of the nanofluidic membrane. The membranes used in the
manuscript have nanochannels with 3 µm width and 3 µm length. The microchannels
(µChIN) and outlet microchannels (µChOUT) were 30 and 1.7 µm in length, respectively.
The nanochannel (nCH) employed presented height ranging from 3 to 40 nm.

3.2. Levothyroxine Release

Levothyroxine (Sigma-Aldrich Inc., St. Louis, MO, USA) release tests were performed employing
fully assembled and loaded nanochannel capsules [22]. 3 nm (n = 1) and 40 nm (n = 1) membranes
were used. Two capsules with integrated membranes expressing nanochannels 3 nm in height and a third
with 40 nm channels were loaded with approximately 900 µL of 20 mg/mL levothyroxine solution.
For the release experiment, each capsule was immersed in a borosilicate glass bottle containing 50 mL
of Millipore water. Samples were taken daily with replacement. Constant homogenization of the sink
solution was performed by magnetic stirring at 300 rpm. Absorbance measurements of the samples
were taken with a UV/Vis spectrophotometer (Beckman Coulter, Inc., DU 730, Brea, CA, USA) at
a wavelength of 240 nm. Data were normalized with respect to absorbance at t = 0, and the cumulative
release of the agents were obtained through comparison to a standard curve.

3.3. Osteocalcin Release

Osteocalcin (AnaSpec Inc., Fremont, CA, USA) release was performed with similar nanochannel
capsules as above [22]. The reservoir was loaded with 250 µL of osteocalcin solution at a concentration
of 400 µg/mL in phosphate-buffered saline (PBS). 3 and 5 nm (n = 3 each) nanochannel membranes
were used. Each capsule was immersed in a borosilicate glass bottle containing 5 mL of Millipore water.
500 µL of samples were taken every 12 h for 10 days. The amount of sample removed was replaced
each time with the buffer solution. Hormone concentration was determined with a micro BCA protein
assay kit (Life Technologies, Carlsbad, CA, USA) using bovine serum albumin as a standard.

3.4. Testosterone Release

Testosterone (Sigma-Aldrich Inc.) release tests were also performed with nanochannel capsules.
Membranes with 5 nm (n = 3) and 40 nm (n = 3) nanochannels were employed. Each capsule was
loaded with a testosterone solution of 2.5 mg/mL in aqueous solvent. For the release experiment, each
capsule was immersed in a borosilicate glass bottle containing 50 mL of Millipore water. Samples
were taken daily with replacement. Constant homogenization of the sink solution was performed by
magnetic stirring at 300 rpm. Absorbance measurements of the samples were taken with a UV/Vis
spectrophotometer at a wavelength of 241 nm. Data were normalized with respect to absorbance at t = 0,
and the cumulative release of the agents were obtained through comparison to a standard curve.
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3.5. Computational Methods

Molecular dynamic simulations were carried out in analogous fashion as in Ziemys et al. [32,42,43].
Briefly, the simulations were carried out using NAMD 2.6 [44] with a TIP3P water model [45] and NVT
ensembles. All molecules involved in the model were simulated with the CHARMM22 force. The silica
5 nm nanochannel model was prepared as described by Cruz-Chu and colleagues [46]. The whole model
size was with dimensions 4 ˆ 4 ˆ 8 nm. The system was fully filled with water and ions to balance
the total charge. Thirty six testosterone molecules were dissolved. Periodic boundary conditions were
applied in all directions. The whole model was minimized, equilibrated and later production simulation
executed over 120 ns using 2fs integration step.

4. Conclusions

Nanochannel membranes successfully demonstrated sustained in vitro delivery of three
clinically-relevant hormones: levothyroxine, osteocalcin, and testosterone. These model molecules
were chosen as they have diffusion-relevant characteristics representative of a broad range of hormones
used in HRT. Release over different timescales proved the system’s flexibility and capability to provide
sustained release despite different molecular weights, charges, and distribution ratios. In the case of the
negatively charged, hydrophobic molecule levothyroxine, a zero-order release was achieved, and release
rate directly correlated to the channel size. This was attributed to the dual contributions of electrostatic
interactions and aggregation at the nanochannels’ surfaces. The linear release of osteocalcin was
attributed to the electrostatic interaction between the ions and the walls of the 5 nm nanochannels, while
high physical confinement substantially reduced release in the 3 nm case. Testosterone, a neutral and
highly hydrophobic molecule, exhibited a zero-order release profile independent from nanochannel
height (5 and 40 nm presented the same cumulative release). This was ascribed to the hydrophobic
tendency of testosterone to aggregate in clusters and along the nanochannel surfaces, limiting diffusion
across the membrane. These results highlighted the flexibility of the nanochannel platform, supporting
its potential employment for long-term hormone replacement and other therapeutic approaches requiring
sustained release.
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