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Abstract: Biomechanics play a critical role in influencing the clinical applications of  

all-ceramic dental restorations. The restorative biomaterials have to demonstrate mechanical 

durability in the oral environment because they are always exposed to a variety of oral 

environments. This study was designed to evaluate the effect of soaking time, notch and 

saliva pH values on the impact energy of three commonly used all-ceramic materials for 

CAD/CAM. The leucite-reinforced glass ceramic (ProCAD), lithium disilicate glass ceramic 

(IPS e.max CAD) and zirconia-based ceramic materials (IPS e.max ZirCAD) were used. The 

experimental results indicated that the impact energy of ProCAD decreased with an increase 

in soaking time, but not for IPS e.max CAD and IPS e.max ZirCAD. The impact energy of 

the zirconia system was higher than leucite-reinforced and lithium disilicate-based ceramic 

systems. When subjected to preformed 0.5 mm U-shape notch on the bar specimen of 3 mm 

thick, the impact energy of the all-ceramic restorations revealed a markedly reduction of 

about 80%–90%, almost irrespective of dental compositions, which indicated the effect of 

flaw to a great degree. No statistically significant influence (p > 0.05) of pH values (4, 7 and 9) 

on impact energy was found for each group. It is concluded that the no matter which  

all-ceramic materials were used, it was appreciably sensitive to the presence of notches. The 

ceramic composition and microstructure have been shown to affect mechanical durability. 
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1. Introduction 

All-ceramic restorations have been used in dentistry due to their unique properties, such as a very 

translucent and natural appearance, high resistance to wear and distortion, chemical stability, thermal 

stability and excellent biocompatibility [1–3]. The dental restorations have been used for numerous 

clinical applications, including inlays, crowns, veneers, three- and four-unit bridges, and implants [2–5]. 

Especially, all-ceramic crowns could avoid either gingival discoloration around the margins crown or 

allergic responses compared to porcelain-fused-to-metal (PFM) crowns [6]. Although all-ceramic 

materials have a high strength and fracture toughness, the dental clinical researches have reported that 

the main reason for failure originates from the restoration fracture, such as veneering porcelain, ceramic 

coping, and the connector for fixed partial denture prosthesis (FPDPs) [7–10]. A systematic review for 

currently used ceramic materials has indicated that typical fracture rates for all-ceramic restorations are 

still great ranging from 0 to 12% after two to five years in service, and 3% to 16% after 5–14 years in 

service [7]. An inherently brittle ceramic has innate microscopic flaws on the surface and/or in the 

interior of the material, which formed during fabrication and treatments [11,12]. As a result, the flaws 

may be the predominant cause for reduction of mechanical strength and lifetime. Therefore, the effect 

of the existed damage or flaws on mechanical properties is worth evaluating from the viewpoint of 

clinical investigation.  

Flexural strength, fatigue behavior and fracture toughness are generally considered meaningful 

methods to assess the mechanical performance of materials [13,14]. On the other hand, when they are 

susceptible to the sudden force, an important property of all-ceramic restorations, the ability to resist 

high impact loading, needs to be concerned. In impact test, the samples are fixed at both ends to a metal 

holder, which is different from the mode of flexural strength tests. The measurement of the energy 

absorbed should be valuable in evaluating all-ceramic materials when the instantaneous impact fracture 

occurs. Aboushelib et al. [15] used a modified Charpy’s impact machine to investigate impact strength 

of two layered all-ceramic restorative systems. Nevertheless, little is known about the impact energy of 

all-ceramic dental materials to ascertain the feasibility of their long-term clinical applications.  

Because all-ceramic materials are always exposed to a variety of oral environments [16], it is 

indispensable for the examination of the mechanical stability in vitro influencing their clinical 

performance. Aforementioned, the mechanical properties of all-ceramic restorations depend noticeably 

on the presence of flaws and micro-cracks on the surface, which act as stress concentrators upon being 

loaded. The purpose of this study was to evaluate the impact energy of three preformed notched  

all-ceramic materials (ProCAD, IPS e.max CAD and IPS e.max ZirCAD) commonly used for 

CAD/CAM (computer-aided design and computer-aided manufacturing), including leucite-reinforced, 

lithium disilicate-based, and zirconia-based ceramics. To simulate the oral environment, the effect of 

soaking time in artificial saliva (pH 7) on the impact energy of all-ceramic materials was also evaluated. 

In addition, saliva of pH 4 and 9 were selected to simulate clinical conditions that would be considered 
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extreme. The research hypothesis for this study was that notch and soaking time had effects on impact 

energy of the three all-ceramic materials. 

2. Experimental Section  

2.1. Materials 

Three commercially all-ceramic systems for CAD/CAM were used in this study (Table 1). ProCAD 

(Ivoclar-Vivadent, Schaan, Liechtenstein) was a leucite reinforced ceramic. IPS e.max CAD and IPS 

e.max ZirCAD consisted mainly of lithium disilicate and zirconia phases, respectively, and were also 

purchased from Ivoclar-Vivadent.  

Table 1. Characteristics and applications of three all-ceramic dental restorations used in  

this study. 

Brand Lot No. 
Crystal 
Phase 

Sintering/Crystallization 
Temperature (°C) 

Application 

ProCAD G17661 Leucite 625 inlay, onlay, single crown, veneer 

IPS e.max CAD J07273 
lithium 

disilicate 
850 

inlay, onlay, veneer,  
single crown, bridge 

IPS e.max 
ZirCAD 

J20390 Zirconia 1500 
inlay, onlay, single crown,  

three unit bridge 

2.2. Sample Preparation 

The bar-shaped specimens were fabricated using a low-speed diamond saw (Isomet, Buehler,  

Lake Bluff, IL, USA). Each specimen surfaces were polished with 280-grit SiC abrasive paper. The final 

dimensions of the specimens were 15 mm length × 4 mm width × 3 mm thickness. After that,  

the specimens were sintered according to the manufacturer’s suggestions. 

Aforementioned, a systemic evaluation of the notch effect on impact behavior of three all-ceramic 

materials was performed. The U-notch with 0.5 mm depth and 0.38 mm width (Figure 1) was made on 

the specimen surface toward the thickness direction at the center position using a low-speed diamond 

saw (Isomet, Buehler) with water. The introduction of about 0.5 mm depth was referenced to the 

literature [17–19], which indicated the ratio (0.2) of notch depth to sample thickness. The 0.38 mm size 

was the thickness of the saw blade. 

The specimens were individually immersed in the artificial saliva [20] at 37 ± 0.2 °C for 30 and 

90 days. The hydrochloric acid or sodium hydroxide was used to adjust the pH value to 4, 7 and 9 

monitored by a pH meter (SP-701, Suntex Instruments, Taipei, Taiwan). After soaking, the specimens 

were removed from the vials to evaluate the impact energy and morphology. 
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Figure 1. Shape and dimensions of the all-ceramic specimen, indicating the notch structure. 

2.3. Impact Test 

To simulate crack-induced fractures, Charpy impact test was used to measure the impact energy 

absorbed by the materials [15,18,21]. A home-made pendulum impact tester with a loading of 103 g and 

an arm length of 122 mm was designed according to ISO standard 197 [19] and 13802 [22]. The 

specimens were horizontally positioned with a span distance of 10.5 mm between the two fixed supports. 

After the test specimen was placed on the sample base, the pendulum hammer was released from its rest 

at a given height to hit the specimen. The impact angle of the test specimen was monitored by protractor. 

The impact energy of each specimen was calculated by the following formula: 

∆E = WR (cosβ-cosα) (1)

where ∆E is absorbed energy by the specimen during fracture (J); W is a load of the pendulum (Kg);  

R is the distance (m) between starting point and striking point; β is impact angle (°) and α is the starting 

angle (°). The tests were carried out at room temperature of 23.0 °C and 70% relative humidity.  

Five samples were tested for each condition. 

2.4. Surface Morphology 

After soaking in pH 7 artificial saliva for 90 days, the surface morphology of the specimens were 

coated with gold using a JFC-1600 (JEOL, Tokyo, Japan) coater and examined by field-emission 

scanning electron micrographs (JEOL JSM-7401F, Tokyo, Japan) operating in the lower secondary 

electron image mode (LEI) at 3 kV accelerating voltage.  

2.5. Statistical Analysis 

The non-parametric Kruskal-Wallis test was used to compare median impact energy among groups 

with different soaking time. When the test result was significant, the Dunn procedure was applied for 

post hoc comparisons of specific groups. The Kruskal-Wallis test was done for each material with and 

without notch, respectively. Data analysis was performed using the JMP version 11 software  

(SAS Institute, Inc., Cary, NC, USA). A p-value of less than 0.05 was considered significant. 
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3. Results 

3.1. Surface Morphology  

Figure 2 shows the surface morphologies of the three different all-ceramic materials before and after 

soaking in pH 7 artificial saliva for 90 days. To be reasonable here was to see the different surface 

morphologies of the materials before soaking, which depended on the materials characteristics. After 

soaking for 90 days, it seems that the ProCAD specimen exhibited the loss of surface structure  

(Figure 2b) compared to the respective control with a rough structure (Figure 2a). As for IPS e.max 

CAD, the formation of soaking-induced pitting pores (indicated by arrows) with diameter of about  

0.2 μm (Figure 2d) was found on the as-prepared smooth surface (Figure 2c). The insert in Figure 2d 

shows a magnified picture to highlight the presence of the pitting pores. In contrast to the other two  

all-ceramic materials, IPS e.max ZirCAD exhibited the fine-grained structure with an average grain size 

of approximately 500 nm without a remarkable change before (Figure 2e) and after 90-day soaking 

(Figure 2f). More importantly, minor differences in structure were not found. 

 

Figure 2. Surface micrographs of ProCAD (a,b), IPS e.max CAD (c,d) and IPS e.max 

ZirCAD (e,f) before (a,c,e) and after (b,d,f) soaking in pH 7 artificial saliva for 90 days.  

The arrows indicate the pitting pores. Magnification: 5 kx. The insert in (d) is a magnified 

picture with a magnification of 50 kx. 
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3.2. Soaking and Notch Effects  

Figures 3–5 show impact energy values of three all-ceramic materials without and with notch before 

and after soaking in artificial saliva of pH 7 for 30 and 90 days. It can be clearly seen that the values of 

all all-ceramic restorations decreased significantly (p < 0.05) with the introduction of notch compared 

with those of the respective groups without the notch. Concerning ProCAD without the notch, the impact 

energy declined from the original value of 22 mJ to 15 and 12 mJ after 30-day and 90-day soaking, 

respectively (Figure 3). Similarly, after soaking for 30 and 90 days, the impact energy values of notched 

specimens became markedly 2.4 and 1.6 mJ, lower than the respective energy value at day 0 (3.7 mJ). 

In the case of IPS e.max CAD, the values of the control without notch at 0, 30- and 90-day soaking 

were 32, 30 and 34 mJ, respectively (Figure 4), while the notched specimens decreased to the values of 

3.7, 3.5 and 3.0 mJ. The effect of soaking time periods on the variations in the impact energy 

demonstrated no significant differences (p > 0.05) for either control specimens or notched specimens. 

We also found this to be the case for IPS e.max ZirCAD (Figure 5), although the impact energy had the 

highest values (about 150 mJ for the control and 30 mJ for the notched specimen) among the three  

all-ceramic specimens under the same experiment conditions.  

 

Figure 3. Impact energy of ProCAD without and with notch before and after soaking in pH 7 

artificial saliva. Asterisk statistically significant difference (p < 0.05) from the control group 

without soaking. 

 

Figure 4. Impact energy of IPS e.max CAD without and with notch before and after soaking 

in pH 7 artificial saliva.  
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Figure 5. Impact energy of IPS e.max ZirCAD without and with notch before and after 

soaking in pH 7 artificial saliva.  

To further clarify the effect of the preformed notch on the impact energy of different material types 

after soaking, the reduction ratio of the impact energy was calculated for the all-ceramic materials with 

and without notch, when soaked in artificial saliva of pH 7. At a glance, it seems that the reduction ratio 

of impact energy of the three differently all-ceramic materials was not appreciably related to soaking 

time after the introduction of 0.5 mm depth notch (Figure 6), revealing a reduction in the ranging of  

80%–90%. 

 

Figure 6. Effect of the preformed notch on reduction of impact energy of ProCAD,  

IPS e.max CAD and IPS e.max ZirCAD after soaking in pH 7 artificial saliva.  

3.3. pH Effect  

The aim of this study was also to determine effect of artificial saliva of different pH values on the 

impact energy of the all-ceramic materials. Thus, the specimens without notch were soaked in artificial 

saliva of pH 4, 7 and 9 for 90 days. Figure 7 shows that there are no statistically significant differences 

(p > 0.05) between the test solutions with different pH values, which was independent on the used  

all-ceramic dental materials.  
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Figure 7. The variations in the impact energy of the three all-ceramic dental restorations 

without notch after soaking in artificial saliva with different pH values for 90 days.  

4. Discussion 

The use of the all-ceramic restorations has been steadily increasing in the decades. The highly esthetic 

ceramic glass blocks or the high-strength zirconia for dental restoration have been developed to satisfy 

the clinical requirements [3]. Thus, clinically relevant in vitro test methods are suggested to study the 

mechanical durability of the materials [23]. This is because that the differences in the composition, 

microstructure, and environmental conditions may affect the degree of degradation of the dental ceramics 

in an aqueous environment, particularly for the clinical long-term performance [24]. For example, low 

temperature degradation and mechanical and thermal cycling might decrease the strength of  

zirconia-based restorations, which in turn, damage their long-term success in the clinical applications [25]. 

Actually, ceramic corrosion/dissolution can weaken the fracture strength of these materials [26], which 

can affect the survival of restorations and damage to adjacent oral structures [27]. It is also speculated 

that the presence of the notch or flaw is one of the factors that may affect the mechanical properties of 

the all-ceramic materials. Therefore, this study was designed to evaluate the effect of soaking time, notch 

and saliva pH values on the impact energy of three commonly used all-ceramic materials for CAD/CAM. 

First of all, from the results of the morphology, the leucite-reinforced ceramic (ProCAD) was more 

susceptible to erosion under an aqueous environment compared to the lithium-disilicate (IPS e.max 

CAD) and zirconia-based ceramics (IPS e.max ZirCAD). The ProCAD and IPS e.max CAD surfaces 

likely took place a generalized dissolution and/or ion-exchange interaction, in agreement with the earlier 

reports [16,27] that have indicated a substantial release of Si over time, leading to a breakdown of the 

glass phase. In contrast, IPS e.max ZirCAD had not obvious surface change after soaking for 90 days, 

possibly because the tetragonal-monoclinic phase transformation did not occur under the current soaking 

conditions [28]. That is that zirconia ceramics are relatively resistant to the erosion in the aqueous 

environment [29]. 

To closely mimic in vivo conditions and monitor material stability, the impact tests were used to 

investigate the mechanical properties of three different all-ceramic materials. More importantly, the 

impact resistance represents the total energy absorbed by a material before it fractures, when struck by 

a sudden biting [30]. It is the first time to systematically evaluate the impact energy of the all-ceramic 

materials. The present study indicated that the impact energy of all-ceramic restorations depended on 
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the used ceramic materials and the test conditions. IPS e.max ZirCAD showed the highest impact energy, 

followed by IPS e.max CAD and ProCAD before and after soaking in artificial saliva. The main reason 

was possibly due to differences in material composition, fabrication technique and strengthening 

mechanism. Many studies on the investigation of flexural strength has elicited that zirconia-based 

ceramic are superior to the lithium disilicate-based and leucite-reinforced glass-ceramic [31,32]. It is 

reasonable to consider that the energy absorption during the failure process of zirconia-based ceramics 

was notably greater than the other two ceramic systems under impact loading. The high impact energy 

was particularly important when zirconia-based ceramic was used for load-bearing implant applications. 

Regarding the soaking time effect, it did affect the impact energy of ProCAD. According to the 

literature [27,29], the leucite component of ProCAD glass ceramic dissolves easily after soaking in 

artificial saliva, which in turn influencing the surface structure and impact-resistant capability.  

In addition, the penetration of water/ions possibly accounted for the deterioration in impact energy of 

ProCAD. The presence of water at the tip of a crack under stress results in the rupture of the metallic 

oxide bonds of the dental ceramics [26]. Drummond et al. found that that the effect of testing in water 

and aging for three months caused a moderate reduction in the mean flexure strength (6%–17%) of 

leucite-enforced and lithium disilicate-based ceramics [14]. Conversely, the formation of the small 

pitting pores on the surface of IPS e.max CAD was not enough to affect its impact energy.  

The discrepancy in lithium disilicate-based ceramic material between this study and previous study 

might reside in the different materials and test environments. 

According to clinical therapeutic purposes, dental porcelains are used to create replicas of natural 

teeth for both veneers and crown applications. In order to place the porcelain crown, at least 2 mm of 

tooth structure thickness is needed [33], because the thickness of the veneering porcelain and the ceramic 

core is related to the aesthetic appearance and mechanical properties of prosthesis. A minimum connector 

height of 3 to 4 mm from the interproximal papilla to the marginal ridge is suggested as the guideline 

for most systems [10,32,34]. Thus, a 3-mm-thick specimen was adopted in the present study to determine 

the impact energy of the three all-ceramic restorations. More importantly, notch sensitive property on 

impact energy of the materials was also investigated. Fracture initiation sites of dental ceramics are 

controlled primarily by the location and size of the critical flaw [35]. It is also suggested that the tendency 

of the material to crack or fracture at these sites of concentrated stress could be demonstrated by the 

relationship of results between notched and unnotched samples [21]. The present results confirmed the 

significant effect of one-sixth notch (0.5 mm out of 3 mm) on the reduction of the impact energy. Indeed, 

the impact energy values of the specimens with notch were smaller than those of the respective 

specimens without notch to a large extent. Surprisingly, the preformed notch led to the reduction of 

impact energy by 80%–90%, almost regardless of the kinds of the all-ceramic restorations. The surface 

of ceramic specimens with flaws could not bear excessive occlusal forces.  

The oral cavity is a potentially very hostile environment because of the moisture, coupled with change 

in the pH and temperature. Some reports have investigated the influence of the pH on the release of ions 

from various dental ceramics and slow crack growth, and there are no consistent results. The glass-phase 

ceramics are more prone to dissolution than the oxide ceramics and an acid environment results in more 

ionic release than neural environment [24,29]. On the other hand, the high pH solution is deleterious to 

the dissolution of glass-based systems because of breaking up the silica glass framework [27]. For the 

investigation of crack growth, Tomozawa et al. found that alkaline solutions dissolved the surface of 
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glasses, resulting in slow crack growth and consequently reducing the material’s strength [36].  

In contrast, Simmons and Freiman reported that for soda-lime glass crack velocity may not vary as 

function of solution pH [37]. Pinto et al. concluded that the effect of pH (3.5, 7.0 or 10.0) in the test 

environment on the stress corrosion susceptibility depended on the dental ceramics studied [26].  

In the present study, it seems the saliva pH did not induce the obvious changes in the impact energy after 

soaking for 90 days, which indicated no statistically significant differences (p > 0.05) for each group. 

To clarify the viewpoint, further investigations, such as long-term soaking time periods and pH 

variations, are needed to elucidate the underlying details. 

5. Conclusions 

The chemical composition and microstructure of materials have been advocated as crucial to  

the clinical long-term performance of all-ceramic dental restorations. In this study, we have explored the 

impact energy of three all-ceramic restorations in response to soaking time, notch and saliva pHs for the 

first time. Within the limitations of this experimental design, soaking time exerted different effects on 

the impact energy of all-ceramic dental restorations. The impact energy can be affected noticeably by 

the preformed notch, although it also demonstrated a pH-independent result. The ability of the ceramic 

materials to withstand the presence of flaws propagation is an important factor affecting the clinical 

performance. For more understanding of the aqueous environment responsible for the decreased impact 

properties, further works, such as long-term soaking time periods and pH variations, will be needed. 
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