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Abstract: The aim of this study was to obtain a predictive model able to perform an early 

detection of central segregation severity in continuous cast steel slabs. Segregation in steel 

cast products is an internal defect that can be very harmful when slabs are rolled in heavy 

plate mills. In this research work, the central segregation was studied with success using 

the data mining methodology based on multivariate adaptive regression splines (MARS) 

technique. For this purpose, the most important physical-chemical parameters are 

considered. The results of the present study are two-fold. In the first place, the significance 

of each physical-chemical variable on the segregation is presented through the model. 

Second, a model for forecasting segregation is obtained. Regression with optimal 

hyperparameters was performed and coefficients of determination equal to 0.93 for 

continuity factor estimation and 0.95 for average width were obtained when the MARS 

technique was applied to the experimental dataset, respectively. The agreement between 

experimental data and the model confirmed the good performance of the latter. 
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1. Introduction 

It is well-known that the segregation is a phenomenon appearing during the solidification of metals 

and alloys which consists in a non-uniformity of the chemical composition due to the fact that  

the material contains solutes, which are more soluble in the liquid than in the solid, so, when  

the solidifying front advances, those solutes are rejected from the solid and enrich the liquid [1–7]. 

The continuous casting of slabs is aimed at producing a product with a proper chemical 

composition, geometry and surface quality, without any or a minimum acceptable level of external and 

internal defects. One of the most unpredictable defects of the slabs is centerline segregation, which has a 

negative effect on further processing of the slabs and hence on the possible uses of the final product [7–13]. 

All metal castings experience segregation to some extent and segregation can be classified into 

micro-segregation and macro-segregation. Micro-segregation takes place at the level of  

the microstructure of the material and it refers to localized differences in composition between dendrite 

arms, and can be significantly reduced by a homogenizing heat treatment. This is possible because  

the distances involved (typically on the order of 10 to 100 µm) are sufficiently small for diffusion to be 

a significant mechanism. This is not the case in macro-segregation. The macro-segregation takes place 

due to the movement of the micro segregated regions on macroscopic distances due to the movement 

of the liquid and free crystals. Therefore, macro-segregation in metal castings cannot be remedied or 

removed using heat treatment. Specifically, this research work studies one type of macro-segregation, 

the central segregation, in a continuous cast steel slabs. It appears as a line of impurities in the central 

line of a transversal section of the slab. In this central area cracks could also appear, which can be very 

harmful when slabs are rolled to thick plate [1–13]. 

The aim of this research is to construct a multivariate adaptive regression splines (MARS) model to 

identify central segregation in continuous cast steel slabs. Multivariate adaptive regression splines 

(MARS) technique is a form of regression analysis introduced by Jerome Friedman in 1991 [14–23].  

It is a non-parametric regression technique and can be seen as an extension of linear models that 

automatically models nonlinearities and interactions, as those analyzed successfully in this innovative 

research work. According to previous research, the MARS technique has been proven to be an 

effective tool to predict natural parameters, being successfully used in a wide range of fields, such as  

forest modeling [20], estimation of the battery state-of-charge [21], prediction of the building energy 

performance [22], assessment of soil liquefaction [23], and so on. 

The purpose of this work may be classified as a problem of modeling/forecasting where the value of 

a target variable is predicted from input data or process variables. Specifically, in this study we are 

going to predict the defect of the central macro-segregation in steel slabs. 

Steel is an alloy of iron and carbon that is widely used in construction and other applications 

because of its hardness and tensile strength. Carbon, other elements, and inclusions within iron act as 

hardening agents that prevent the movement of dislocations that naturally exist in the iron atom crystal 
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lattices. The carbon in typical steel alloys may contribute between 0.03% and 1.075% of its weight and 

up to 2.1% maximum. Alloys with a higher than 2.1% carbon content, depending on other element 

content and possibly on processing, are known as foundries or cast iron. Cast iron is not malleable 

even when hot, but it can be formed by casting, as it has a lower melting point than steel and good 

castability properties. Therefore, the main difference between the iron and steel is the percentage of 

carbon: steel is iron with a carbon percentage between 0.03% and 1.075%. Above this percentage,  

iron alloys are considered [1–13]. 

Impurities are all undesirable additional elements into the composition of steels. They are found in 

steels and also in cast irons because they are present in the mineral (raw material) and fuels. It is very 

important to eliminate or reduce their content because they are detrimental to the properties of  

the alloy. When their elimination is not possible or it is too expensive, their presence is allowed in 

minimal amounts. 

Segregation is a phenomenon that depends on the steel composition (solutes) and the cooling 

conditions of the steel slab. Therefore, the input variables of the model are mainly related to these two 

parameters. The variables related to primary and secondary steelmaking are discarded since they have 

no influence on the steel solidification [1–13]. 

This innovative research work is organized as follows. Firstly, the necessary materials and methods 

to carry out this study are described. Secondly, the obtained results are shown and discussed. Finally, 

the main conclusions drawn from the results are exposed. 

2. Materials and Methods 

2.1. Experimental Dataset 

The dataset used for the MARS analyses was collected using a database from the continuous casting 

process of steelmaking belonging to the company Arcelor-Mittal located in Avilés (Northern Spain). 

This database contains the variables related to the process of solidification of steel slabs (see Figure 1). 
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Figure 1. Schematic diagram of the continuous casting of steel slabs. 
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The main goal of this research work was to obtain the dependence relationship of segregation factor 

(output variable), as a function of the input variables. As said before, hundreds of variables are 

involved in a process such as the continuous casting of steel. A first task in the model development is 

the selection of input and output variables. Output variables are two indexes given by the tool used to 

evaluate segregation from sulfur prints: Continuity factor (C factor) and Average width. C factor is  

a measure of the continuity of the segregated band and Average width is the average width of the spots 

forming the centerline segregation [1–13]. 

Input variables have been selected among all the ones controlled in the casting process. They 

include: steel composition in the tundish, temperature and superheating of the steel, casting speed, 

mold cooling, secondary cooling, etc. It is known from the experience that some factor have a bigger 

influence on segregation than others, so that the variable selection was done based on this previous 

knowledge of the process resulting in the following group of input variables [1–13]: 

(1) Variables related to the analysis of steel in the tundish, that is to say, the composition of  

the steel (solute). Three samples of the tundish per casting are sent to the laboratory for their 

analysis. Among these three samples, one of them is chosen as significant of the casting.  

The elements analyzed are: 

(a) Total manganese (Mn): The presence of sulfide is controlled by the addition of manganese. 

Manganese has a higher affinity for sulfur than iron so that instead of MnS, FeS is formed. FeS 

has a high melting point and good plastic properties. Manganese content should be about five 

times the sulfur concentration so that the reaction occurs. The end result, once removed causing 

gases, is a less porous casting, and therefore of higher quality. 

(b) Total sulfur (S): Its maximum limit is of about 0.04%. The sulfur along with iron gives place to 

iron sulfide, which with the austenite, results in a eutectic point with a low melting point and, 

therefore, it appears in the grain boundaries. When cast steel ingots are rolled in hot, this 

eutectic point is in liquid state, causing the shelling of the material. Although considered  

a detrimental element, their presence is positive for improved machinability in the machining 

processes. When the percentage of sulfur is high, it may cause pores in the welding process. 

(c) Total carbon (C): The term steel is commonly used to refer in metallurgical engineering to an 

iron alloy with a variable amount of carbon between 0.03% and 1.075% by weight of the alloy, 

depending on its applications and uses. 

(d) Total aluminum (Al): this alloying element is used in some high strength nitriding steels  

(with Cr-Al-Mo) at concentrations close to 1% and with percentages less than 0.008% as a 

deoxidizer in high alloy steels. 

(e) Total silicon (Si): this alloying element moderately increases the hardenability. Furthermore,  

it is used as a deoxidizing element. Additionally, it increases the resistance of low carbon steels. 

(f) Total phosphorus (P): this element is detrimental, either due to its dissolution in ferrite, which 

decreases the ductility, or due to formation of FeP. Its maximum limit is approximately 0.04%. 

Iron phosphide, along with the cementite and austenite, forms a ternary eutectic point called 

steadite, which is extremely fragile and has a relatively low melting point. Therefore, it appears 

in grain boundaries so that transmits brittleness to the material. Although it is considered a 

detrimental element in steels because it reduces their ductility and toughness, giving place to 
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their brittle behavior, it is sometimes added to increase the tensile strength and improve 

machinability. 

(2) Variables related to the cooling conditions of the slab: 

(a) Specific flow (Specific_Flow (m3·s−1)): The continuous casting machine is cooled. On the one 

hand, there is a primary cooling at the mold by using a water jacket (water casing) bolted to the 

plates. On the other hand, there is a secondary cooling in the rollers area through water showers. 

The value of the water flow injected to the rollers depends on casting parameters: type of steel, 

casting speed, temperature, etc. The specific flow is an index that determines the secondary 

cooling as a function of these parameters. 

(b) Average casting speed (m·s−1) (Ave_Speed): This variable is the average output speed of  

the slab from the casting machine. It influences on the solidification and cooling that it is 

necessary to apply. 

(c) Superheating in the tundish (Overtemperature) (°C): Steel begins to solidify when the 

temperature reaches a value called liquidus temperature and is different depending on its 

composition. For each of the samples taken in the tundish, three samples per casting, their 

actual temperature is measured and the liquidus temperature associated with each sample is 

calculated. The difference between the actual temperature and the liquidus temperature is 

known as overtemperature. This parameter is an important variable in the casting of steel since 

it measures how hot the steel is, if it is possible to cast it, and how fast. Thus, the colder is  

the slab, the faster it is casted, but if the steel is very cold, it is impossible to proceed with  

the casting process. Therefore, this parameter is of fundamental importance on the solidification 

and consequently on segregation. 

(d) Temperatures in Segment 8 and Segment 17 (°C) (Temp_Seg8 and Temp_Seg17): The rollers 

path of the casting machine is divided into groups of rollers called segments, which are 

numbered starting at the mold exit. In Segment 8 and Segment 17, there are pyrometers that 

measure the surface temperature of the slab as it exits the machine. Segment 8 is located on  

the curved zone of the machine and Segment 17 once the slab has been straightened. Their 

measurements may be regarded as indirect indicators of how the cooling process is performed. 

(e) Mold oscillation frequency (Freq_Oscillation): The mold is part of the continuous casting 

machine to give shape to the slab and where solidification begins. The mold rests on two 

eccentrics that impart an oscillatory motion to prevent the skin of the slab formed in the walls 

of the mold remains stuck to them. The frequency of this oscillation motion is fixed depending 

on the kind of steel casted. Its value must move the mold with a speed greater than the exit 

speed of slab. 

(f) Percentage of negative strip (Ratio_Strip): During the oscillatory motion of the mold, there is  

a time that the mold is moved downward faster than the line speed, which leads to an entrance 

effect of the slab into the mold. This represents a positive effect, decreasing the likelihood of 

formation of transverse cracks on the slab surface. The overall time of this effect is called 

percentage of negative strip. 

All these variables described above have been selected as potential input variables of the model. 
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2.2. Segregation Evaluation 

Traditional methods to evaluate central segregation in steel slabs from continuous castings consist 

either in etching with hydrochloric acid or in sulfur prints. The latter is the one obtained in this 

research work to obtain a segregation index acting as an objective variable in model development. 

Sulfur prints, also known as Bauman impressions, are carried out according to the procedure 

contained in Reference [24]. It is a qualitative test that consists of the observation of the steel sulfur 

content. There are some factors such as the chemical composition of the steel, the state of the surface 

of the sample (specimen) and the characteristics of the photosensitive emulsion that can alter  

the results. 

A transversal section of the slab whose central segregation is wanted to be known is taken of length 

half of the slab width (the other half is symmetric). The sample is prepared by some mechanized action.  

On the other hand, the photographic paper is submerged in a sulfuric etching and is applied to  

the surface of the sample so etching takes place. Then, the paper is removed and washed with water. 

An example of a sulfur print can be seen in Figure 2. 

Central segregation

 

Figure 2. Example of a sulfur print. 

Traditionally, sulfur prints were compared by an expert with some pattern images and a segregation 

index was obtained. However, this method is very subjective. Specifically, this paper uses a tool based 

on image processing. Indeed, this tool gives as output two indexes which measure the continuity and 

thickness of the segregated band. Furthermore, this tool could detect and measure cracks in the 

centerline. There are other methods for segregation like the one developed in Reference [25], which 

combines macroelectrolytic etching with image analysis [26] or the use of ultrasonic and computer 

aided analysis with a micro probe [27]. 

From the filtered and bitmapped images, this tool obtains different measures: the maximum and 

mean width of segregation line, the continuity of the segregation line, etc. In this way, the two main 

measures (continuity and width of the segregation centerline) are determined from the segregation’s 

mean line. This line is the median of the black pixels position of each column (see Figure 3). 

 

Figure 3. Upper, lower and mean segregation lines. 
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Since big spots of segregation are more dangerous than small spots, the C factor takes into account 
this question computing the standard deviation  iS  and the mean size iS  of the continuous areas of 

segregation, and the standard deviation  iNS  and the mean size iNS  of areas without segregation, 

respectively. Its expression is as follows [4–7]: 
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Finally, the width factor is calculated as the distance between the upper and lower line of  

the segregation spots and the Average Width as the mean of these widths (see Figure 3). 

2.3. Segregation Models 

Usually, segregation models are aimed to the comprehension of the mechanism implied in  

the phenomenon, predicting quantitatively their happening and severity and trying to improve casting 

procedures. Those models are very complex and require big computational efforts to simultaneously 

considerer all the processes during solidification. The first model of segregation was developed by 

Fleming et al. [28,29] during the 1960s. Based on this model, came out the work by Fleming (1974), 

Schneider and Beckermann (1995), and Gu and Beckermann (1999), among others [30–32]. More 

recent works are those by Ghosh (2001), Fujda (2005) and Liu et al. (2007) [33–35]. This research 

work presents a model of segregation based on the study of process data coming from the continuous 

casting machine using the MARS technique. Since there are no similar works reported in the literature, 

it has a very important innovative component. The objective of this research is to obtain a model of 

segregation based on process data from the continuous casting machine. This model will also be able 

to act as a predictor to infer the severity of segregation in a specific slab from the course of the casting 

process. The continuous casting of steel implies the online control of hundreds of process variables, so 

the modeling of centerline segregation requires of a previous stage of variable selection. 

There are several modeling techniques used previously, such as MultiDimensional Scaling  

(MDS) [36,37], Sammon Mapping [38], Principal Component Analysis PCA [39], Feed Forward 

Neural Networks [40] and self-organizing maps [7]. In this paper, the selected procedure is the MARS 

technique [14–23], whose fundamentals are discussed below. 

2.4. Method Multivariate Adaptive Regression Splines (MARS) Approach 

Multivariate adaptive regression splines (MARS) is a multivariate nonparametric 

classification/regression technique introduced by Friedman [14–23]. Its main purpose is to predict  
the values of a continuous dependent variable,  1ny , from a set of independent explanatory 

variables,  pnx . The MARS model can be represented as [19–21]: 

  ex  fy  (2)

where f is a weighted sum of basis functions that depend on x and e is an error vector of dimension  1n . 
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MARS can be considered as a generalization of “classification and regression trees” (CART) [17,41,42] 

and is able to overcome some limitations of CART. MARS model does not require any a priori 

assumptions about the underlying functional relationship between dependent and independent 

variables. Instead, this relation is uncovered from a set of coefficients and piecewise polynomials of 

degree q (basis functions) that are entirely “driven” from the regression data (x,y). The MARS 

regression model is constructed by fitting basis functions to distinct intervals of the independent 

variables. Generally, piecewise polynomials, also called splines, have pieces smoothly connected 

together. In MARS terminology, the joining points of the polynomials are called knots, nodes or 

breakdown points. These will be denoted by the small letter t. For a spline of degree q, each segment is 

a polynomial function. MARS uses two-sided truncated power functions as spline basis functions, 

described by the following equations [14–23]: 

    
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where  0q  is the power to which the splines are raised and which determines the degree of 

smoothness of the resultant function estimate. When 1q , which is the case in this study, only simple 

linear splines are considered. A pair of splines for 1q  at the knot 5.3t  is presented in Figure 4. 
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Figure 4. A graphical representation of a spline basis function. The left spline 
( tx  ,  tx  ) is shown as a dashed line and the right spline ( tx  ,  tx  ) as a solid line. 

The MARS model of a dependent variable y with M basis functions (terms) can be written as [14–23]: 
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where ŷ is the dependent variable predicted by the MARS model, 0c  is a constant,  xmB  is  

the m-th basis function, which may be a single spline basis functions, and mc  is the coefficient of the 

m-th basis functions. 

Both the variables to be introduced into the model and the knot positions for each individual 

variable have to be optimized. For a data set x containing n objects and p explanatory variables, there 
are pnN  pairs of spline basis functions, given by Equations (3) and (4), with knot locations ijx  

( pjni ,...,2,1;,...,2,1  ). 

A two-step procedure is followed to construct the final model. First, in order to select  

the consecutive pairs of basis functions of the model, a two-at-a-time forward stepwise procedure is 

implemented [21,41,42]. This forward stepwise selection of basis function leads to a very complex and 

overfitted model. Such a model, although it fits the data well, has poor predictive abilities for new 

objects. To improve the prediction, the redundant basis functions are removed one at a time using  

a backward stepwise procedure. To determine which basis functions should be included in the model, 

MARS utilizes the generalized cross-validation (GCV) [14–23]. In this way, the GCV is the mean 

squared residual error divided by a penalty dependent on the model complexity. The GCV criterion is 

defined in the following way [14–23]: 
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where  MC  is a complexity penalty that increases with the number of basis functions in the model 

and which is defined as [14–23]: 

    MdMMC  1  (7)

where M is the number of basis functions in Equation (4), and the parameter d is a penalty for each 

basis function included into the model. It can be also regarded as a smoothing parameter. Large values 

of d lead to fewer basis functions and therefore smoother function estimates. In our studies,  

the parameter d equals 2, and the maximum interaction level of the spline basis functions is restricted 

to 3 [14–23]. 

2.5. The Importance of Variables in the MARS Model 

Once the MARS model is constructed, it is possible to evaluate the importance of the explanatory 

variables used to construct the basis functions. Establishing predictor importance is in general  

a complex problem, which, in general, requires the use of more than one criterion. In order to obtain 

reliable results, it is convenient the use of the GCV parameter explained before together with  

the parameters Nsubsets (criterion counts the number of model subsets in which each variable is 

included) and the residual sum of squares (RSS) [14–23]. 
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3. Analysis of Results and Discussion 

3.1. Results of The Model 

The list of input variables taken into account in this research work is shown in Table 1. The total 

number of dependent variables (output variables) used to build the MARS models was two: Continuity 

factor (C_Factor) and the Average Width of the spots (Ave-Width) forming the centerline segregation. 

Indeed, we have built two different MARS models taking as dependent variables C_Factor and  

Ave-Width, respectively. 

Table 1. Set of input variables used in this study with their mean and standard deviation. 

Input variables  Name of the variable Mean Standard deviation 

Total aluminum (measured as weight%) Al 0.030 0.006 
Total manganese (measured as weight%) Mn 1.357 0.050 
Total sulfur (measured as weight%) S 0.009 0.002 
Total carbon (measured as weight%) C 0.173 0.014 
Total phosphorus (measured as weight%) P 0.016 0.004 
Superheating (°C) Overtemperature 24.545 8.940 
Percentage of negative strip Ratio_Strip 68.517 21.519 
Specific flow (m3·s−1) Specific_Flow 0.633 0.074 
Average casting speed (m·s−1) Ave_Speed 0.957 0.143 
Mold oscillation frequency Freq_Oscillation 2.043 0.688 
Temperature in segment 8 (°C) Temp_Seg8 816.472 265.506 
Temperature in segment 17 (°C) Temp_Seg17 771.911 246.454 
Silicon (measured as weight%) Si 0.201 0.048 

In this research work, two second-order MARS models have been used, so that the basis functions 

of the model consist of linear and second-order splines and the maximum number of terms was not 

limited (no pruning). The results of the MARS models computed using all the available data 

observations are shown in Tables 2 and 4. Tables 2 and 3 show a list of 43 and 60 main basis functions 
for each of the two MARS models and their coefficients, respectively. Please note that  xh  = x if  

x>0 and  xh  = 0 if 0x . Therefore, the MARS model is a form of non-parametric regression 

technique and can be seen as an extension of linear models that automatically models nonlinearities 

and interactions as a weighted sum of basis functions called hinge functions [14–23]. The predicted 

response for C factor (C_Factor) and average width (Ave–Width) is now a better fit to the original 

values since the MARS model has automatically produced a kink in the predicted dependent variable 

to take into account nonlinearities. 

According to the results shown in Table 3, the most important variables for the prediction of the  

C factor (output variable) are as follows (in hierarchical order): Si, Temp_Seg8, S, Ratio_Strip, Mn, 

Temp_Seg17, Al, C, Overtemperature, P, Freq_Oscillation and Ave_Speed. Specific_Flow input 

variable is discarded by this model. Indeed, the most important variable is the silicon concentration 

(Si). This is due to that the silicon proceeds from the detachment of the refractory material during all 

the steel production steps. 
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Table 2. List of basis functions of the Method Multivariate Adaptive Regression Splines 
(MARS) model for the C factor (C_Factor) and their coefficients ic . 

iB  Definition ic  

1B  1 80.112 

2B  h (Ratio_Strip − 75.117) −286.265 

3B  h (Ratio_Strip − 75.378) 471.796 

4B  h (Ave_Speed – 1.16) 6177.268 

5B  h (1.16 − Ave_Speed) 91.964 

6B  h (Temp_Seg8 − 870) 8.631 

7B  h (Temp_Seg8 − 889) −20.522 

8B  h (889 – Temp_Seg8) 0.563 

9B  h (Temp_Seg8 − 906) 11.476 

10B  h (Al – 0.0247) 8358.107 

11B  h (Al – 0.0371) −7741.410 

12B  h (Si – 0.2276) × h (889 – Temp_Seg8) 22.903 

13B  h (0.2276 – Si) × h (889 – Temp_Seg8) −10.688 

14B  h (0.2483 − Si) × h (Temp_Seg8 − 870) 6.243 

15B  h (S – 0.0091) × h (Temp_Seg8 − 889) 433.489 

16B  h (0.0194 − P) × h (Temp_Seg8 – 906) 240.291 

17B  h (Freq_Oscillation – 2.43) × h (Ratio_Strip – 75.378) 697.928 

18B  h (75.378 – Ratio_Strip) × h (Temp_Seg8 − 953) −30.322 

19B  h (75.378 – Ratio_Strip) × h (Temp_Seg8 – 938) 12.800 

20B  h (889 – Temp_Seg8) × h (Temp_Seg17 – 883) 0.433 

21B  h (881 – Temp_Seg8) × h (Al – 0.0247)  −35.436 

22B  h (Temp_Seg8 − 889) × h (0.0329 – Al) 537.071 

23B  h (Temp_Seg8 − 906) × h (Al – 0.0304) −219.353 

24B  h (Temp_Seg8 – 906) × h (0.0304 – Al) −961.240 

25B  h (C − 0.1863) × h (0.0091 − S) × h (Temp_Seg8 – 889) −97083.453

26B  h (C – 0.19) × h (75.378 – Ratio_Strip) × h (Temp_Seg8 – 953) −16338.606

27B  h (C – 0.1739) × h (Temp_Seg8 – 889) × h(Al – 0.0329) 114852.181 

28B  h (Mn – 1.3736) × h (0.0091 – S) × h (Temp_Seg8 – 889) −16604.875

29B  h (Mn – 1.3464) × h (889 – Temp_Seg8) × h (Temp_Seg17 – 883) −11.470 

30B  h (1.3464 – Mn) × h (889 – Temp_Seg8) × h (Temp_Seg17 – 883) 38.383 

31B  h (0.2276 – Si) × h (P – 0.0166) × h (889 – Temp_Seg8) 503.269 

32B  h (Si – 0.2095) × h (75.378 – Ratio_Strip) × h (953 – Temp_Seg8) −18.490 

33B  h (0.2095 − Si) ×h (75.378 – Ratio_Strip) × h (953 – Temp_Seg8) 0.124 

34B  h (0.2483 − Si) × h (Ratio_Strip – 75.977) × h (Temp_Seg8 – 870) −4789.996 

35B  h (0.2483 − Si) × h (Temp_Seg8 – 870) × h (Temp_Seg17 – 815) −0.133 

36B  h (S – 0.0089) × h (Freq_Oscillation – 2.16) × h (899 – Temp_Seg8) 2206.549 
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Table 2. Cont. 

iB  Definition ic

37B  h (S – 0.0089) × h (2.16 − Freq_Oscillation) × h (899 – Temp_Seg8) 59.436 

38B  h (0.0091 − S) × h (75.115 – Ratio_Strip) × h (Temp_Seg8 − 889) 20,180.563

39B  h (S – 0.0091) × h (Overtemperature – 25) × h (Temp_Seg8 – 889) −200.213 

40B  h (S – 0.0091) × h (25 − Overtemperature) × h (Temp_Seg8 – 889) −36.885 

41B  h (0.015 – P) × h (75.378 – Ratio_Strip) × h (Temp_Seg8 – 870) −1053.411 

42B  h (2.43 – Freq_Oscillation) × h (Ratio_Strip – 75.37) × h (Overtemperature – 29) 613.802 

43B  h (75.378 – Ratio_Strip) × h (953 – Temp_Seg8) × h (Al – 0.0383) 0.443 

44B  h (75.378 – Ratio_Strip) × h (953 – Temp_Seg8) × h (0.0383 – Al) −0.306 

45B  h (Ratio_Strip – 75.378) × h (Temp_Seg8 − 870) × h (Al − 0.0314) 2183.857 

46B  h (Temp_Seg8 – 906) × h (Temp_Seg17 − 815) × h (0.0304 – Al) 3.265 

Table 3. Evaluation of the importance of the variables that form the model for the C factor 

according to criteria Nsubsets, GCV and RSS. 

Variable Nsubsets GCV RSS 

Si 45 100.0 100.0 
Temp_Seg8 45 100.0 100.0 

S 44 91.8 92.1 
Ratio_Strip 44 91.8 92.1 

Mn 43 86.5 86.8 
Temp_Seg17 43 86.5 86.8 

Al 42 81.0 81.4 
C 33 58.5 57.3 

Overtemperature 32 57.1 55.5 
P 31 55.7 53.8 

Freq_Oscillation 24 49.6 44.7 
Ave_Speed 20 42.3 37.7 

Table 4. List of basis functions of the MARS model for the average width (Ave_Width) 
and their coefficients ic . 

iB  Definition ic  

1B  1 0.2156 

2B  h (C − 0.1873) −177.2487 

3B  h (0.1873 − C) −29.2927 

4B  h (Si – 0.2483) −45.3392 

5B  h (P–0.0174) 1102.0646 

6B  h (Ave_Speed – 1.16) 245.0236 

7B  h (1.16 − Ave_Speed) 8.2028 

8B  h (749 – Temp_Seg17) −0.0064 

9B  h (Temp_Seg17 – 900) −0.1186 
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Table 4. Cont. 

iB  Definition ic

10B  h (Si – 0.02152) × h (Temp_Seg17 – 749) 0.3908 

11B  h (0.2152−Si) × h (Temp_Seg17 − 749) 1.0 

12B  h (S − 0.0074) × h (Temp_Seg17 − 749) −4.3071 

13B  h (0.0146 − P) × h (Temp_Seg17 − 749) −11.1187 

14B h (P − 0.0166) × h (749 − Temp_Seg17) 1.8191 

15B  h (0.0166 − P) × h (749 − Temp_Seg17) 57.9514 

16B  h (Freq_Oscillation − 2.53) × h (Temp_Seg17 − 749) 0.1544 

17B  h (Ratio_Strip − 75.572) × h (Temp_Seg17 − 749) 0.0440 

18B  h (75.572 − Ratio_Strip) × h (Temp_Seg17 − 749) 0.0222 

19B  h (Temp_Seg8 − 921) × h (Temp_Seg17 − 749) 0.0015 

20B  h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) 0.0002 

21B  h (Temp_Seg8 − 943) × h (Temp_Seg17 − 749) −0.0017 

22B  h (Temp_Seg17 − 749) × h (Al − 0.0325) 3.2277 

23B  h (749 − Temp_Seg17) × h (0.0302 − Al) 0.7147 

24B  h (C − 0.1863) × h (0.0146 − P) × h (Temp_Seg17 − 749) 25,383.1351 

25B  h (0.1855 − C) × h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) −0.0074 

26B  h (1.4062 − Mn) × h (1.16 − Ave_Speed) × h (Temp_Seg17 − 749) −0.7150 

27B  h (Mn − 1.3506) × h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) −0.0026 

28B  h (0.1979 − Si) × h (2.53 − Freq_Oscillation) × h (Temp_Seg17 − 749) −3.1666 

29B  h (0.2152 − Si) × h (Freq_Oscillation − 2.45) × h (Temp_Seg17 − 749) −6.1100 

30B  h (0.2152 − Si) × h (2.45 − Freq_Oscillation) × h (Temp_Seg17 − 749)  −2.4387 

31B  h (0.2152 − Si) × h (0.95 − Ave_Speed) × h (Temp_Seg17 − 749) 7.9399 

32B  h (0.1981 − Si) × h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) 0.0111 

33B  h (0.1957 − Si) × h (Temp_Seg17 − 749) × h (Al − 0.0325) 132.0068 

34B  h (0.0074 − S) × h (P − 0.0127) × h (Temp_Seg17 − 749) 24,770.8361 

35B  h (S − 0.0074) × h (Ratio_Strip − 75.864) × h (Temp_Seg17 − 749) 118.2158 

36B  h (S − 0.0074) × h (Ratio_Strip − 75.977) × h (Temp_Seg17 − 749) −190.8619 

37B  h (S − 0.0116) × h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) 0.0704 

38B  h (P − 0.0156) × h (2.53 − Freq_Oscillation) × h (Temp_Seg17 − 749) 5.5200 

39B  h (0.0166 − P) × h (Freq_Oscillation − 1.62) × h (749 − Temp_Seg17) −71.7430 

40B  h (0.0166 − P) × h (1.62 − Freq_Oscillation) × h (749 − Temp_Seg17) −30.9687 

41B  h (P − 0.0146) × h (Ratio_Strip − 75.667) × h (Temp_Seg17 − 749) −20.3425 

42B  h (P − 0.0146) × h (75.667 − Ratio_Strip) × h (Temp_Seg17 − 749) −4.8084 

43B  h (P − 0.0166) × h (Ave_Speed − 0.88) × h (749 − Temp_Seg17) −78.9370 

44B  h (0.0166 − P) × h (Ave_Speed − 1) × h (749 − Temp_Seg17) −41.3467 

45B  h (0.0166 − P) × h (1 − Ave_Speed) × h (749 − Temp_Seg17) −280.7197 

46B  h (P − 0.0166) × h (Overtemperature−9) × h (749 − Temp_Seg17) −0.0209 
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Table 4. Cont. 

iB  Definition ic

B47 h (P − 0.0146) × h (Temp_Seg8 − 879) × h (Temp_Seg17 − 749) −0.1404 
B48 h (P − 0.0146) × h (879 − Temp_Seg8) × h (Temp_Seg17 − 749) −0.0658 
B49 h (P − 0.0156) × h (Temp_Seg8 − 943) × h (Temp_Seg17 − 749) 0.2179 

B50 h (0.0156 − P) × h (Temp_Seg8 − 943) × h (Temp_Seg17 − 749) 0.1261 
B51 h (Freq_Oscillation − 2.04) × h (1.16 − Ave_Speed) × h (Temp_Seg17 − 749) 0.1828 
B52 h (2.53 − Freq_Oscillation) × h (Ave_Speed − 1.09) × h (Temp_Seg17 − 749) −3.6134 
B53 h (2.53 − Freq_Oscillation) × h (804 − Temp_Seg8) × h (Temp_Seg17 − 749) 0.0013 
B54 h (75.756 − Ratio_Strip) × h (921 − Temp_Seg8) × h (Temp_Seg17 − 749) −0.0002 
B55 h (Specific_Flow − 0.65) × h (Temp_Seg17 − 749) × h (0.0325 − Al) −119.6246
B56 h (Overtemperature − 30) × h (Temp_Seg8 − 921) × h (Temp_Seg17 − 749) −0.0005 
B57 h (30 − Overtemperature) × h (Temp_Seg8 − 921) × h (Temp_Seg17 − 749) −0.0001 
B58 h (30 − Overtemperature) × h (Temp_Seg17 − 749) × h (0.0325 − Al) 0.1517 
B59 h (Temp_Seg8 − 910) × h (Temp_Seg17 − 749) × h (Al − 0.0325) −0.1202 
B60 h (910 − Temp_Seg8) × h (Temp_Seg17 − 749) × h (Al − 0.0325) −0.0317 

Additionally, from the results shown in Table 5, it is possible to observe that the most important 

variables for the prediction of the average width of the spots (output variable) forming the centerline 

segregation are (in hierarchical order): S, P, Temp_Seg17, Ratio_Strip, Al, Temp_Seg8, Ave_Speed, 

Si, Overtemperature, Freq_Oscillation, Mn, C and finally, Specific_Flow. Indeed, the most important 

variable is the sulfur (S). In other words, a high percentage of sulfur in the composition of steel is 

detrimental to its properties, for example the pore formation during the welding process, etc. 

Table 5. Evaluation of the importance of the variables that form the model for the Average 

Width of the spots according to criteria Nsubsets, generalized cross-validation (GCV) and 

residual sum of squares (RSS). 

Variable Nsubsets GCV RSS 

S 30 100.0 100.0 
P 29 55.3 56.0 

Temp_Seg17 28 47.6 48.2 
Ratio_Strip 28 47.6 48.2 

Al 27 45.6 45.8 
Temp_Seg8 21 29.6 29.1 
Ave_Speed 20 26.6 26.2 

Si 13 15.8 15.8 
Overtemperature 10 12.7 12.7 
Freq_Oscillation 44 78.3 70.5 

Mn 43 77.3 69.0 
C 39 73.0 62.9 

Specific_Flow 8 31.6 24.6 

Furthermore, a graphical representation of the terms that constitute the two MARS models can be 

seen in Figures 5 and 6, respectively. 
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Figure 5. Graphical representation of the terms composing the MARS model for the  

C factor: (a) first order term of the predictor variable Ratio_Strip; (b) first order term of  

the predictor variable Ave_Speed; (c) first order term of the predictor variable Temp_Seg8;  

(d) first order term of the predictor variable Aluminum content; (e) second order term of 

the variables Si content and Temp_Seg8; (f) second order term of the variables Sulfur 

contents and Temp_Seg8; (g) second order term of the variables P content and Temp_Seg8; 

(h) second order term of the variables Ratio_Strip and Temp_Seg8 value; (i) second order 

term of the variables Temp_Seg8 and Temp_Seg17; (j) second order term of the variables 

Temp_Seg8 and Aluminum content. 
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Figure 6. Graphical representation of the terms composing the MARS model for the 

Average Width of the spots forming the centerline segregation: (a) first order term of the 

predictor variable Carbon content; (b) first order term of the predictor variable Si; (c) first 

order term of the variable P; (d) first order term of the variable Average Speed; (e) first 

order term of the variable Temp_Seg17; (f) second order term of the variables Si and 

Temp_Seg17; (g) second order term of the variables S and Temp_Seg17; (h) second order 

term of the variables P and Temp_Seg17; (i) second order term of the variables 

Freq_Oscillation and Temp_Seg17; (j) second order term of the variables Ratio_Strip and 

Temp_Seg17; (k) second order term of the variables Temp_Seg8 and Temp_Seg17;  

(l) second order term of the variables Temp_Seg17 and Aluminum. 

3.2. The Goodness-Of-Fit for This Approach 

It is important to select the model that best fits the experimental data. The following criterion was 

considered in this research: the coefficient of determination 2R  [43]. As it is well known, in statistics, 

the coefficient of determination is used in the context of statistical models whose main purpose is the 

prediction of future outcomes on the basis of other related information [17,41,42]. This ratio indicates 

the proportion of total variation in the dependent variables explained by the MARS model (C factor 
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and average width of the spots in our case), that is to say, it provides a measure of how well future 
outcomes are likely to be predicted by the model. A dataset takes values it , each of which has an 

associated modeled value iy . The former are called the observed values and the latter are often referred 

to as the predicted values. Variability in the dataset is measured through different sums of squares: 

(1)  



n

i
itot ttSS

1

2 : the total sum of squares, proportional to the sample variance; 

(2)  



n

i
ireg tySS

1

2 : the regression sum of squares, also called the explained sum of squares; 

(3)  



n

i
iierr ytSS

1

2 : the residual sum of squares. 

In the previous sums, t  is the mean of the n observed data: 





n

i
itn

t
1

1
 (8)

tot

err

SS

SS
R 12  (9)

A coefficient of determination value of 1.0 indicates that the regression curve fits the data perfectly.  

In this current research work, the two fitted MARS models for the C factor and Average Width of  

the spots have coefficients of determination equal to 0.93 and 0.95, respectively. These results indicate 

a very high goodness of fit for two MARS models analyzed. 

Cross-validation is a model validation technique for assessing how the results of a statistical 

analysis will generalize to an independent dataset [44]. It is mainly used in datasets where the goal is 

prediction, and one wants to estimate how accurately a predictive model will work in practice. The aim 

of cross validation is to define a dataset to test the model in the training phase, in order to limit 

problems like overfitting, give an insight on how the model will generalize to an independent data  

set, etc. [45]. 

Therefore, in order to guarantee the ability prediction of the two built MARS models, the cross 

validation [44,45] was the standard technique used here for finding a suitable set of hyperparameters of 

the three MARS models built in this research work. In this sense, the data set is randomly divided into 

l disjoint subsets of equal size, and each subset is used once as a validation set, whereas the 

other 1l subsets are put together to form a training set. In the simplest case, the average accuracy of 

the l validation sets is used as an estimator for the accuracy of the method. In this research work,  

10-fold cross-validation was used, that is to say, to calculate the error criterion, the models were built 

using 90% of the sample and tested with the remaining 10%, thus simulating as closely as possibly the 

real conditions under which the model would be built in order to later fit it to new observation data 

unrelated to the construction of the models. 

Finally, this research work was able to estimate the values of the Continuity Factor from 245 

experimental observations in agreement with the experimental actual values of Continuity Factor 

observed with success (see Figure 7). Similarly, Figure 8 shows a good agreement between the 

experimental concentrations of the average width of the spots forming the centerline segregation and 

their predicted values using the MARS models from 245 experimental observations, respectively. 
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Indeed, coefficients of determination equal to 0.93 for Continuity Factor estimation and 0.95 for 

Average Width were obtained using this model, respectively. 
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Figure 7. Comparison between the values of the Continuity Factor (C_Factor) observed 

experimentally and predicted by the model MARS from 245 actual observations. 
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Figure 8. Comparison between the values of the Average Width of the spots forming  

the centerline of segregation observed experimentally and predicted by the model MARS 

from 245 actual observations. 
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Additionally, cross-validation is a model validation technique for assessing how the results of a 

statistical analysis will generalize to an independent dataset [45]. It is mainly used in datasets where the 

goal is prediction, and one wants to estimate how accurately a predictive model will work in practice. 

The aim of cross validation is to define a dataset to test the model in the training phase, in order to limit 

problems like overfitting, give an insight on how the model will generalize to an independent data set, etc. 

In order to guarantee the prediction ability of this MARS model, an exhaustive cross-validation 

algorithm is used. Cross validation was the standard technique used in this research work in order to 

find the actual coefficient of determination of the model. The data set is randomly divided into  

l disjoint subsets of equal size, and each subset is used once as a validation set, whereas the other 

1l subsets are put together to form a training set. In the simplest case, the average accuracy of the  

l validation sets is used as an estimator for the accuracy of the method. In this way, 10-fold  

cross-validation was used [14–23,44,45]. 

Segregation is a very common and serious problem in steel production. The diagnostic techniques 

commonly used based on the traditional methods (such as to evaluate central segregation in steel slabs 

from continuous casting by etching with hydrochloric acid or with sulfur prints) are expensive from 

both the material and human standpoints. Consequently, the development of alternative diagnostic 

techniques is necessary. In this sense, the multivariate adaptive regression splines used in this work is  

a good choice to prevent segregation. The MARS is a nonlinear and non-parametric regression 

methodology and a flexible procedure that models complex relationships that are nearly additive or 

involve interactions with fewer variables. MARS exhibits the ability of modeling complex 

relationships among variables without strong model assumptions. Besides, MARS does not require  

a long training process and hence can save lots of modeling time when the data is particularly large. 

Therefore, the diagnostic model obtained using the MARS technique is a good methodology to predict 

the segregation and take measures in advance to tackle this problem. Indeed, this diagnostic technique 

requires low costs of implementation from both the material and human standpoints. 

One of main goals in this research work was the study of the interactions among the input variables. 

Finally, the model developed in this research work was able to predict the segregation according to  

the actual database. 

4. Conclusions 

In this paper, a MARS model was used to make an estimation of segregation in steel labs 

continuously cast. The first conclusion obtained from the observation of the modeling results is the 

good agreement with the expert knowledge of the metallurgist about the phenomenon under study.  

It can be concluded that MARS can be a good machine learning technique to model this problem. 

Based on the experimental and numerical results, the main findings of this research work can be 

summarized as follows: 

Firstly, the hypothesis that segregation can be accurately modeled by using the MARS technique 

was confirmed. Two models were obtained. The first for the Continuity Factor and the second for the 

Average Width of the spots forming the centerline segregation. 

Secondly, coefficients of determination equal to 0.93 for Continuity Factor estimation and 0.95 for 

Average Width were obtained when the MARS technique was applied to the experimental data set.  
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The predicted results for the model have been proven to be consistent with the history of observed  

actual segregation. 

Finally, one of the main findings of this study was to set the order of significance of the variables 

involved in the prediction of the output variables. On the one hand, the Si is the most influential 

variable in the Continuity Factor estimation. The second variable is the Temp_Seg8, the third variable 

is S, the fourth is Ratio_Strip, the fifth is Mn, the sixth is Temp_Seg17, the seventh is Al, the eighth is 

C, the ninth is Overtemperature, followed by P, Freq_oscillation and finally, the Ave_Speed. The 

Specific flow is unused for Continuity Factor estimation. On the other hand, Sulfur is the most 

influential variable in the Average Width estimation. The second variable is Phosphorous, the third 

variable is Temp_Seg17, the fourth is Ratio_Strip, the fifth is Al, the sixth is Temp_Seg8, the seventh 

is Average Speed, the eighth is Si, the ninth is Overtemperature, followed by Freq_oscillation, Mn, C 

and finally, the Specific_Flow. 

In summary, this original and innovative methodology can be applied to another dataset with similar 

variables, but it is always necessary to take into account the specificities of each industrial 

metallurgical process. Additionally, the authors of this research work have confidence that the results 

obtained in this research will be useful to promote new future works in this line, developing other 

methodologies in predicting the segregation. 
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