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Abstract: The practical use of recycled concrete aggregate produced by crushing concrete 

waste reduces the consumption of natural aggregate and the amount of concrete waste that 

ends up in landfills. This study investigated two methods used in the production of fine 

recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, 

and (2) a method that produces only fine aggregate. Mortar specimens were tested using a 

variety of mix proportions to determine how the characteristics of fine recycled concrete 

aggregate affect the physical and mechanical properties of the resulting mortars.  

Our results demonstrate the superiority of mortar produced using aggregate produced using 

the second of the two methods. Nonetheless, far more energy is required to render concrete 

into fine aggregate than is required to produce coarse as well as fine aggregate 

simultaneously. Thus, the performance benefits of using only fine recycled concrete 

aggregate must be balanced against the increased impact on the environment. 

Keywords: fine recycled concrete aggregate; recycled concrete aggregate; recycled aggregate; 

compressive strength; ultrasonic pulse velocity; mortar 
 

OPEN ACCESS



Materials 2015, 8 2659 

 

 

1. Introduction 

The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the 

consumption of natural aggregate as well as the amount of concrete waste that ends up in landfills.  

The crushing of concrete waste produces coarse recycled concrete aggregate (CRCA) and fine recycled 

concrete aggregate (FRCA), as defined by particle size. A number of studies [1–11] have shown that 

CRCA can be used as a replacement for coarse natural aggregate in structural concrete; however, 

relatively little research has been conducted on the application of FRCA in structural concrete [11–15]. 

Several studies [11–19] have used laboratory crushers for the crushing concrete of waste to produce 

FRCA. Test results of these materials reveal that the FRCA produced using this crushing process 

leaves a large amount of cement paste attached to the surface of FRCA, which can have a detrimental 

effect on the material properties. Thus, researchers have shifted their attention to the influence of 

production process on the properties of the resulting FRCA. 

Lee [20] investigated two discrete crushing processes using a jaw crusher and an impact crusher to 

obtain two types of FRCA: RF-A and RF-B, with specific gravity values of 2.39 and 2.28 and water 

absorption of 6.59% and 10.35%, respectively. Various quantities of fine natural aggregate (FNA) 

were then replaced with the two types of FRCA, whereupon the resulting mortars were tested. The 

mortar in which FNA was replaced entirely by RF-A presented higher density and greater compressive 

strength than did the samples made entirely with RF-B. These results also indicate that the water 

absorption of FRCA influences the properties of the mortar, particularly at higher replacement ratios. 

Sim and Park [21] applied advanced recycling methods to the production of FRCA with a specific 

gravity of 2.28 and water absorption of 6.45%. They replaced various proportions of FNA with FRCA 

and tested the resulting concrete specimens. Compressive strength was shown to decline with an increase 

in the replacement ratio of FRCA. When the replacement ratio reached 100%, the compressive strength 

of the mortar at 28 days was approximately 33% lower than that of the original samples and all 

specimens with over 60% FNA replacement presented a significant drop in compressive strength. 

Florea and Brouwers [22] investigated the influence of concrete crushing method on the particle size 

distribution and density of recycled concrete aggregate (RCA). As a standard, they adopted concrete with 

compressive strength of 60 MPa at 91 days, to which they applied three methods for the crushing of 

concrete: (1) RC-1 refers to RCA from concrete waste that was passed through a jaw crusher just once 

before being screened; (2) RC-2 refers to RCA that passed through a jaw crusher ten times before being 

screened; and (3) RC-3 refers to RCA produced from three consecutive crushing processes using the Smart 

Crusher SC 1, designed specifically for concrete waste. RC-3 presented the optimal particle size 

distribution, between 125 μm and 200 μm, with a density of 2.50 g/cm3, which increased with the size of 

the particles. RC-3 particles between 2 mm and 4 mm in size had a density of 2.61 g/cm3. They concluded 

that optimizing the crushing method could enhance the quality of the resulting RCA. 

Ulsen et al. [23] produced a variety of FRCAs by crushing recycled aggregates smaller than 19 mm 

using a jaw crusher in conjunction with a vertical shaft impact (VSI) crusher at various rotational speeds: 

(1) CDW-sand refers to FRCA produced using a jaw crusher prior to screening; (2) VSI-55 refers to 

FRCA produced using a jaw crusher followed by a VSI crusher at 55 m/s prior to screening; (3) VSI-65 

refers to FRCA produced using a jaw crusher followed by a VSI crusher at 65 m/s prior to screening; and 

(4) VSI-75 refers to FRCA produced using a jaw crusher followed by a VSI crusher at 75 m/s prior to 
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screening. Their results indicate that the rotational speed of the VSI crusher had no effect on the particle 

shape or particle size distribution of the FRCA; however, it did affect water absorption and porosity.  

The water absorption of CDW-sand, VSI-55, VSI-65, and VSI-75 were 12%, 9%, 8.1%, and 7%, 

respectively, whereas the porosity percentages were 11.9%, 6.9%, 5%, and 6%, respectively. 

Song and Ryou [24] introduced a washing stage to the production of FRCA using a combination of 

chemical and physical processes. The washing process had the following effects: water absorption 

dropped from 5.8% to 1.92%; the ratio of absolute volume increased from 62.3% to 65.1%; and 

impurity content dropped from 0.46 to 0.18%. Clearly, this washing process can enhance the physical 

properties of the resulting FRCA. 

Koshiro and Ichise [25] employed a heat grinder system for the processing of concrete waste from a 

demolished building, which resulted in FRCA with density of 2.57 g/cm3 and water absorption of 

2.52%. Their results demonstrate the efficacy of heat grinder systems in the production of high-quality 

FRCA suitable for the structure of new buildings. 

Clearly, the methods used in the processing of concrete waste influence the quality of the resulting 

FRCA. Most previous studies have obtained FRCA produced under laboratory conditions or using the 

methods typically employed in large-scale recycling facilities, in which CRCA and FRCA are produced 

simultaneously. In this study, we obtained FRCA from a recycling facility in Yilan, Taiwan, which using 

a crushing process that produces only fine recycled concrete aggregate. We then prepared and tested 

specimens using a variety of mix proportions to determine the influence of production process and 

FRCA proportion on the properties of the resulting mortar, which is a constituent of concrete. 

2. Experimental 

2.1. Materials 

This study employed Type I Portland cement and FNA comprising clay slate and river sand,  

which was processed in a gravel plant. Figure 1 presents the particle size distribution of the FNA and 

Table 1 lists the basic physical properties. 

 

Figure 1. Particle size distribution curves of FNA, R1 and R2 (ASTM C33-13 [26]). 
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Table 1. Physical properties of FNA, R1 and R2. 

Physical properties FNA R1 R2 

Saturated surface dry density (kg/m3) (ASTM C128-12 [27]) 2653 2347 2404 
Water absorption (%) (ASTM C128-12 [27]) 1.3 8.9 6.6 

Fineness modulus (ASTM C136-14 [28]) 2.9 3.3 3.1 

Figure 2 illustrates two processes commonly used for the production of fine recycled concrete 

aggregate. The first process produces coarse and fine aggregates simultaneously by crushing waste 

concrete with a large jaw crusher and then separating the resulting aggregate using a vibrating screen. 

Aggregate larger than 19 mm in diameter is sent through two cone crushers, after which the product is 

separated using a vibrating screen. Aggregate between 4.75 mm and 19 mm is transported to a coarse 

aggregate stockpile area. Aggregate smaller than 4.75 mm is sent to a roller sand washer to wash away 

sludge smaller than 150 μm. The resulting product is fine aggregate (ranging in size from 150 μm to  

4.75 mm), which is stored in a fine aggregate stockpile area. The FRCA produced by this process is 

denoted as R1, the properties or which are presented in Figure 1 and Table 1. 

 

Figure 2. Processes used in the production of fine recycled concrete aggregates. 

The other method employed in this study produces only fine aggregate using multiple processes. 

Concrete waste first undergoes crushing in a large jaw crusher, whereupon the resulting aggregate is 

separated using a vibrating screen. Fragments exceeding 50 mm are sent back to the large jaw crusher 
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to undergo repeated crushing, and this cycle is repeated until all of the aggregate is less than 50 mm. 

The resulting material is then crushed using a small jaw crusher and a roll crusher and separated using 

a vibrating screen. Aggregate larger than 4.75 mm is returned to the roll crusher until it is all smaller 

than 4.75 mm. Aggregate between 600 μm and 4.75 mm is sent to a fine aggregate stockpile; whereas 

aggregate smaller than 600 μm is sent to a wheeled sand washer for the removal of sludge smaller than 

150 μm. The remaining aggregate between 150 μm and 600 μm is sent to the fine aggregate stockpile. 

The second type of FRCA produced using the above-mentioned process is denoted as R2, the basic 

properties of which are also presented in Figure 1 and Table 1. 

2.2. Mix Proportions 

Table 2 presents the mix proportions adopted for the mortar in this study. The water/cement ratios 

were set at 0.35 and 0.55; however, the mortar from the former mix displayed poor flowability; thus a 

superplasticizer (0.5% of the weight of the cement) was added to increase flowability. The replacement 

level of FNA by R1 and R2 were set at volume fraction of 0%, 25%, 50%, and 100%. As shown in 

Table 2, the weight ratio for cement and FNA in the control groups is 1:2. Because the densities of R1 

and R2 are different from that of FNA, the weights of R1 and R2 in other groups are different from 

that of FNA used in the control groups, as shown in Table 2. 

Table 2. Mix proportions of mortar specimens. 

Mix 

notation 

W/C 

ratio 

FRCA 

content (%) 

Mix proportions (kg/m3) 

Water  

(kg) 

Cement 

(kg) 

FNA 

(kg) 

R1 

(kg) 

R2 

(kg) 

Superplasticizer 

(kg) 

AControl 0.35 0 245 700 1400 4 

A25R1 0.35 25 245 700 1050 310 4 

A50R1 0.35 50 245 700 700 619 4 

A100R1 0.35 100 245 700 1239 4 

A25R2 0.35 25 245 700 1050 317 4 

A50R2 0.35 50 245 700 700 634 4 

A100R2 0.35 100 245 700 1269 4 

BControl 0.55 0 340 620 1240 - 

B25R1 0.55 25 340 620 930 274  - 

B50R1 0.55 50 340 620 620 548  - 

B100R1 0.55 100 340 620  1097  - 

B25R2 0.55 25 340 620 930  281 - 

B50R2 0.55 50 340 620 620  562 - 

B100R2 0.55 100 340 620   1124 - 

2.3. Fabrication of Specimens 

The FRCA used in this study presents a higher water absorption than does FNA. We therefore 

applied pre-wetting to R1 and R2 sample for 24 h. We then adjusted the measurement of surface 

moisture (ASTM C70-13 [29]) prior to mixing in order to achieve saturated-surface-dry (SSD) 

conditions using the water compensation method. Mixing was performed according to set proportions 

and the resulting mortar for each mixture was used to produce the following: six cylindrical specimens 
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with a diameter of 100 mm and height of 50 mm, three cylindrical specimens with a diameter of 100 mm 

and height of 200 mm, four 285 × 25 × 25 mm prismatic specimens, and nine 50 × 50 × 50 mm cubic 

specimens. After casting, the specimens were covered with plastic sheeting to prevent evaporation. 

The samples stood in the laboratory for 24 h before being de-molded and held in saturated lime water 

for curing at a mean temperature of 23 ± 2 °C until the time of testing. 

2.4. Testing 

Various tests were performed to characterize the attributes of the mortar, including flow tests, 

absorption tests, density tests, drying shrinkage tests, compressive strength tests, and ultrasonic pulse 

velocity (UPV) tests. 

Flow testing was performed in accordance with ASTM C1437-13 [30]. Freshly mixed mortar was 

poured into a flow mold with a bottom diameter of 100 mm (D0) on a flow table. The flow mold was 

then lifted off and the flow table was vibrated. The mean diameter (Da) of the resulting flow was 

calculated using results obtained after conducting the test four times, as follows: 

Flow (%) = (Da − D0)/D0 × 100 (%) (1)

Density testing was performed using cylindrical specimens with a diameter of 100 mm and height 

of 50 mm in accordance with ASTM C642-13 [31]. The specimens were weighed at 28 days in SSD 

condition (Ws). The specimens were weighed while suspended in boiling water 5 h (Wa) and again 

after being removed from the water that had cooled to 25 C (Wb). The density of the specimens was 

calculated using the following formula. 

Density (kg/m3) = [Ws/(Wb − Wa)] × 1,000 (kg/m3) (2)

Absorption testing was performed using cylindrical specimens with a diameter of 100 mm and 

height of 50 mm, in accordance with ASTM C642-13 [31]. Specimens at 28 days were first placed in 

an oven at 105 ± 5 °C and dried until achieving constant weight (Wd). They were then soaked in water 

to achieve the SSD condition before being weighted (Ws). The water absorption was calculated using 

the following formula: 

Absorption (%) = (Ws − Wd)/Wd × 100 (%) (3)

Drying shrinkage was tested on 285 × 25 × 25 mm prismatic specimens in accordance with ASTM 

C596-09 [32]. We first measured the initial length (Li), which is the difference between the comparator 

reading of the specimen and the reference bar at 3 days. The specimens were then placed in a chamber 

under relative humidity of 50% ± 4% at a temperature of 23 ± 2 °C for curing. The length of the 

specimens was then measured at 7 days, 14 days, 21 days, and 28 days (Lx). The extent of drying 

shrinkage was calculated as follows: 

Drying shrinkage = (Li − Lx)/G (4)

where G is the nominal effective length, 250 mm. 

Compressive strength was tested on 50 × 50 × 50 mm cube specimens in accordance with ASTM 

C109-13 [33]. Specimens were retrieved, dried, and tested at 7 days, 14 days, and 28 days to gauge 

compressive strength. 
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The UPV test was performed on cylindrical specimens with a diameter of 100 mm and height of  

200 mm in accordance with ASTM C597-09 [34]. The measurement device used in this test was the 

Pundit Plus, manufactured by CNS Farnell Limited. Converters were placed at both ends of the 

specimens at 28 days, and the ultrasonic frequency was set at 54 kHz. Wave velocities were measured 

twice and then averaged to obtain the UPV value. 

3. Results and Discussion 

3.1. Properties of Fine Recycled Concrete Aggregates 

Figure 1 presents the particle size distribution curves for FNA, R1, and R2, as well as the 

distribution range deemed acceptable in ASTM C33-13 [26]. The particle size distribution curves of all 

samples fell within the acceptable range. R1 was produced in a single stage crushing process and R2 

was produced using multi-stage crushing. Thus, R2 contains a larger quantity of finer particles, which 

places the particle size distribution curve of R2 above that of R1. 

Figure 3 illustrates the appearance of FNA, R1, and R2. Clearly, particles in R1 are rougher in shape 

and more angular than those in R2 as well as more grayish in color. The difference in shape can be 

attributed to the repeated crushing and lack of coarse aggregate in the production of R2, such that it 

contains a higher percentage of fine aggregate. With regard to color, both materials were produced 

from concrete waste and thus had cement paste adhered to the larger fragments, as shown in Figure 4. 

We can therefore assume that the difference in color is due to a higher percentage of cement paste in 

R1 (more grayish in color) than that found in R2. 

 

Figure 3. Comparison of appearances and particle size distributions of FNA, R1 and R2. 
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Figure 4. Microscopic observation of fine recycled concrete aggregates. 

The attributes in Table 1 show that FRCAs (R1 and R2) have a lower density and a higher water 

absorption than does FNA. In addition, R1 has lower density and higher water absorption than does 

R2. The porosity of cement paste in FRCAs is higher than that of FNA; therefore, FRCAs the density 

is lower, and water absorption is higher [13–15,18–20,22,23,35]. As mentioned above, R1 contains a 

larger amount of cement paste than does R2 and therefore has lower density and higher water 

absorption. For the same reason, the fineness modulus of R1 exceeds that of R2, as shown in Table 1. 

These findings clearly demonstrate how the production process can influence the basic physical 

properties of FRCA. 

3.2. Flowability 

In accordance with the formulas in ASTM C1437-13 [30], we employed a flow table with a 

diameter 254 mm, such that the maximum flow value would be 154% (i.e., (254 − 100)/100 × 100%). 

In addition, all of the mortar mixtures had a water/cement ratio of 0.55. Regardless of the amount of 

FRCA in the freshly mixed mortars, they all presented good flow values exceeding 154%. 

Figure 5 presents the flow values of freshly mixed mortar with a water/cement ratio of 0.35. All of 

the mortar mixtures containing FRCA presented lower flow values than did the control groups. 

Furthermore, the flow values decreased with an increase in replacement ratio; i.e., the proportion of  

FNA substitution with FRCA. With the same replacement ratio, samples that included R1 presented 

lower flow values than did those that included R2. This can be attributed to the fact that R1 fragments 

have a rougher surface texture and greater angularity, which increases the friction among the particles. 

It should be noted that all of the flow values obtained from mixtures with a water/cement ratio of 0.55 

presented flow values exceeding 154% (data not shown). 
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Figure 5. Flow values of mortar with W/C = 0.35. 

3.3. Density 

Figure 6 displays the mean density values from three mortar specimens at 28 days. All of the 

specimens containing FRCA had lower densities than did the control groups. In addition, the density of 

specimens containing FRCA decreased with an increase in replacement ratio. These findings are in 

agreement with those obtained in previous studies [14,16,18]. With the same replacement ratio,  

R1 samples present lower density values than do R2 samples. As shown in Table 1, the fact that the 

density of FRCAs is lower than that of FNA means that the density values of mixtures prepared using 

FRCA will also be lower. Increasing the replacement ratio also means that a higher proportion of 

FRCA leads to a reduction in the density of the mortar. The density of R1 is lower than that of R2; 

therefore with the same replacement ratio, the density of the mortars produced using R1 will also be 

lower than those produced using R2. 

 

Figure 6. Density of mortars with R1 and R2 replacement at 28 days. 

3.4. Absorption 

Figure 7 presents the mean water absorption from three mortar specimens at 28 days. The water 

absorption of the mortar mixtures with FRCA exceeded that of the control groups. Furthermore,  
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the absorption increased with the replacement ratio. With the same replacement ratio, the absorption of 

mortar mixtures produced using R1 exceeded those produced using R2. This can attributed to the fact 

that the water absorption of FRCA is higher than that of FNA. These findings are in agreement with 

those of a previous study [13]. 

 

Figure 7. Absorption of mortars with R1 and R2 replacement at 28 days. 

3.5. Drying Shrinkage 

Figure 8 present the mean drying shrinkage from four mortar specimens with water/cement ratios of 

0.35 and 0.55, respectively, at 7 days, 14 days, 21 days, and 28 days. All of the specimens containing 

FRCA present higher drying shrinkage than did the control groups. This can be explained by the fact 

that the higher porosity of FRCA enables water to evaporate more rapidly. Increasing the replacement 

ratio also led to an increase in the drying shrinkage. With the same replacement ratio, the mortar 

containing R1 presented higher drying shrinkage than do the samples with R2. This can be attributed to 

the fact that the porosity of R1 exceeds that of R2. 

Figure 8. Development of drying shrinkage of mortars with (a) W/C = 0.35, and (b) W/C = 0.55. 

3.6. Compressive Strength 

The compressive strength of mortar specimens was tested at 7 days, 14 days, and 28 days. Figure 9 

illustrates the development of compressive strength in specimens with water/cement ratios of 0.35 and 
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0.55, respectively. These values are the mean obtained from three specimens of each mortar mixture. 

The compressive strength of the specimens containing FRCA is lower than that in the control groups. 

This can be attributed to the fact that FRCA contains cement paste, which has greater porosity and 

therefore less compressive strength. Furthermore, compressive strength was shown to decrease with 

the replacement ratio of FRCA. These findings are in agreement with those obtained in previous  

studies [16,21]. In specimens containing the same proportions of R1 and R2, the R1 specimens 

presented less compressive strength due to the higher proportion of cement paste in the R1. 

Figure 9. Development of compressive strength in mortars with (a) W/C = 0.35, and (b) W/C = 0.55. 

3.7. Ultrasonic Pulse Velocity (UPV) 

Figure 10 presents the mean UPV values from three mortar specimens at 28 days. All of the 

specimens containing FRCA presented lower UPV values than did the control groups and UPV values 

decreased with an increase in replacement ratio. These findings are in agreement with those obtained 

in [16]. Mortar containing R1 had lower UPV values than did the mortar containing R2. The porosity 

of mortars containing FRCA exceeded that of mortars containing FNA. Porosity inhibits the 

conduction of ultrasonic pulses, such that a higher FRCA content would lead to greater porosity, which 

would translate into lower UPV values. 

 

Figure 10. UPV values of mortars with R1 and R2 replacement at 28 days. 



Materials 2015, 8 2669 

 

 

Figure 11 presents regression analysis of the UPV values and compressive strength of mortars at 28 

days. The resulting regression formula with a R2 value of 0.9295 is y = 0.0578x − 169.68, where x and 

y denote the UPV value and compressive strength, respectively. Regression analysis results indicate 

that compressive strength increases with an increase in UPV value. 

 

Figure 11. Correlation between compressive strength and UPV values of mortars at 28 days. 

4. Conclusions 

This study investigated the use of two types of fine recycled concrete aggregate (R1 and R2) 

obtained using different production processes at a recycling facility in Yilan, Taiwan. R1 was 

produced using a process that simultaneously produces coarse as well as fine aggregate by crushing 

concrete waste with a large jaw crusher. R2 was produced using a process that produces only fine 

aggregate through repeated crushing of concrete waste. We then tested mortar specimens in which 

various proportions of FRCA were substituted for FNA. This led to the following conclusions: 

1. R2 has lower porosity, higher density, and lower water absorption than does R1, all of which 

are indicators of the superior quality of R2. This also demonstrates that the crushing process 

can significantly influence the quality of the resulting FRCA. 

2. In all of the mortars containing FRCA, an increase in the replacement ratio led to a reduction in 

flow values, density, compressive strength, and UPV values. This is a clear demonstration that 

the replacement ratio is an important factor influencing the physical and mechanical properties 

of the resulting mortar. 

3. When comparing mortars containing R1 or R2 at the same replacement ratio, the mortar 

containing R1 presented a lower flow value, lower density, higher absorption, higher drying 

shrinkage, lower compressive strength, and lower UPV values. This demonstrates that mortars 

containing R1 cannot match the physical or mechanical properties of R2, and further 

demonstrates the importance of the crushing process used in the production of FRCA. 

4. Our results demonstrate the superiority of mortars produced using aggregate processed from 

recycled concrete via multistage crushing to obtain only FRCA. Nonetheless, the performance 

benefits of using only fine recycled concrete aggregate must be balanced against the additional 

energy requirements and subsequent impact on the environment. 
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