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Abstract: We have studied three-dimensional (3D) configurations of dislocations in the  

β phase of a Ti–35mass%Nb alloy by means of single-axis tilt tomography using bright-field 

scanning transmission electron microscopy (BF-STEM). To visualize dislocations, the hh0 

systematic reflections were excited throughout tilt-series acquisition with the maximum tilt 

angle of 70°. Dislocations in the β grains were clearly reconstructed by the weighted  

back-projection algorithm. The slip planes of the dislocations were deduced by rotating the 

reconstructed volumes with the aid of selected area electron diffraction patterns. It was 

found that BF-STEM images with relatively low contrasts, taken along low-order zone 

axes, are capable to reproduce and preserve the quality of reconstructed image of 

dislocations. We also found that tilt angles as low as 40° are practically acceptable to 

visualize 3D configurations of dislocations, while there exists limitation in resolution due 

to the existence of a large missing wedge. 

Keywords: electron tomography; dislocations; 3D configurations; Ti–Nb; scanning 

transmission electron microscopy (STEM) 

 

1. Introduction 

Electron tomography is a technique to visualize three-dimensional (3D) structures inside materials 

in a transmission electron microscope (TEM) with the aid of computational reconstruction processes. 
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This technique has been applied for various fields of materials science so far [1]. One of the recent 

challenges in 3D tomography is the visualization of dislocations in metals and other materials.  

3D tomographic observation of dislocations was firstly reported for a GaN single crystal specimen 

using the weak-beam dark-field (DF) transmission electron microscopy (TEM) imaging method [2,3]. 

Because of the invisible criterion (g•b = 0; g and b are, respectively, the excited reciprocal lattice 

vector and Burgers vector in concern) [4], excitation of a selected ghkl throughout the tilt-series 

acquisition is mandatory for dislocation tomography. After the pioneering work by Sharp et al.  

3D visualization of lattice defects including dislocations has been demonstrated by several researchers 

for materials including Si [5], stainless steel [6,7], Al [8], and nanoparticles [9,10]. These works have 

mainly focused on the development and verification of novel techniques; therefore, materials for 3D 

observation have been mostly limited in specimens with a single-crystal or large grains. Our attempt 

here is to visualize dislocations in a rather narrow area in two-phase alloys. For this purpose,  

we selected a quenched Ti–35mass%Nb alloy composed of a so-called α'' martensite with an orthorhombic 

structure and a small amount of the β phase with a body centered cubic (bcc) structure [11]. The alloy 

system has been attracted for biomedical applications due to their excellent biocompatibility, high 

corrosion resistance, low Young’s modulus, high strength, toughness, and so on [12]. In general, the β 

phase contributes primarily to ductility and workability of the two-phase alloy, because it is softer than 

the α'' martensite. It is also noted that there is few report on the dislocation tomography of bcc crystals. 

Therefore, a proper characterization of dislocations in the β phase is necessary for better understanding 

mechanical properties of two-phase Ti-alloys. 

In this study, we have examined 3D visualization of dislocations in β phase of a Ti–Nb alloy using 

single-axis tilt tomography. We employed bright-field scanning transmission electron microscopy  

(BF-STEM) for imaging dislocations by exciting hh0 systematic reflections parallel to the tilt axis. 

Effects of lowness in contrasts and the maximum tilt angle on the shapes and width of reconstructed 

dislocations are discussed. 

2. Experimental Procedure 

Ti–35mass%Nb alloys were prepared by arc-melting in an argon atmosphere using high purity 

titanium (99.99%) and niobium (99.9%). The ingots obtained were annealed at 1323 K for 86.4 ks in 

vacuum for homogenization followed by cold rolling. The homogenized specimens were solution-treated 

at 1223 K (above the β transus) for 10.8 ks in an evacuated quartz tube, and then quenched into ice 

water. Details of the alloy specimen preparation can be found in the literature [11]. To prepare samples 

for TEM observation, disk-shaped specimens were ground to less than 100 μm thickness, and 

electropolished in a solution of 5% HNO3 in methanol at 243 K with an applied potential of less than 

10 V, followed by a low angle argon ion milling. 

Microstructures of the alloy including dislocations were characterized by a 300 kV-TEM  

(FEI TITAN80-300, FEI Company, Hillsboro, OR, USA) with STEM mode. Tilt-series of BF-STEM 

images were obtained using the Xplore3D software (FEI Company) taking dynamic focus into 

consideration. A triple-axes holder (Mel-Build model HATA-8075, Mel-Build Corporation, Fukuoka, 

Japan) [6] was used for the tilt-series acquisition with the maximum tilt angle of 70°. The diffraction 

vector was maintained close to ghkl = 110 by exciting hh0 systematic reflections parallel to the tilt axis 
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during the acquisition of BF-STEM images. The beam convergence was set to be 14 mrad in  

semi-angle and outer collection angle on the BF-detector to be 11 mrad. We used an FEI Inspect3D 

software package for subsequent data processing, including alignment of the tilt axis for the obtained 

data set based on an iterative cross-correlation technique, and 3D reconstruction based on a weighted 

back-projection (WBP) method. Kinematical convergent-beam electron diffraction (CBED) patterns 

were calculated using the WebEMAPS software [13]. 

3. Results 

Figure 1 shows a series of selected area electron diffraction (SAED) patterns obtained from the  

β phase region. All these patterns were obtained using parallel beam illumination. Tilt angles are 

shown in the upper left corner of each pattern. As seen, hh0 systematic reflections are excited along the 

tilt axis of the triple-axes holder. The circle indicates the outer collection angle of 11 mrad of the  

BF-detector used for STEM imaging; hence only three beams, 000, 11
―

0 and 1
―

10 are contributed to  

the image formation. 

 

Figure 1. Tilt-series of selected area electron diffraction (SAED) patterns obtained from 

the β phase region in a Ti–35mass%Nb alloy. The hh0 systematic reflections are excited 

parallel to the tilt axis. (a) SAED patterns obtained at tilt angles from 0° to −70°, and  

(b) those from 0° to 70°. 
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As can be seen, zone axis patterns, such as [112
―

], [113
―

], [115
―

], or [001], appear during the specimen 

tilting of up to ±70°. It should be noted that ghkl = 11
―

0 is satisfied even at a tilt angle as high as 70°. 

Thus, the invisible criterion (g•b = 0) is maintained throughout the tilt-series acquisition. It can also be 

noted that zone axes of [113
―

] and [1
―

1
―

3
―

] are apart from each other by 50.5° in a cubic crystal, and 

accordingly that these two patterns were obtained at the stage tilt angle of −20° and −70°, respectively, 

further demonstrating that the tilting axis is parallel to the hh0 systematic reflections. Changes of zone 

axes as a function of stage tilt angle can be summarized on a stereographic projection shown in  

Figure 2a. As seen, the initial beam incidence is close to [223
―

]β, and both 11
―

0 and 1
―

10 reflections are 

always excited during the specimen tilt. A simulated CBED pattern with the [223
―

]β zone, which 

corresponds to the BF-STEM imaging condition, is shown in Figure 2b. As seen, the hh0 systematic 

reflections are excited and the non-systematic reflections are far from the systematic row. 

 

Figure 2. (a) Stereographic projection indicating changes of zone axes as a function of 

stage tilt angle. The initial beam incidence is close to [223
―

]β, and both 11
―

0 and 1
―

10 

reflections are always excited during the tilt series acquisition; (b) A simulated  

convergent-beam electron diffraction (CBED) pattern with the [223
―

]β zone. 

Figure 3 shows snapshots of BF-STEM images of the as-quenched Ti–35mass%Nb alloy acquired 

during a tilt-series observation. They are shown after the alignment of tilt axis, which is set vertical 

here. The tilt angles are (a) 0°, (b) −30°, (c) −50°, (d) 10°, (e) 30°, and (f) 50°. This tilt-series was 

obtained sequentially from 0 to −70° and then 0 to +70° with an angular increment of 2°. The SAED 

patterns shown in Figure 1 were obtained from an area indicated by the circle in Figure 3a (~750 nm in 

diameter) near the specimen edge. Arrowheads in the image shown in Figure 3a indicate dark contrast 

arising from acicular α'' martensite, which can be typically observed in a quenched Ti–Nb alloy [11]. 

Thus, it can be stated that the encircled area composed of the β phase exists in between the α'' 

martensite plates. Dotted lines indicate α''/β grain boundaries. Note that α'' martensite is the primary 

phase of this quenched alloy. Morphology and distribution of acicular α'' martensite can be found in the 

literature [11]. 
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Figure 3. Snapshots of bright-field scanning transmission electron microscopy (BF-STEM) 

images of the as-quenched Ti–35mass%Nb alloy acquired during a tilt-series observation. 

SAED patterns were observed from a circular area indicated in (a). Arrowheads indicate 

acicular α'' martensite plates. Dotted lines indicate α''/β grain boundaries. Tilt angles for 

each image is as follows: (a) 0°, (b) −30°, (c) −50°, (d) 10°, (e) 30°, (f) 50°. 

Figure 4 shows a magnified BF-STEM image and a corresponding SAED pattern of the  

Ti–35mass%Nb alloy observed at a stage tilt of 0°. The image contrast shown here is reversed in order 

to clearly show fine dislocation arrangement. The beam incidence is close to the [223
―

]β. As seen, there 

are dense dislocations in the β phase region. The rectangular area indicated by dashed lines was 

selected for subsequent 3D reconstruction. 

 

Figure 4. Magnified BF-STEM image and corresponding SAED pattern of the  

Ti–35mass%Nb alloy observed at a stage tilt of 0°. The image contrast is reversed in order 

to clearly show fine dislocations. The beam incidence is close to the [22 3
―

]β. The 

rectangular area indicated by dashed lines was selected for subsequent 3D reconstruction. 
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Figure 5 shows reconstructed 3D images of dislocations in the β phase region. Tilt angles  

indicated for each image correspond to those shown in Figure 3. The reconstructed volume size is  

1003 nm × 1532 nm × 489 nm (377 × 576 × 183 pixels, i.e., 2.66 nm/pixel). The reconstruction have 

revealed that the reconstructed region of the specimen had a wedge shape with thickness increasing 

from approximately 100 to 200 nm (top to bottom in the image). It should be mentioned that at the tilt 

angle of 70° the specimen thickness reaches approximately 290 to 580 nm; the thickness is within the 

maximum observable limit for electrons accelerated at 300 kV (~1 μm for Fe) [14]. The arrowheads 

shown in Figure 5a indicates grain boundary between α'' and β phases, which can be seen in the 

original image shown in Figure 4. Dislocations with different directions overlap and some of them are 

bent. Rather wavy shape implies that they are mostly mixed dislocations. The dislocation density 

estimated was rather high value of ~1014 m−2. According to the literature, dislocation densities of  

1012 m−2 and 1015 m−2 were reported for the β phase in Ti–10V–2Fe–3Al alloys before and after 

deformation, respectively [15]. This implies that the dislocations in the β phase observed in this study 

are introduced by compressive stress arising from the volume changes of adjacent crystals due to the 

martensitic transformation during quenching. 

 

Figure 5. Three-dimensional views of the dislocations reconstructed from a BF-STEM  

tilt-series dataset using a weighted back-projection (WBP) technique. Arrowheads indicate 

the α''/β grain boundary. A kink on a (1
—

01) slip plane is seen in the encircled area.  

Tilt angles for each image is as follows: (a) 0°, (b) −30°, (c) −50°, (d) 10°, (e) 30°, (f) 50°. 

By rotating the reconstructed volume, we can analyze slip planes of these dislocations with the aid 

of corresponding SAED patterns. When a trace of dislocations viewed from an edge-on direction is 

orthogonal to a diffraction vector ghkl, the slip plane can be assigned as (hkl). For example, the slip 

plane analysis led us to conclude that the bending of dislocations as seen in Figure 5b (encircled area) 

is a kink of dislocations on a (1
—

01) slip plane. The existence of the kink is practically difficult to detect 
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on the original STEM images and this is a benefit of using tomographic reconstruction. The slip planes 

determined are (1
—

01), (011
—

), (211), and (123), and dislocations exist on these planes are marked by 

different colors in Figure 6. It can be pointed out that these are typical slip planes for metals with  

the bcc structure. 

 

Figure 6. A result of slip plane analyses: dislocations on different slip planes are marked 

by different colors. 

4. Discussion 

Here, we discuss practical aspects of 3D dislocation imaging from the viewpoints of contrast quality 

of data set and of the extent of tilting angle. In the tilt-series obtained in this study, SAED patterns  

with zone axes appeared at −10° ([112
—

]), −20° ([113
—

]), −30° ([115
—

]), −50° ([001
—

]), −70° ([113
———

]),  

−10° ([11
—

1]), 30° ([331
—

]), and 40° ([110]) as shown in Figure 1. When the tilt angle reaches an angle 

satisfying a low-order zone axis (satisfying the Bragg conditions for hkl reflections other than the hh0 

systematic reflections), background intensity was enhanced in the corresponding STEM images,  

and hence the contrasts of dislocations were reduced. Such low contrast images can be discarded in the 

reconstruction process as recently reported by Kacher et al. [7]. To check the effect of such Bragg 

reflections other than the hh0 systematic reflections on the quality of reconstructed dislocation images, 

we examined 3D reconstruction removing images obtained under low-order zone axes incidence.  

The result is shown in Figure 7a. An arrow indicates the viewing direction of the attached cross section 

images. For comparison, the result, reconstructed using all the experimental images, is shown in  

Figure 7b, which is the same image shown in Figure 5a. As can be seen, the effects of low contrast 

images taken at zone axes on shapes and width of dislocations are negligibly small within the 

resolution of the present study. This is probably due to the nature of the BF-STEM imaging in the 
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present study with the outer collection angle of 11 mrad. This condition excludes most of the Bragg 

reflections other than 000, 11
—

0, and 1
—

10 throughout the tilt-series (The [11
—

1] incidence is the only 

exception; four kinds of 110 reflections are incorporated within the aperture in addition to 000, 11
—

0, 

and 1
—

10 reflections). 

 

Figure 7. Effects of low contrast images and the maximum tilt angles on shapes and  

width of reconstructed dislocations. The maximum tilt angles and the number of images 

used for the reconstruction are as follows: (a) 70°, 63 images, (b) 70°, 71 images, (c) 40°, 

41 images. An arrow indicates the viewing direction of the attached cross section images. 

We also examined the effect of maximum tilt angles on the reconstruction. Some of the recent 

studies on electron tomography of dislocations were carried out to visualize dislocations with tilt 

angles less than 40° [7,16]. In general such a limitation of the maximum tilt angle degrades the 

resolution of reconstructed images in the z direction (parallel to the optic axis) due to the effect of 

missing wedges as reported in the preceding studies using a phantom [1] or a real 3D object [17].  

Figure 7c shows the results of a trial reconstruction using only 41 images with the maximum tilt angle 

of 40°. The shapes and width of dislocations have been well reconstructed. As seen, there is no 

apparent difference in the reconstructed images shown in Figure 7b (70°) and 7c (40°). In the latter 

case, dislocation images in the z-direction parallel to optic axis became blur by at most 30% due to the 

missing wedge, while the overall features still remain in the reconstructed volume. Thus it can be 

stated that the maximum tilt angle as low as 40° is practically acceptable to qualitatively visualize 3D 

configurations of dislocations without losing essential information, such as slip planes; while, ideally 

speaking, higher tilt angles are required for better resolution. 

5. Conclusions 

We have studied 3D configurations of dislocations in the β phase of a Ti–35mass%Nb alloy by 

means of single-axis tilt tomography using BF-STEM. The results can be summarized as follows: 

(1) Dislocations in a β grain were imaged by exciting hh0 systematic reflections to maintain an 

invisible criterion (g•b = 0) throughout the tilt-series acquisition with the maximum tilt angle  

of 70°. 
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(2) Dislocations were clearly reconstructed by weighted back projection algorithm. The slip planes 

determined were (1
—

01), (011
—

), (211), and (123). A kink on a (1
—

01) slip plane was found in the 

3D reconstructed volume. 

(3) Effect of low contrast images taken at low-order zone axes on reconstructed dislocation images 

is small within the resolution of the present study. This is probably due to the BF-STEM 

imaging condition which excludes most of the Bragg reflections other than 000, 11
—

0, and 1
—

10 

throughout the tilt-series acquisition. 

(4) Low tilt angles of around 40° are practically acceptable to visualize 3D configurations of 

dislocations, in spite of the loss of resolution in the z direction due to the existence of a large 

missing wedge. 
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