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Abstract:

 The aim of the study was to generate rules for the prediction of the chloride resistance of concrete modified with high calcium fly ash using machine learning methods. The rapid chloride permeability test, according to the Nordtest Method Build 492, was used for determining the chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement of Portland cement. The results of the performed tests were used as the training set to generate rules describing the relation between material composition and the chloride resistance. Multiple methods for rule generation were applied and compared. The rules generated by algorithm J48 from the Weka workbench provided the means for adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to chloride penetration.
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1. Introduction

The increased use of high calcium fly ash (HCFA) for partial replacement of Portland cement in concrete could result in a number of environmental benefits (reduced consumption of cement clinker, reduced CO2 emissions during cement production, saving natural resources, reduced landfill space and storage costs). The resources of high calcium fly ash are large, it is produced as a by-product of power generation in brown coal burning plants. However, this type of ash is usually characterized by low silica content, a high content of free lime and an increased content of sulfur compounds. It could be used in concrete following the requirements of ASTM (American Society for Testing and Materials) C618 Class C, but in Europe, it does not meet the requirements defined in standard EN 450-1. At present, HCFA is not in common use in European countries in spite of positive examples of its suitability provided by Greek and Turkish researchers. It was shown [1] that in the case of cement replacement with HCFA, the compressive strength of concrete was increased if the content of active silica in the fly ash was higher than that in the cement. Similar results were obtained earlier by Naik, et al. [2]: partial replacement of cement by fine-grained HCFA resulted in the same or better compressive strength of concrete; the results for drying shrinkage were also positive. The optimization of fineness coupled with the adjustment of water content were found as the key parameters of the effective utilization of high calcium fly ashes for strength maximization of cement mortars [3]. The application of HCFA as a partial cement replacement in mortar beams stimulated self-healing of cracks and particularly of microcracks [4]. It was also found that concrete specimens incorporating HCFA exposed to long-term chloride ponding experiments exhibited significantly lower total chloride content for all depths from the surface [5]. The key factors for the adequate performance of HCFA in concrete seem to be both the composition and the gradation of fly ash.

The assessment of concrete resistance to chloride ingress is fundamental for the durability of reinforced concrete structures exposed to deicing salt and the marine environment [6]. Numerous papers on chloride penetration resistance of concrete modified with standard siliceous fly ash were recently reviewed in [7]. The addition of fly ash is generally found (and confirmed in [8]) to reduce chloride permeability and also to increase the chloride binding capacity of concrete. Despite lower chloride threshold values, the addition of fly ash was found to provide better corrosion protection to steel reinforcements. There is a need to extend such a study to include high calcium fly ash. For rational use of HCFA in structural concrete, there is also a need to propose tools for the prediction of the chloride penetration resistance of concrete.

The prediction of the engineering properties of composite materials is usually based on experimental test results with a reference to the observed material microstructure. The relevant material characteristics can be extracted from an experimental dataset using various artificial intelligence methods, developed for the last two decades for various engineering applications [9,10]. Artificial neural networks were successfully applied for the prediction of the compressive strength of concrete containing silica fume [11] or coal ash [12]. Moreover, the application of neural networks and optimization technologies created the possibility to search for the optimum mixture of concrete: the mixture with the lowest cost and required performance, such as strength and slump [13]. Machine learning methods were also tested on the classification of concrete modified by fluidized bed fly ash as materials of adequate resistance to chloride penetration [14] and resistance to surface scaling [15]. The application of machine learning for the prediction of the scaling resistance of concrete modified with high calcium fly ash is described in [16]. The authors of [17,18] proposed to combine artificial neural networks and machine learning methods in one system to estimate and predict various properties of concrete materials.

The aim of this study is to generate rules using a machine learning algorithm to evaluate the chloride resistance of concrete modified with high calcium fly ash. The rules are generated using selected attributes from a database created by storing the experimental results of the chloride migration coefficient determined for three concrete series.



2. Composition of Concrete Mixes and Test Results of the Chloride Migration Coefficient

The chloride migration coefficient in concrete specimens with different contents of high calcium fly ash was experimentally measured. Concrete mixes were prepared with high calcium fly ash used for replacement of 15% or 30% of the cement mass. Experimental tests were performed on several mixes. For concrete manufacturing, two types of Portland cement, CEM I 42.5R (with 10% C3A content) or CEM I 42.5 HSR NA (with 2% C3A content), siliceous sand fraction [image: there is no content] mm and amphibolite as a coarse aggregate (two fractions [image: there is no content] mm and [image: there is no content] mm) were used. The following admixtures were used: a high range water reducer (based on polycarboxylate ethers) and a plasticizer (lignosufonate). Because of the expected variability of ash properties, three lots of high calcium fly ash were tested from different deliveries from the power plant, namely S1, 16 March 2010, S2, 19 May 2010, and S3, 28 June 2010. The chemical composition of HCFA is given in Table 1. For HCFA beneficiation, a grinding process was applied during 10–28 minutes in a ball mill. The physical properties of ash before and after grinding are given in Table 2 [19]. HCFA was used as an additive to concrete mix in unprocessed form (as collected) and after grinding.


Table 1. The chemical composition of high calcium fly ashes from Bełchatów power plant in Poland, determined using the XRF (X-ray fluorescence) method. Fly ash sampling date and bath designation [19].



	
Component

	
Fly Ash Sampling Date and Batch Designation




	
16.03.2010

	
19.05.2010

	
28.06.2010




	
S1

	
S2

	
S3






	
LOI

	
2.56%

	
3.43%

	
1.85%




	
SiO2

	
33.62%

	
35.41%

	
40.17%




	
Al2O3

	
19.27%

	
21.86%

	
24.02%




	
Fe2O3

	
5.39%

	
6.11%

	
5.93%




	
CaO

	
31.32%

	
25.58%

	
22.37%




	
MgO

	
1.85%

	
1.49%

	
1.27%




	
SO3

	
4.50%

	
4.22%

	
3.07%




	
K2O

	
0.11%

	
0.13%

	
0.20%




	
Na2O

	
0.31%

	
0.16%

	
0.15%




	
P2O5

	
0.17%

	
0.16%

	
0.33%




	
TiO2

	
1.21%

	
1.22%

	
1.01%




	
Mn2O3

	
0.07%

	
0.06%

	
0.06%




	
SrO

	
0.20%

	
0.17%

	
0.16%




	
ZnO

	
0.02%

	
0.02%

	
0.02%




	
CaOfree

	
2.87%

	
1.24%

	
1.46%










Table 2. Physical properties of high calcium fly ashes before and after processing [19].



	
Batch

	
Fly Ash Designation

	
Density (g/cm3)

	
Fineness: The Residue on Sieve 45 μm (%)

	
Specific Surface by Blaine (cm2/g)






	
S1

	
S1: unprocessed

	
2.62

	
38.0

	
2860




	
S110: ground 10 min

	
2.77

	
23.0

	
3500




	
S128: ground 28 min

	
2.75

	
10.5

	
3870




	
S2

	
S2: unprocessed

	
2.58

	
35.4

	
4400




	
S215: ground 15 min

	
2.70

	
13.3

	
6510




	
S3

	
S3: unprocessed

	
2.64

	
55.6

	
1900




	
S320: ground 20 min

	
2.71

	
20.0

	
4060









The Nordtest Method Build 492—Non-Steady State Migration Test [20] was used to determine the chloride migration coefficient. The principle of the test is to subject the concrete specimen to external electrical potential applied across it and to force chloride ions to migrate into the concrete. The specimens are then split open and sprayed with silver nitrate solution, which reacts to give white insoluble silver chloride on contact with chloride ions. This provides a possibility to measure the depth to which a sample has been penetrated. The non-steady-state migration coefficient, [image: there is no content], is determined on the basis of Fick’s second law. This coefficient is dependent on the voltage magnitude, the temperature of the anolyte measured at the beginning and the end of test and the depth of chloride ions’ penetration. The criteria for evaluating the resistance of concrete against chloride penetration proposed by L. Tang [21] are shown in Table 3.

Table 3. Criteria for the classification of the concrete resistance to chloride ions’ penetration [21].


	Chloride Migration Coefficient [image: there is no content]
	Resistance to Chloride Penetration





	<2 × 10-12 m2/s
	Very good



	2-8 × 10-12 m2/s
	Good



	8-16 × 10-12 m2/s
	Acceptable



	>16 × 10-12 m2/s
	Unacceptable














Experimental tests revealed a decrease of the chloride migration coefficient with the increase in the HCFA amount added to the mix. The most significant reduction of [image: there is no content] by 36%–75% and 54%–89% after 28 and 90 days of curing, respectively, was obtained when using ground HCFA to substitute 30% of binder mass. With a such reduction of [image: there is no content], the level of chloride resistance changed from acceptable to good or from unacceptable to acceptable, [22]. For a few mixes prepared with a water-to-binder ratio of 0.60, a change of [image: there is no content] did not increase the level of chloride penetration resistance. Sieving through a 0.125-mm mesh size sieve was found to improve HCFA performance: it significantly reduced the value of [image: there is no content], which was most evident after 90 days of curing. No clear relationship could be found between [image: there is no content] and the water-to-binder ratio or the compressive strength of concrete.

The resistance against chloride ingress of concrete containing low calcium fly ash was previously tested by Baert, et al. [23], and at 28 days, the chloride migration coefficient was increased with increasing fly ash content. However at later ages (3, 6 or 12 months), due to the pozzolanic reaction, the [image: there is no content] coefficient was lower for all concrete mixes with siliceous fly ash. The effects of blast furnace slag on the chloride migration coefficient summarized by Gjorv [6] were clearly favorable, even at the age of 14 days. After 28 days of water curing, the increasing amounts of slag up to 80% replacement resulted in the reduced apparent chloride diffusion coefficient from 11 × [image: there is no content] down to 2 × [image: there is no content] m/s2. The comparison with the obtained results on HCFA in concrete reveals almost comparable efficiency as blast furnace slag. This could be attributed to both pozzolanic and hydraulic activity of HCFA. The hydraulic properties of these fly ashes should be related to reactive aluminate phases and their hydration and also to the formation of ettringite in the initial phase of hydration [24]. A high hydraulic and pozzolanic activity index after a prolonged hydration and hardening process is connected with hydraulic phases, mainly belite and gehlenite, as well as with the reactivity of the glassy phase. The complexity of the phenomena involved in chloride ion penetration in concrete containing such a mineral addition of pozzolanic and hydraulic activity justifies an application of machine learning techniques to reveal the possible governing rules.

In Table 4, the database containing data on the composition of the concrete mixes, the specific surface of fly ash obtained by the Blaine method and the chloride migration coefficient determined after 28 days of curing is presented. The estimation of the concrete resistance to chloride penetration, based on the values of the diffusion coefficients according to the criterion presented in Table 3, is placed in the last column of Table 4.


Table 4. The database of the composition of concrete mixes and the properties of hardened concretes.



	
Concrete Mix

	
Content (kg/m3)

	
Specific Surface of Fly Ash (cm2/g)

	
Chloride Migration Coefficient ( × 10−12 m2/s)

	
Category of Resistance to Chloride Penetration




	
Cement CEM I 42.5

	
High Calcium Fly Ash

	
Aggregate

	
Water




	
10% C3A

	
2% C3A




	
mix

	
C1

	
C2

	
S1

	
S110

	
S128

	
S2

	
S215

	
S3

	
S320

	
K016

	
w

	
surf

	
Dnssm

	
resistance






	
R_38

	
359

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1945

	
156

	
0

	
10.13

	
unacceptable




	
R_39

	
305

	
0

	
137

	
0

	
0

	
0

	
0

	
0

	
0

	
1848

	
153

	
2860

	
7.88

	
good




	
R_41

	
250

	
0

	
268

	
0

	
0

	
0

	
0

	
0

	
0

	
1741

	
152

	
2860

	
3.76

	
good




	
R_42

	
323

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1938

	
174

	
0

	
23.73

	
unacceptable




	
R_43

	
272

	
0

	
120

	
0

	
0

	
0

	
0

	
0

	
0

	
1837

	
169

	
2860

	
12.36

	
unacceptable




	
R_44

	
226

	
0

	
241

	
0

	
0

	
0

	
0

	
0

	
0

	
1768

	
169

	
2860

	
8.10

	
unacceptable




	
R_47

	
310

	
0

	
0

	
139

	
0

	
0

	
0

	
0

	
0

	
1892

	
140

	
3500

	
5.44

	
good




	
R_48

	
257

	
0

	
0

	
275

	
0

	
0

	
0

	
0

	
0

	
1802

	
142

	
3500

	
3.42

	
good




	
R_49

	
275

	
0

	
0

	
121

	
0

	
0

	
0

	
0

	
0

	
1872

	
160

	
3500

	
17.79

	
unacceptable




	
R_50

	
228

	
0

	
0

	
244

	
0

	
0

	
0

	
0

	
0

	
1800

	
159

	
3500

	
10.37

	
unacceptable




	
R_51

	
306

	
0

	
0

	
0

	
137

	
0

	
0

	
0

	
>0

	
1852

	
153

	
3870

	
6.37

	
good




	
R_52

	
255

	
0

	
>0

	
0

	
273

	
0

	
0

	
0

	
>0

	
1780

	
153

	
3870

	
3.85

	
good




	
R_53

	
277

	
0

	
0

	
0

	
122

	
0

	
0

	
0

	
0

	
1871

	
175

	
3870

	
12.22

	
unacceptable




	
R_54

	
228

	
0

	
0

	
0

	
244

	
0

	
0

	
0

	
0

	
1784

	
173

	
3870

	
5.52

	
good




	
R_75

	
0

	
366

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1997

	
143

	
0

	
11.96

	
unacceptable




	
R_76

	
0

	
312

	
140

	
0

	
0

	
0

	
0

	
0

	
0

	
1901

	
142

	
2860

	
6.34

	
good




	
R_77

	
0

	
251

	
270

	
0

	
0

	
0

	
0

	
0

	
0

	
1765

	
140

	
2860

	
4.04

	
good




	
R_78

	
0

	
328

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1982

	
165

	
0

	
21.91

	
unacceptable




	
R_79

	
0

	
278

	
123

	
0

	
0

	
0

	
0

	
0

	
0

	
1894

	
159

	
2860

	
10.30

	
unacceptable




	
R_80

	
0

	
226

	
242

	
0

	
0

	
0

	
0

	
0

	
0

	
1790

	
157

	
2860

	
7.88

	
good




	
R_81

	
0

	
304

	
0

	
0

	
0

	
136

	
0

	
0

	
0

	
1861

	
133

	
4400

	
5.04

	
good




	
R_82

	
0

	
277

	
0

	
0

	
0

	
122

	
0

	
0

	
0

	
1889

	
158

	
4400

	
7.76

	
good




	
R_116

	
340

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1841

	
170

	
0

	
20.79

	
unacceptable




	
R_125

	
296

	
0

	
0

	
0

	
0

	
0

	
0

	
75

	
0

	
1836

	
174

	
1900

	
8.17

	
unacceptable




	
R_118

	
237

	
0

	
0

	
0

	
0

	
0

	
0

	
145

	
0

	
1767

	
172

	
1900

	
10.95

	
unacceptable




	
R_117

	
295

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
74

	
1826

	
174

	
4060

	
12.00

	
acceptable




	
R_119

	
239

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
147

	
1781

	
171

	
4060

	
5.17

	
good




	
R_107

	
308

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1846

	
186

	
0

	
26.00

	
unacceptable




	
R_102

	
265

	
0

	
0

	
0

	
0

	
0

	
0

	
67

	
0

	
1834

	
189

	
1900

	
22.80

	
unacceptable




	
R_103

	
218

	
0

	
0

	
0

	
0

	
0

	
0

	
134

	
0

	
1814

	
189

	
1900

	
20.86

	
unacceptable




	
R_105

	
265

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
67

	
1839

	
189

	
4060

	
12.10

	
acceptable




	
R_104

	
219

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
135

	
1820

	
190

	
4060

	
7.59

	
good




	
R_120

	
0

	
343

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1862

	
172

	
0

	
23.09

	
unacceptable




	
R_122

	
0

	
239

	
0

	
0

	
0

	
0

	
0

	
146

	
0

	
1779

	
171

	
1900

	
21.85

	
unacceptable




	
R_121

	
0

	
295

	
0

	
0

	
0

	
0

	
0

	
0

	
74

	
1824

	
173

	
4060

	
19.61

	
unacceptable




	
R_123

	
0

	
240

	
0

	
0

	
0

	
0

	
0

	
0

	
147

	
1786

	
171

	
4060

	
17.65

	
unacceptable




	
R_106

	
0

	
312

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1869

	
189

	
0

	
28.50

	
unacceptable




	
R_111

	
0

	
265

	
0

	
0

	
0

	
0

	
0

	
67

	
0

	
1836

	
187

	
1900

	
31.63

	
unacceptable




	
R_112

	
0

	
222

	
0

	
0

	
0

	
0

	
0

	
136

	
0

	
1840

	
191

	
1900

	
27.44

	
unacceptable




	
R_110

	
0

	
265

	
0

	
0

	
0

	
0

	
0

	
0

	
67

	
1840

	
187

	
4060

	
25.42

	
unacceptable




	
R_108

	
0

	
223

	
0

	
0

	
0

	
0

	
0

	
0

	
137

	
1852

	
192

	
4060

	
23.04

	
unacceptable




	
A_0

	
350

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1890

	
158

	
0

	
14.38

	
acceptable




	
A_15

	
298

	
0

	
133

	
0

	
0

	
0

	
0

	
0

	
0

	
1800

	
158

	
2860

	
7.91

	
good




	
B_15

	
298

	
0

	
0

	
133

	
0

	
0

	
0

	
0

	
0

	
1800

	
158

	
3500

	
6.39

	
good




	
C_15

	
298

	
0

	
0

	
0

	
133

	
0

	
0

	
0

	
0

	
1800

	
158

	
3870

	
5.52

	
good




	
A_30

	
245

	
0

	
263

	
0

	
0

	
0

	
0

	
0

	
0

	
1710

	
158

	
2860

	
5.43

	
good




	
B_30

	
245

	
0

	
0

	
263

	
0

	
0

	
0

	
0

	
0

	
1710

	
158

	
3500

	
1.63

	
very good




	
C_30

	
245

	
0

	
0

	
0

	
263

	
0

	
0

	
0

	
0

	
1710

	
158

	
3870

	
1.52

	
very good




	
D_15

	
298

	
0

	
0

	
0

	
0

	
133

	
0

	
0

	
0

	
1800

	
158

	
4400

	
3.06

	
good




	
E_15

	
298

	
0

	
0

	
0

	
0

	
0

	
133

	
0

	
0

	
1800

	
158

	
6510

	
2.06

	
good




	
H_0

	
0

	
350

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
1880

	
175

	
0

	
37.04

	
unacceptable




	
H_15M

	
0

	
298

	
0

	
0

	
0

	
0

	
0

	
0

	
75

	
1847

	
175

	
4060

	
34.48

	
unacceptable




	
H_15S

	
0

	
298

	
0

	
0

	
0

	
0

	
0

	
75

	
0

	
1847

	
175

	
1900

	
33.03

	
unacceptable




	
H_30M

	
0

	
245

	
0

	
0

	
0

	
0

	
0

	
0

	
150

	
1813

	
175

	
4060

	
27.41

	
unacceptable




	
H_30S

	
0

	
245

	
0

	
0

	
0

	
0

	
0

	
150

	
0

	
1813

	
175

	
1900

	
27.59

	
unacceptable






The database presented in Table 4 is a general database, which can be transformed into a “working database” by column selection.




The permeability of concrete is known to be dependent largely on the water-to-cement ratio, ([image: there is no content]). However the definition of w/c is not unambiguous when using supplementary cementitious materials. Following the EN 206 standard, the effect of active mineral additions on w/c is quantified using the k-efficiency factor: the content of the additive (a) is multiplied with a k-value, and the water to cement ratio ([image: there is no content]) is replaced by [image: there is no content]. The efficiency k factor approach is adequate to address the mix design for compressive strength when using the additives of the established efficiency. Even in such a case, like siliceous fly ash, the efficiency factors are not the same for durability performance and for the compressive strength [25]. The compiled fly ash efficiency data [6,26] revealed a much higher efficiency coefficient k in relation to the compressive strength than the value given in EN 206, even reaching the value of two in relation to the resistance to chloride attack. For nonstandard fly ashes and coal combustion products from so-called clean coal technology, the efficiency factors are not established [27]. Therefore, it is not possible to describe all of the effects of the nonstandard fly ashes, including HCFA, on concrete performance when exposed to various environmental factors with only one efficiency coefficient. In order to avoid an unambiguous ([image: there is no content]) definition, the content of water in the mix is used as a descriptor in the machine learning database.





3. Machine Learning Methods Used in the Prediction of the Engineering Properties of Composite Materials


3.1. Introduction to Machine Learning

Determining the relationship between material composition and the chloride resistance of concrete is a difficult and time-consuming process, even in the case of a small dataset, as presented in Table 4. For the considered dataset, it requires simultaneous analysis of 12 attributes (columns) for over 50 examples (rows). This task can be done manually; however, using a computer system to support data exploration is much more efficient. The branch of artificial intelligence concerned with applying algorithms that let computers evolve patterns using empirical data is called machine learning.

The aim of machine learning is to automatically learn to recognize complex patterns and make intelligent decisions based on the dataset. By a dataset, we mean a collection of logically-related records: a database. Each record can be called an instance or example, and each one is characterized by the values of predetermined attributes. The difficulty lies in the fact that the set of all possible behaviors given all possible inputs is too large to be covered by the set of observed examples (training data). Hence, the learner must generalize from the given examples, so as to be able to produce a useful output in new cases.

Patterns recognition associated usually with classification is the most popular example of utilizing machine learning. However machine learning or, more general, statistical algorithms can support the knowledge discovery at different stages from outlier detection and attribute (features) selection to knowledge modeling and model validation.



3.2. Feature Selection

Feature selection, also known as attribute selection or feature reduction, is the technique of selecting a subset of relevant features for building robust learning models. By removing most irrelevant and redundant attributes from the data, feature selection helps improve the performance of learning models by: speeding up the learning process and alleviating the effect of the curse of dimensionality. Moreover, the irrelevant attributes degrade the performance of state-of-the-art decision tree and rule learners [28].



3.3. Classification

As was written earlier in Section 3.1, classification is the most common type of machine learning application. The goal of the classification process is to find a way of classifying unseen examples based on the knowledge extracted from the provided set of classified instances. Extracting the knowledge from the provided dataset requires the attribute set characterizing the example to be divided into two groups: the class attribute and the non-class attributes. For unseen instances, only non-class attributes are known; hence, the aim of data mining algorithms is to create such a knowledge model that allows predicting the example class membership based only on non-class attributes.

The knowledge model depends on the way the classifier is constructed, and it can be represented by classification rules (the algorithm AQ21 [29]), decision trees (e.g., algorithm C4.5, [30]) or many other representations. Regardless of the representation, both classification rules and decision trees algorithms create hypotheses.

In the considered problem, the chloride resistance of concrete (class attribute) depending on the material composition and some predictions of the concrete (non-class attributes) is searched. We concentrated on the most popular representative of decision tree classifiers, the J48 algorithm, the open-source implementation of the last publicly-available version of a C4.5 method developed by J. Ross Quinlan [30]. This algorithm was compared to selected algorithms available in Weka [28] in Section 4.2.



3.4. Classifier Evaluation

So as to evaluate the classifier, i.e., to judge the hypotheses generated from the provided training set, we have to verify the classifier performance on the independent dataset, which is called the testing set. The classifier predicts the class of each instance from the test set; if it is correct, it is counted as a success; if not it, is an error. The measure of the overall performance of the classifier is the classification accuracy. This is the number of correct classifications of the instances from the test set divided by the total number of these instances, expressed as a percentage. The greater the classification accuracy, the better is the classifier.

In order to get a deeper understanding of which types of errors are the most frequent, the result obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a column for each class. Each matrix element shows the number of test examples, for which the actual class is the row and the predicted class is the column. Good results correspond to large numbers down the main diagonal and small, ideally zero, for the elements off the diagonal. The sum of the numbers down the main diagonal divided by the total number of test examples determine the classification accuracy.

Let’s consider what can be done when the number of data for training and testing is limited. The simplest way to handle this situation is to reserve a certain number of examples for testing and to use the remainder for training. Of course, the selection should be done randomly. The main disadvantage of this simple method is that this random selection may not be representative. A more general way to mitigate any bias caused by the particular sample chosen for hold out is to repeat the whole process, training and testing, several times with different random samples. The random selection repeated many times can be treated as the basis of a statistical technique called cross-validation. In the k-fold cross-validation, the dataset U is split into k approximately equal portions ([image: there is no content]) [31]. In each iteration i, the set [image: there is no content] is used for testing, and the remainder U\[image: there is no content] is used for training. Overall classification accuracy is calculated as an average from the classification accuracy for each iteration.

When we have only one database consisting of a very small number of records, the estimation of classification accuracy (the measure of the overall performance of the classifier) can be done using the n-fold cross-validation, where n is the number of examples in the database. In this method, called leave-one-out cross-validation, each example in turn is left out, and the learning method is trained on all of the remaining examples. It is judged by its correctness on the remaining example, one or zero for success or failure, respectively. The results from n judgments, one for each member of the database, are averaged, and that average represents the classification accuracy [28].




4. Searching for the Rules Describing the Chloride Resistance of Concrete Modified with HCFA


4.1. Feature Selection

In Table 4, the dataset with 12 attributes is presented. It is clear that for database with a few dozens of instances, this number of attributes is too large. Some attributes can be eliminated, but it is important to eliminate the most irrelevant attributes.

Therefore, we decided to evaluate a subset of attributes using the best first and exhaustive approaches to feature selection. The best first method searches the space of attributes by greedy hill climbing augmented with backtracking facility. In both cases, the CfsSubsetEvaluator, provided by Weka, was used to assess the predictive ability of each attribute individually and the degree of redundancy among them, preferring sets of attributes that are highly correlated with the class, but have low inter-correlation. Both methods of searching (best first and exhaustive) resulted in selection of C1, S128, w and surf attributes as a percent of tests, as presented in Table 5.

Table 5. Attribute selection cross-validation results.


	Attribute
	C1
	C2
	S1
	S110
	S128
	S2
	S215
	S3
	S320
	K016
	w
	surf





	Best First
	100%
	0%
	0%
	0%
	32%
	0%
	0%
	0%
	0%
	0%
	100%
	100%



	Exhaustive Search
	98%
	0%
	0%
	0%
	32%
	0%
	0%
	0%
	0%
	0%
	100%
	100%










Therefore, in order to generate rules describing the chloride resistance of concrete modified with high calcium fly ash, the subset of attributes (C1, cement content with 10 percent of C3A content (kg/m3), S128, high calcium fly ash ground 28 minutes content (kg/m3), w, water content (kg/m3), surf, specific surface of fly ash obtained by the Blaine method (cm2/g), and resistance, concrete resistance to chloride penetration (acceptable, good, unacceptable)) from the database (Table 4) is used. The shrunken database containing 56 records, each one described by four numerical and one nominal attributes, is presented in Table 6. The last attribute, resistance, denotes a class and can take one of three values (good, acceptable or unacceptable). Since the class “very good” representation is not sufficient (only two examples), we decided to assign them to the “good” class, which now covers 22 examples.

Table 6. The database.


	Number
	C1
	S128
	w
	surf
	resistance





	1
	359
	0
	156
	0
	acceptable



	2
	305
	0
	153
	2860
	good



	3
	250
	0
	152
	2860
	good



	4
	323
	0
	174
	0
	unacceptable



	5
	272
	0
	169
	2860
	acceptable



	6
	226
	0
	169
	2860
	acceptable



	7
	310
	0
	140
	3500
	good



	8
	257
	0
	142
	3500
	good



	9
	275
	0
	160
	3500
	unacceptable



	10
	228
	0
	159
	3500
	acceptable



	11
	306
	137
	153
	3870
	good



	12
	255
	273
	153
	3870
	good



	13
	277
	122
	175
	3870
	acceptable



	14
	228
	244
	173
	3870
	good



	15
	0
	0
	143
	0
	acceptable



	16
	0
	0
	142
	2860
	good



	17
	0
	0
	140
	2860
	good



	18
	0
	0
	165
	0
	unacceptable



	19
	0
	0
	159
	2860
	acceptable



	20
	0
	0
	157
	2860
	good



	21
	0
	0
	133
	4400
	good



	22
	0
	0
	158
	4400
	good



	23
	340
	0
	170
	0
	unacceptable



	24
	296
	0
	174
	1900
	acceptable



	25
	237
	0
	172
	1900
	acceptable



	26
	295
	0
	174
	4060
	acceptable



	27
	239
	0
	171
	4060
	good



	28
	308
	0
	186
	0
	unacceptable



	29
	265
	0
	189
	1900
	unacceptable



	30
	218
	0
	189
	1900
	unacceptable



	31
	265
	0
	189
	4060
	acceptable



	32
	219
	0
	190
	4060
	good



	33
	0
	0
	172
	0
	unacceptable



	34
	0
	0
	170
	1900
	unacceptable



	35
	0
	0
	171
	1900
	unacceptable



	36
	0
	0
	173
	4060
	unacceptable



	37
	0
	0
	171
	4060
	unacceptable



	38
	0
	0
	189
	0
	unacceptable



	39
	0
	0
	187
	1900
	unacceptable



	40
	0
	0
	191
	1900
	unacceptable



	41
	0
	0
	187
	4060
	unacceptable



	42
	0
	0
	192
	4060
	unacceptable



	43
	350
	0
	158
	0
	acceptable



	44
	298
	0
	158
	2860
	good



	45
	298
	0
	158
	3500
	good



	46
	298
	133
	158
	3870
	good



	47
	245
	0
	158
	2860
	good



	48
	245
	0
	158
	3500
	good



	49
	245
	263
	158
	3870
	good



	50
	298
	0
	158
	4400
	good



	51
	298
	0
	158
	6510
	good



	52
	0
	0
	175
	0
	unacceptable



	53
	0
	0
	175
	4060
	unacceptable



	54
	0
	0
	175
	1900
	unacceptable



	55
	0
	0
	175
	4060
	unacceptable



	56
	0
	0
	175
	1900
	unacceptable












4.2. Classification

As was mentioned in Section 3.3, the chloride resistance of concrete depending on material composition can be searched using one of many software suites available on the market, and we decided to utilize the Weka workbench. The Weka workbench provides over one hundred algorithms supporting classification. They belong to different types, like: Bayesian classifiers, rule classifiers, tree classifiers or meta classifiers. In our research, we decided to determine the chloride resistance of concrete using the selected 20 algorithms belonging to three different types of algorithms. As a training set, all of the instances from the database (Table 6) were considered. The classification accuracy was evaluated using leave-one-out cross-validation. The obtained results are collected in Table 7.


Table 7. Results obtained for different classifiers from the Weka workbench.



	
Number

	
Classifier

	
Accuracy






	
Bayesian Classifiers




	
1

	
BayesNet

	
66.07




	
2

	
ComplementNaiveBayes

	
62.50




	
3

	
NaiveBayes

	
73.21




	
Tree Classifiers




	
4

	
BFTree

	
73.21




	
5

	
DecisionStump

	
73.21




	
6

	
FT

	
78.57




	
7

	
LADTree

	
82.14




	
8

	
J48

	
89.29




	
9

	
LMT

	
82.14




	
10

	
NBTree

	
78.57




	
11

	
REPTree

	
64.29




	
12

	
SimpleCart

	
71.43




	
Rule Classifiers




	
13

	
ConjunctiveRule

	
71.43




	
14

	
DecisionTable

	
71.43




	
15

	
DTNB

	
80.36




	
16

	
JRip

	
62.50




	
17

	
NNge

	
76.79




	
18

	
OneR

	
71.43




	
19

	
PART

	
76.79




	
20

	
Ridor

	
66.07











The best accuracy equaling almost 90% was obtained using the J48 algorithm. The decision tree generated by the J48 algorithm is presented in Figure 1, where the first number in brackets denotes the number of examples from the training set covered by a selected leaf, and the second number, just after the sign “/”, indicates the number of incorrectly-classified instances (negative examples).

Figure 1. The decision tree for resistance to chloride penetration generated by the J48 algorithm.



[image: Materials 08 05483 g001 1024]







The obtained decision tree can be easily transformed into the following rules:

[resistance = good]
Rule 1 [w ≤158] and [surf >0]: p = 19, n = 0,
Rule 2 [w >158] and [surf >3500] and [218 < C1 ≤ 250]: p = 3, n = 0.
[resistance = acceptable]
Rule 1 [w ≤158] and [surf = 0]: p = 3, n = 0,
Rule 2 [w >158] and [C1 >218] and [0 < surf ≤ 3500]: p = 7, n = 2,
Rule 3 [w >158] and [C1 >250] and [surf >3500]: p = 3, n = 0.
[resistance = unacceptable]
Rule 1 [w >158] and [C1 ≤218]: p = 18, n = 1,
Rule 2 [w >158] and [C1 >218] and [surf = 0]: p = 3, n = 0,

where p denotes the number of positive examples covered by the rule (i.e., the number of records from this class satisfying the rule) and n denotes the number of negative examples covered by the rule (i.e., the number of records from the other classes satisfying the rule).
The obtained decision rules determine the conditions concretes have to fulfill to provide appropriate resistance against chloride penetration.

The good class characterizes:


	concretes with water content below 158 kg/m3 (w ≤ 158) where 15% or 30% of cement mass (C1 or C2) was replaced with high calcium fly ash (surf > 0),


	concretes with water content above 158 kg/m3 (w > 158) where 30% of cement C1 mass (218 < C1 ≤ 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash S3 ground for 20 minutes (surf > 3500).




The acceptable class characterizes:


	concretes without high calcium fly ash (surf = 0) with water content below 158 kg/m3,


	concretes with water content above 158 kg/m3 (w > 158) where 15% or 30% of cement C1 mass (C1 > 218) was replaced by unprocessed high calcium fly ash S1, S3 or S1 ground for 10 minutes (surf ≤ 3500),


	concretes with water content above 158 kg/m3 (w > 158) where 15% of cement C1 mass (C1 > 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash S3 ground for 20 minutes (surf > 3500),




The unacceptable class characterizes:


	concretes with water content above 158 kg/m3 (w > 158) and with a content of cement C1 below 218 kg/m3 (C1 ≤ 218), that is concretes containing cement C2 with or without high calcium fly ash, as well as concretes where 30% of cement C1 mass was replaced by unprocessed high calcium fly ash S3,


	concretes without high calcium fly ash (surf = 0) with water content above 158 kg/m3 (w > 158).




Using the leave-one-out method (n = 56), we obtained a classification accuracy equal 89.3%. The result obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a column for each class. Each matrix element shows the number of test examples for which the actual class is the row and the predicted class is the column. The sum of the numbers down the main diagonal divided by the total number of test examples determine the classification accuracy. The confusion matrix of the solved problem is determined in the form presented in Table 8.

Table 8. The confusion matrix for leave-one-out validation.








	
	good
	acceptable
	unacceptable





	good
	22
	0
	0



	acceptable
	0
	9
	3



	unacceptable
	0
	3
	19










Such a result can be considered satisfactory with respect to the limited number of records in the database.




5. Conclusions

The rules generated by algorithm J48 from the Weka workbench provided a means for the adequate classification of plain concretes and concretes modified with high calcium fly ash as materials of good, acceptable and unacceptable resistance to chloride penetration.

According to the generated rules, it is found that if the content of water in mixes is small enough (in investigated concretes, w ≤ 158 L/m3), then concretes modified with high calcium fly ash are qualified as materials of good resistance to chloride penetration, whereas concretes without high calcium fly ash are qualified as materials of acceptable resistance. For greater content of water (w > 158 L/m3), concretes using cement of low C3A with or without high calcium fly ash are characterized by unacceptable resistance to chloride penetration. However, when using cement of high C3A, the replacement 15% or 30% of cement mass by high calcium fly ash, particularly by ground fly ash, improves the resistance of concretes to chloride penetration.

It is found that both the specific surface of fly ash and the content of water and cement play a significant role in providing the required concrete resistance. The classifier was evaluated using the leave-one-out method. The obtained classification accuracy was equal to 89.3%. This value seems to be sufficient to acknowledge the correctness of the classifier. Due to a small number of tested specimens, the rules are applicable only to concrete mix compositions of similar binder content. Further tests are needed in order to enlarge the experimental database and to cover a broader range of concrete compositions.
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