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Abstract: In this study, a novel biocompatible hydroxyapatite (HA) was synthesized by using
chitosan oligosaccharide (COS) as a template. These HA samples were studied by Fourier transform
infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
transmission electron microscopy (TEM). The biocompatibility of HA samples was evaluated via
cell viability, cell morphology and alkaline phosphatase staining of MG-63 cell lines. The results
show that HA synthesized in the presence of COS was favorable to proliferation and osteogenic
differentiation of MG-63 cells. These hydroxyapatites are potentially attractive biomaterials for bone
tissue engineering applications.
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1. Introduction

Over recent years, various biomaterials have been developed for bone tissue engineering
applications such as bone graft substitutes, bone repair, biodegradable bone scaffold and bone drug
carriers [1–4]. With stricter biocompatibility requirements for materials used in clinic application,
biomimetic synthesis of hydroxyapatites with improved biocompatibility is a promising strategy
for the clinic application of hydroxyapatites for bone tissue engineering [5–7]. The biomimetic
method typically uses a bottom-up approach to design and assemble molecules into a higher
order of hierarchy structure [8]. Biomolecules including polysaccharides [6,9,10], collagens [11,12],
gelatin [13,14] and peptides [15–17] have attracted extensive attention in regulating HA nucleation
and growth during the mineralization process. Wang et al. [11] demonstrated that the nucleation,
growth, orientation and structure of bone apatite crystals was predominantly controlled by collagen
matrix. Recently, much attention has been focused on the polysaccharide in the bone. Several
polysaccharides including maleic chitosan, hyaluronic acid and heparin have been found to play
important roles in stabilizing the amorphous calcium phosphate at the early stage of mineralization
and regulating the morphology, size and crystallinity of the inorganic apatites [6,9,10]. Wise et al. [18]
recently suggested that polysaccharides, not proteins, predominantly form an organic–mineral
interface. Unlike hydrophobic collagens, the functional groups of polysaccharides can chelate
Ca2+ ions and form hydrogen bonds with protonated PO4

3´ and H2O on the surface of the bone
apatites [19].

Chitosan, a linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine, is
produced commercially by deacetylation of chitin of crustaceans such as crabs and shrimp. As
the degraded products of chitosan by enzymatic and acidic hydrolysis, chitosan oligosaccharides

Materials 2015, 8, 8097–8105; doi:10.3390/ma8125440 www.mdpi.com/journal/materials



Materials 2015, 8, 8097–8105

(COS) have a lower molecular weight and are readily soluble in aqueous solutions [20]. COS have
attracted considerable attention due to their biological activities and biomedical properties including
antimicrobial activities, immune-enhancing effects, and anti-tumor activities [21–23].

As a prototype of human bone cells, the osteoblast cell line MG63 have been widely used to
evaluate biocompatibility and osteogenic differentiation of materials. The sequential expression of
genes for collagen type I and alkaline phosphatase (ALP) is characteristic of osteoblast differentiation
of MG-63 cells [24]. In this study, we hypothesize that the amino groups play an important role in
regulating the mineralization of apatites, because they have a high affinity for calcium ions in solution.
The purpose of this study was to address the effects of the molecular weight and the concentration of
COS on the chemical compositions, morphology and biological properties of apatites synthesized by
the chemical precipitation method. All products were characterized with Fourier-transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron Spectroscopy (XPS) spectroscopy
(XPS), and transmission electron microscopy (TEM). The effects of obtained HA samples on the
viability and osteogenic differentiation of MG-63 cells have been evaluated by MTT assay and alkaline
phosphatase staining.

2. Materials and Methods

2.1. Materials

Ca(NO3)2¨ 4H2O (AR, Shanghai Chemical Reagent Co., Ltd., Shanghai, China), (NH4)2HPO4

(AR, Shanghai Chemical Reagent Co., Ltd., Shanghai, China), NH3¨ H2O (AR, Shanghai Chemical
Reagent Co., Ltd., Shanghai, China), and chitosan oligosaccharide (AR, Linovus Technology,
Singapore) were used as received without further purification.

2.2. Samples Preparation

In the typical synthesis of HA, Ca(NO3)2¨ 4H2O and (NH4)2HPO4 were used as the calcium
source and phosphorus source, respectively. The different molecular weights of COS were served as
soft templates for HA synthesis. All the chemicals were used as received without further purification.
The specific synthetic condition of each sample is listed in Table 1. A solution of (NH4)2HPO4 and
COS was prepared in deionized water with magnetic stirring, then the mixed solution was heated at
85 ˝C. Then Ca(NO3)2 solution was added dropwisely to the heated solution, meanwhile keeping pH
about 10 by adding ammonium hydroxide solution. After 2 h stirring, the hydroxyapatite suspension
was aged for 24 h. The obtained precipitate was washed by deionized water and ethyl alcohol for
three times, and dried with an infrared heat lamp.

Table 1. Synthesizing conditions for preparing apatites with COS as a template.

Sample Name COS (g/L) Molecular Mass of COS Ca(NO3)2 (mol/L) (NH4)2HPO4 (mol/L) T (˝C)

CS1000-1 10 1000 0.167 0.1 85
CS3000-1 10 3000 0.167 0.1 85
CS5000-1 10 5000 0.167 0.1 85
CS1000-2 2 1000 0.167 0.1 85
CS3000-2 2 3000 0.167 0.1 85
CS5000-2 2 5000 0.167 0.1 85

2.3. Physical Characterization Methods

2.3.1. X-ray Diffraction Measurement

The crystalline phase of the samples was examined by X-ray diffraction (XRD, D8 ADVANCE,
Bruker-AXS, Karlsruhe, Germany) with graphite monochromatized Cu Kα radiation operating at
40 kV and 40 mA at room temperature.
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2.3.2. Fourier Transform Infrared Spectrometry Measurement

Fourier transform infrared spectrometry (FTIR, ALPHA, BRUKER, Billerica, MA, USA) was
used to identify the molecular structure characteristics and, after the sample stage was cleaned up
by ethanol wiping, the background was tested from 500 to 3600 cm´1.

2.3.3. X-ray Photoelectron Spectroscopy

The elements composition and the atom molar ratio of Ca to P of the samples were analyzed
by X-ray photo-electronic spectroscopy (XPS, ESCALAB250Xi, ThermoFisher Scientific, Waltham,
MA, USA).

2.3.4. Tecnai F30 Transmission Electron Microscope Measurement

High resolution transmission electron microscopy (HRTEM, Tecnai C2 F30 S-Twin, FEI,
Hillsboro, OR, USA) was carried out to determine particle size and morphology.

2.4. Cell Viability Test, Cell Morphology and Alkaline Phosphatase Staining Assay

Human osteosarcoma cell line MG63 cells (American Type Culture Collection, Manassas, VA,
USA) were cultured in RPMI 1640 medium (Gibco, Carlsbad, CA, USA) containing 10% fetal
calf serum (Gibco, Carlsbad, CA, USA), 100 µg/mL penicillin and 100 µg/mL streptomycin in a
humidified atmosphere with 5% CO2 at 37 ˝C. Then MG-63 cells were seeded in a 96-well cell culture
plate with a density of 5 ˆ 103 per well. The next day, cells were treated with HA samples at the
concentration of 60 µg/mL (6 µg per well). After 1, 3 and 5 days, the cell viability was evaluated by
MTT. Optical microscopy (Olympus BX 51M, Monolith, Japan) was used to observe the morphology
of cells.

Alkaline phosphatase staining was performed with nitro blue tetrazolium/5-bromo-4-chloro-
indolyl-phosphate (BCIP/NBT) Alkaline Phosphatase Color Development Kit (Beyotime Institute
of Biotechnology, Nanjing, China) according to manufacturer’s instructions. Briefly, MG-63 cells
were seeded in a 24-well cell culture plate with a density of 2 ˆ 104 per well. The next day, cells
were treated with the HA samples with the concentration of 60 µg/mL (30 µg per well). After
co-culture with samples for 4 days, the cells were washed by PBS for three times and fixed by 4%
paraformaldehyde for 20 min. Then the cells were washed with PBS again for three times and
incubated with BCIP/NBT staining buffer for 16 h at room temperature. The stained cells were
observed under inverted microscope.

3. Results and Discussion

3.1. Fourier Transform Infrared Spectroscopy

The FTIR spectra of all as-prepared HA samples are shown in Figure 1. The absorption peak
around 566 cm´1 and 603 cm´1 can be assigned as the bending vibration of PO4

3´ [6,7,10]. The
913 cm´1 peak corresponds to the symmetric stretching vibration of PO4

3´. The peaks at 1036 cm´1

and 1122 cm´1 should be assigned to asymmetric stretching vibration of PO4
3´ [6,10]. The absorption

peak around 1385 cm´1 belongs to CO3
2´ asymmetric stretching vibration, which indicated that there

is a partial substitution of CO32´ for PO4
3´ (B-type) [7]. The substitution of carbonate for both PO4

3´

in HA was affected by the different concentration and molecular weight of COS.
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Figure 1. FTIR spectra of HA samples synthesized under different conditions. 

3.2. X-Ray Photoelectron Spectroscopy 

XPS characterization (Figure 2) was used to analyze the Ca/P ratio of synthesized apatite  
samples [25–27]. As shown in Table 2, the ratio between calcium and phosphate is still less than  
1.67 in theory, which may be caused by the calcium deficiency on the surface of the HA lattice [13]. 
The ratio between calcium and phosphate of synthetic samples has no significant differences in a 
reasonable range. Finally, the characteristic peaks of the N element in the XPS analysis cannot be seen, 
which indicates that COS had been washed cleanly. 

 
Figure 2. XPS spectra of as-synthesized HA samples under different conditions. 

Table 2. Quantities and molar ratios of synthesized HA samples. 

wt % CS1000-1 CS3000-1 CS5000-1 CS1000-2 CS3000-2 CS5000-2 
Ca(atomic %) 18.25 18.04 17.59 16.45 18.43 16.76 
P(atomic %) 12.60 12.59 11.93 11.63 12.59 11.57 
Ca/P ratio 1.45 1.43 1.47 1.41 1.46 1.45 

3.3. X-Ray Diffraction Studies 

XRD patterns of the six synthesized HA samples are shown in Figure 3. The diffraction peaks of 
all HA samples agree with those of pure HA at 2θ values of 25.9°, 31.7°, 32.9°, 39.8°, 46.7°, 49.5° and 

Figure 1. FTIR spectra of HA samples synthesized under different conditions.

3.2. X-Ray Photoelectron Spectroscopy

XPS characterization (Figure 2) was used to analyze the Ca/P ratio of synthesized apatite
samples [25–27]. As shown in Table 2, the ratio between calcium and phosphate is still less than
1.67 in theory, which may be caused by the calcium deficiency on the surface of the HA lattice [13].
The ratio between calcium and phosphate of synthetic samples has no significant differences in a
reasonable range. Finally, the characteristic peaks of the N element in the XPS analysis cannot be
seen, which indicates that COS had been washed cleanly.
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3.3. X-Ray Diffraction Studies

XRD patterns of the six synthesized HA samples are shown in Figure 3. The diffraction peaks of
all HA samples agree with those of pure HA at 2θ values of 25.9˝, 31.7˝, 32.9˝, 39.8˝, 46.7˝, 49.5˝ and
53.1˝, which are indexed to (002), (211), (300), (310), (222), (213) and (004) planes, respectively [6,7,10].
The intense bands at around 2θ = 26˝ and 2θ = 33˝ prove that the samples are predominantly HA. The
patterns of HA samples with broader bands are similar to those minerals in human bones [28]. The
amino groups on the surface of COS can chelate Ca2+ ions to form ionic clusters for the nucleation of
minerals and function like a natural template for the apatite crystal to grow.

Materials 2015, 8, page–page 

5 

53.1°, which are indexed to (002), (211), (300), (310), (222), (213) and (004) planes, respectively [6,7,10]. 
The intense bands at around 2θ = 26°and 2θ = 33° prove that the samples are predominantly HA. The 
patterns of HA samples with broader bands are similar to those minerals in human bones [28]. The 
amino groups on the surface of COS can chelate Ca2+ions to form ionic clusters for the nucleation of 
minerals and function like a natural template for the apatite crystal to grow. 

 
Figure 3. XRD patterns of as-prepared HA samples under different conditions. 
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very irregular needle-like morphology (Figure 4a,e). The crystal structure of the HA samples 
COS3000-1 and COS 3000-2 synthesized with 3000 molecular weight (MW) COS is close to the 
irregular nanorods (Figure 4b,f). With the increase of the COS concentration, the morphology and 
size of apatites crystals show few changes. However, as the molecular weight of COS increase, the 
size of the HA crystals also visibly increase. This indicates that the presence of COS in solution may 
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3.4. Morphology Analysis Using TEM

Figure 4 shows TEM micrographs of the as-synthesized samples. The HA samples COS1000-1
and COS 1000-2 synthesized by using COS of 1000 molecular weight (MW) as a template featured
very irregular needle-like morphology (Figure 4a,e). The crystal structure of the HA samples
COS3000-1 and COS 3000-2 synthesized with 3000 molecular weight (MW) COS is close to the
irregular nanorods (Figure 4b,f). With the increase of the COS concentration, the morphology and
size of apatites crystals show few changes. However, as the molecular weight of COS increase, the
size of the HA crystals also visibly increase. This indicates that the presence of COS in solution
may interfere with the growth of HA crystals. Longer chains of larger COS molecules chelate with
calcium ions on the surface of apatite crystals, function as templates to attract calcium ions to promote
nucleation of minerals and guide the growth of crystals along the chains.
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3.5. Cell Viability Test, Cell Morphology and Alkaline Phosphatase Staining Assay

The in vitro biocompatibility of HA samples was assessed by MTT assay on an MG-63 cell line.
The MG-63 cells were co-cultured with HA samples for 1 day, 3 days and 5 days. As shown in
Figure 5, after 1 day culturing, the cell viability after culturing with HA samples were slightly lower
than control group, which could be explained by the cytotoxicity of HA nanoparticles. Although HA
has been widely used as biomaterials for tissue engineering and drug carriers, it has been reported
that hydroxyapatite nanoparticles induce apoptosis on MC3T3-E1 cells and tissue cells in SD rats [29].
The cytotoxicity of HA nanoparticles is mostly dependent on its shape and cell types [30]. After 1 day
culturing, the cell viability of COS3000-1 was slightly higher than other group, indicating that the
molecular weight and concentration might have an impact on biocompatibility of HA samples. From
Figure 5, it can be seen that the viability of MG-63 cells incubated with each sample (60 ug/mL) for
5 days still displays few differences between each other, except that COS3000-1 shows a bit better
vitality. The cell morphology of MG-63 cells co-cultured with COS3000-1 was shown in Figure 6.
The Figure 6a shows the cell morphology images observed from MG-63 cells cultured with HA
samples at 60 µg/mL concentration for 1 day. The MG63 looked natural, attached and well-spread
on the dish surface. Figure 6b shows that MG-63 cells became extremely dense after 72 h co-culturing
with 60 ug/mL of COS3000-1.
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The distinct 570 nm absorbance for MTT could be ascribed to the difference in the morphology,
carbonate content and the Ca/P ratio of the synthesized HA crystals. The substitution of
carbonate of HA can enhance its solubility, which makes HA biologically active [6,10]. In addition,
calcium-deficient apatites are also of biological importance since the catalytic activity of HA is
proportional to the calcium deficiency of the sample. Large amounts of carbon, non-stoichiometric
Ca/P ratio and appropriate nano-morphology may be the co-contributors to the biocompatibility of
apatites [31,32]. After 3 days incubation, all HA samples only show lower absorbance than the control
group, but little difference between each other. Similar results are obtained after 5 days incubation.
This can be explained by little structural difference between each sample characterized by FTIR, XPS
and TEM. However, COS3000-1 displays a bit better vitality, which is mainly due to its appropriate
morphology of crystalline, low Ca/P ratio as well as certain amounts of carbonate substitution. The
cell vitality test shows that these HA samples are biological apatites and biocompatible with the
human osteosarcoma MG-63 cell line.

Alkaline phosphatase expression is indicative of osteogenesis. As shown in Figure 7, after
co-culturing with 60 µg/mL concentration of HA samples for 4 days, alkaline phosphatase is
expressed in large amounts in the cell cytosol of MG-63 cells. Since alkaline phosphate is expressed
in large amounts in the differentiation phase of pre-osteoblastic MG63 cells, the assay is able
to show early osteoblastic phenotypic expressions, which is indicative of osteogenesis [33]. The
results indicate that all synthesized HA samples prepared with different molecular weights and
concentrations of COS have similar impacts on the growth and osteogenic differentiation MG-63 cells.
The ALP assay results demonstrate that the HA samples synthesized with a higher concentration of
COS (Figure 6a–c) show better osteogenic differentiation activity.
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4. Conclusions

In this study, chitosan oligosaccharides with different molecular weights were used as the
templates to synthesize apatite samples. The effects of the chitosan oligosaccharide concentration
and the molecular weight on the chemical composition, morphology, and biocompatibility of
as-synthesized apatites were investigated using FTIR, XRD and TEM characterization techniques.
It was found that these non-stoichiometric carbonated apatites were favorable to the proliferation
and differentiation of MG-63 cells. These novel biocompatible hydroxyapatites synthesized
by using chitosan oligosaccharide as a template are promising candidates for bone tissue
engineering applications.
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